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Abstract: Obesity is currently an increasing public health problem. The intra-uterine 

environment plays a critical role in foetal development. The objective of this study is to 

investigate the association of obesity with modifications in the metabolic profiles of 

pregnant women, and their new-borns. Based on the PELAGIE cohort (Brittany, France), 

a sample of 321 pregnant women was divided into 3 groups according to their body mass 

index (BMI) (normal, over-weight and obese). Nuclear magnetic resonance-based 

metabolomics analyses were performed on maternal urine and cord-blood samples. 

Partial Least Squares Regression-Discriminant Analysis (PLS-DA), polytomous and 

logistic regressions were used to differentiate the metabolic profiles of the 3 BMI groups 

after adjusting for potential confounders. 

Specific profiles were observed for the overweight and obese women (BMI>25) compared 

to the normal-weight women: they had a decrease in urinary hippurate excretion 

associated with a decrease in phenylalanine and an increase in creatinine. We also showed 

an increase in the urinary excretion of lactate, citrate, acetate, creatine, and lysine only in 

obese women (BMI>30) compared to the normal-weight women. The PLS-DA modelling 

did not reveal any significant difference between the cord-blood metabolic profiles of 

newborns according to maternal BMI – although infants born of obese women had a 

higher birth weight and a lower Apgar score. Our results confirmed the potential link 

between obesity and gut microbiota disruption (changes in urinary acids), as well as 

energy and amino-acid metabolism but did not reveal any disruption among newborns. 

 

Keywords: Metabolomics, Obesity, Biomarkers, System biology. 
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Introduction 

Obesity, associated with type II diabetes or cardiovascular diseases, has reached epidemic 

status. A third of American women of reproductive age are obese (Orsi et al., 2011). Now, 

epidemiological studies have shown increased birth weight in new-borns from obese mothers, 

associated with a higher risk of developing obesity in the future (Muhlhausler et al., 2013; 

Symonds et al., 2013). Epidemiological studies, experimentations on animals and placental 

models have shown the critical role played by the intrauterine environment in foetal 

development, including a direct transmission of obesity or metabolic pathologies (Dong et al., 

2013; Symonds et al., 2013). For example, the male offspring of mice with gestational obesity 

developed excess weight, insulin resistance and hyperleptinemia at adulthood, without any 

post-natal obesogenic influence (Dahlhoff et al., 2014). Furthermore, several human studies 

based on mother-child cohorts have found an association between maternal obesity and 

disrupted childhood metabolism associated with cardiovascular diseases (Godfrey and Barker, 

2000; O’Reilly and Reynolds, 2013; Wen et al., 2011). 

These phenomena, known as “foetal programming” involve different mechanisms (Bouanane 

et al., 2010; Symonds et al., 2013; Zambrano and Nathanielsz, 2013). First of all, several studies 

provide supporting evidence on the involvement of an epigenetic mechanism. In one human 

cohort, modifications in DNA methylation at the leptin and adiponectin genes have been 

observed in placentas exposed to maternal gestational diabetes mellitus (Bouchard et al., 2012, 

2010). In another, global methylation levels in the placenta and umbilical cord-blood was higher 

with obesity (Nomura et al. 2014). 

Secondly, overexpression of certain miRNA in foetal muscle from obese mothers has been 

shown in a model of maternal obesity in ewes, suggesting a decrease in adipogenic markers and 

in inflammatory cytokines (Yan et al., 2013). In rats, the wiring of connections within the 

Hypothalamic Arcuate Nuclei (HAC) - a complex energy and appetite control system - occurs 
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in the first 3 weeks of life coincident with a peak in leptin in the new-born pups’ peripheral 

blood. Pups born of obese mothers have a distorted plasma leptin peak that is longer lasting and 

higher in amplitude  (Kirk et al., 2009). This could be the sign of a perturbation in HAC 

development, resulting in future resistance to leptin feedback and energy balance alterations. 

Hormonal changes in foetuses from obese mothers - such as increased cortisol levels or 

decreased thyroxine (T4) levels - have also been reported as potential mechanisms involved in 

programmed obesity (Guzmán et al., 2006; Magyar et al., 1980; Nuermaimaiti Tuersunjiang, 

2013; Suter et al., 2012). Changes in placenta function have also been observed, with 

inflammation and changes in glucose or amino acid transport rates (Challier et al., 2008; Farley 

et al., 2010; Jones et al., 2009). Maternal reactive oxygen and nitrogen species, which are 

associated with intrauterine oxidative stress, also seem to play a role in obesity programming. 

Indeed, oxidative stress is suspected of being implicated in mitochondrial damage, changes in 

pancreas functions and dysfunctions of the electron transport chain in skeletal muscle (Shelley 

et al., 2009; Simmons et al., 2005). There is also supporting evidence for a link between 

maternal exposure to xenobiotics and chemicals, and higher Body Mass Index (BMI) in 

offspring (Janesick and Blumberg, 2011; Karmaus et al., 2009; Smink et al., 2008). 

Otherwise, some of these mechanisms (epigenetics, corticosteroids, miRNA or maternal 

exposure to chemicals) are investigated for the understanding of the programming of obesity 

for children exposed to famine in utero (Inadera, 2013). Most studies have been undertaken in 

animal models. 

Metabolomics describes the study of the metabolome, which is defined as the collective set of 

metabolites produced or present in a sample of interest, for example blood or other biological 

fluid, tissue lysate or cells. Metabolomics based on spectroscopic techniques, is able to generate 

“fingerprints” or metabolic profiles that can be correlated with phenotypes. The metabolic 

profile constitutes the ultimate step in the cellular response, and is considered the key link 
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between genes and phenotypes (Fiehn, 2002). It has come to be widely used in recent years to 

identify metabolic pathways modified by disease (Vinayavekhin et al., 2010). This technique 

has already proved its capacity to study the physiopathology of obesity in animal and human 

studies (Zhang, Sun, et Wang 2013). When it is non-targeted, variations can be shown in the 

levels of metabolites between different groups of population without a priori.  

Metabolomics have already been used to investigate metabolic differences between pregnant 

and non-gravid women (Lowe and Karban, 2014) as well as to analyse metabolic differences 

between obese and normal weight people (Xie et al., 2012a).  The aim of the present study is to 

investigate the existence of differential urinary metabolic profiles in pregnant women according 

to their obesity status, and to understand whether observed changes are associated with 

modifications in the new-born metabolic profile. Thus, we have used Nuclear Magnetic 

Resonance (NMR)-based metabolomics analysis on urinary and cord-blood samples of 

pregnant women and new-borns from the PELAGIE cohort (Brittany, France). To our 

knowledge, this is the first study to investigate the maternal programming of obesity in a human 

population, using metabolomics. 

 

Material and Methods 

Population, sample collection and obesity groups 

The population was selected from the PELAGIE cohort, which includes 3,421 pregnant women 

in Brittany (France) enrolled during early pregnancy from the general population by 

gynaecologists, between 2002 and 2006. Gynaecologists informed the women of the nature of 

the study and asked them to participate, after providing written consent. This consent was 

accompanied by a letter of information describing the goal of the study, the consortium, data 

collection procedures and follow-up after birth (via questionnaires and medical examinations). 

Explicit mention was made of the right to refuse to participate, and the fact that such a refusal 
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would not have any effect on the woman's relationship with her doctor. Both the INSERM 

(French National Institute of Health and Medical Research) ethics committee and the National 

Commission in charge of Data Protection (CNIL) approved the study procedures (Nu902076; 

31 may 2002).  A detailed description of this cohort is available elsewhere (Chevrier et al., 

2011). At inclusion, during the first trimester of the pregnancy (4th to 15th week), women had 

to complete a self-report questionnaire including information about social and demographic 

characteristics, diet and lifestyle, and data on their height and weight (used to calculate BMI). 

They also had to return a first morning void urine sample that they collected and transferred 

into two vials containing nitric acid to avoid bacterial degradation. No blood collection was 

planned at this step of inclusion because of the absence of hospital appointment. Samples were 

mailed to the study laboratory in a pre-stamped package at ambient temperature, with routine 

delivery taking 1 to 3 days. Upon receipt, the 10 mL samples were frozen and stored at -20°C. 

At birth, medical data on health outcomes were obtained and cord-blood samples were 

collected. After centrifugation, serum samples were analysed by hospital laboratories and stored 

at -20°C. 

Pregnant women were selected from the PELAGIE according to the following criteria: living 

infant at birth (n=3322) and availability of both urinary and cord blood samples for each 

mother-child pair (n=1061). In addition, one year of inclusion (2004) was selected, to avoid 

potential variability due to different storage durations of biological samples. A detailed 

description of this methodology is published elsewhere (Bonvallot et al., 2013). Of the 338 

eligible women, those whose BMI was unavailable or below 18.5 were excluded (n = 15), 

because low body weight can influence metabolic profiles (Norman et al., 2014; Sarlio-

Lähteenkorva et al., 2004). Finally, the population analysed included 323 women, who were 

classified into 3 groups of BMI, according to the World Health Organization (WHO)’s 

definition (WHO Expert Consultation, 2004): the first group comprised women with a BMI of 
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between 18.5 and < 25 (normal weight), the second those with a BMI between 25 and < 30 

(overweight) and the third, those with a BMI of 30 or more (obese). 

Metabolomics analyses 

Urinary sample preparation: After thawing at room temperature and vortexing, 500 μL of urine 

were mixed with 200 μL of phosphate buffer (pH 7.39) prepared in D2O to which was added 

sodium 3-trimethylsilyl-1-[2,2,3,3,-2H4]-propionate (TSP, 1 mM). The phosphate buffer is used 

to minimize variations in chemical shift values in the acquired NMR spectra due to pH 

differences. TSP served as a chemical shift reference and D2O served as a field-frequency lock 

for the NMR spectrometer. Each sample was vortexed and centrifuged for 10 min at 8,000 rpm 

to remove any precipitate. Then, 600 μL aliquots were transferred to standard 5 mm - NMR 

tubes (Norell ST 500, Landisville, NJ) for analysis. 

Serum sample preparation: After thawing at room temperature and vortexing, 200 μL of serum 

were mixed with 500 μL of D2O which served as a field-frequency lock for the NMR 

spectrometer. Each sample was vortexed and centrifuged for 10 min at 8,000 rpm to remove 

any precipitate. Then, 600 μL aliquots were transferred to NMR tubes for analysis. 

Metabolomics analyses: Metabolomics analyses of urine and cord-blood samples were made 

by NMR spectroscopy using a Bruker Avance DRX-600 operating at 600.13 MHz (Bruker 

Biospin, Germany) and equipped with an autosampler and an inverse 1H-13C-15N cryoprobe. 

All NMR spectra were phase- and baseline-corrected manually using Topspin (V2.1, Bruker 

Biospin, Germany). The spectral region containing residual water resonance (δ 5.515-6.600) 

was removed and spectra were digitized to 642 and 751 buckets corresponding to 0.01 ppm 

intervals using the AMIX software package (V3.9.11, Bruker Biospin, Germany). Each 

integrated region was divided by the total spectral intensity in order to normalise values. Spectra 
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acquisition, pre-processing step, and metabolite identification have been described previously 

(Bonvallot et al., 2013). 

Statistical analysis: metabolic profiles according to BMI groups. To investigate the association 

of obesity with specific metabolomic profiles, we used Partial Least Square Discriminant 

Analyses (PLS-DA) and multivariate logistic regression models. Our objective was not to 

strictly build predictive models for obesity but rather to study variations in both mother and 

newborn metabolic profiles according to maternal obesity. 

The PLS-DA approach was chosen because it handles highly collinear and noisy data, such as 

spectral data and it has already been used in epidemiological studies which investigated subtle 

health effects in relation to highly variable spectral data (Waterman et al., 2009). It allows 

identifying among the spectrum the most important variables which discriminate the groups of 

interest, using statistics such as the variable importance on projection (VIP).  

Maternal urine and cord blood spectral data were analysed separately. The original digitized 

NMR spectral data were imported into the R software (version 3.1.1) for multivariate statistical 

analysis. A preliminary principal component analysis (PCA) was implemented to remove 

potential outliers. Data were then Pareto-scaled to reduce relative importance of large values, 

while partially preserving data structure (Worley and Powers, 2013). PLS-DA were applied to 

Pareto-scaled data. In PLS-DA, linear combinations of NMR buckets are constructed to 

maximize covariance between the Y (BMI groups) and (NMR buckets) X matrices. 

Observations are then projected onto planes defined by a few of these linear combinations (also 

interpreted as latent variables). Various PLS-DA models were generated: a 3-level model 

measuring the link between the metabolic profiles and the mothers' BMI in 3 groups (Normal 

vs. Overweight vs. Obese) and four 2-level models measuring the link with BMI in 2 groups 

(Normal vs. others, Obese vs. others, Normal vs. Overweight, Overweight vs. Obese). The 

quality of the 3-level models was assessed by the Q2 and the R2 parameters defined as followed: 
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 𝑄2 = 1 −
𝑃𝑅𝐸𝑆𝑆𝑛

𝑅𝑆𝑆𝑛−1
, where PRESS is the predicted residual sum of squares; RSS, the 

residual sum of squares and n, the number of latent variables (LV) 

 𝑅2 = 1 −
𝑃𝑅𝐸𝑆𝑆

𝑇𝑆𝑆
, where TSS is the total sum of squares 

The quality of the 2-level models was assessed by the Q2, R2 and the area under the ROC curve 

(AUROC) criteria, following a 3-2 double-k-fold cross-validation. This consists of two nested 

cross-validation loops. The modelling procedure, including the cross-validation that determines 

the best number of Latent Variables (LV), using the lower PRESS criteria, forms the inner loop. 

Cross-validation for error estimation takes place in the outer loop. Double cross-validation is 

recommended in PLS-DA analysis (Smit et al., 2007; Szymańska et al., 2012). Here, a limited 

number of folds for cross validation (n= 3 in outer loop and n=2 in inner loop) were chosen to 

keep an adequate number of obese mothers in each fold (n= 6 or 7). A random draw was 

performed to allow equal distribution of Obese and Overweight in each fold. A permutation test 

(1,000 iterations) was conducted for each PLS-DA model to test for validity. Finally, the 

spectral regions (buckets) having VIP above 2 were considered as being significantly associated 

with the maternal BMI status and were used to identify the metabolites of interest. Kruskal 

Wallis tests using crude spectral data were used to confirm the relationships between BMI 

groups and concentrations of metabolites in urine or in serum previously identified. 

 

Adjustment for confounding factors 

As PLS-DA did not allow for adjustment, polytomous and logistic regressions were then used 

to assess the association of urinary metabolic profiles with the BMI group (3 levels) after 

adjustment for women's individual characteristics. For each metabolite previously identified 

from the PLS-DA, the corresponding buckets with VIP > 2 were simultaneously introduced in 

the models. Results from these analyses were reported as a global trend (direction of the 
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association) and an adjusted p value. The literature suggested some major confounding factors. 

Age, educational level, alcohol and tobacco consumption, food habits (fruit and fish 

consumption), proportion of area covered by cereal crops in the municipality of residence 

during pregnancy (reflecting pesticide exposure) and Apgar score (at 5 min, only in the analysis 

of cord-blood) were considered as potential confounders and were retained in the model if the 

likelihood ratio (LR) test was statistically significant for at least one metabolite. Then, a 

backward selection using the LR test was performed to select confounders with an impact in 

term of goodness of fit. Finally, none of the confounders has been kept in the models. 

 

Results 

Preliminary PCA identified 2 outliers among the women (urinary analyses). The first one had 

a high concentration of urinary glucose and was identified as diabetic. The second had no 

specific characteristics compared to the other individuals but a high concentration of hippurate 

was detected in her urinary sample. The preliminary PCA among the new-borns (serum 

analyses) did not identify any outlier. Table I describes the characteristics of the 321 women 

finally included in the analyses. Mean maternal age was 30.3 and most of these women had a 

high educational level (university degree). Tobacco and alcohol consumption was limited 

(28.2% and 15.9%).  

Most of the women were of normal-weight (n=256), 46 were overweight and only 19 were 

considered obese according to the WHO definition. Overweight and obese women had higher 

parity than normal weight women (p=0.03), higher incidence of high blood pressure (p=0.006) 

and higher incidence of occupational exposure to solvents (p=0.047). Infants born of 

overweight or obese women had higher birth weight (p=0.02) and those born from obese 

women had lower Apgar scores at five minutes (p=0.02). 

Urinary analyses of pregnant women 
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Obese mothers were distinguished by the first two latent variables, and overweight mothers to 

a slightly lesser extent. The ideal number of latent variables was one or two, depending on 

validation loop (mean = 1.77 in the Normal vs. Overweight vs. Obese model). Separation of the 

3 levels of BMI was significant according to the Q2 (mean=0.01, p=0.006) and R2 (mean=0.02, 

p=0.003) criteria. The separation between normal-weight women and the rest of the population 

was significant according to the AUROC (mean=0.71, p=0.001), Q2 (mean=0.021, p=0.004) 

and R2 (mean =0.05, p=0.001) criteria, as well as the separation between normal-weight and 

overweight women (AUROC=0.66, p=0.003; Q2=0.02, p=0.001; R2=0, p=0.008). The 

separation between obese and the rest of the population was highly significant according to the 

AUROC (mean =0.76, p=0.001) but not to the Q2 and R2. This can be explained by the small 

number of obese women in the population, leading to a lower performance of the classical 

parameters Q2 and R2 in PLS. The separation between obese and overweight women was not 

significant according to any criterion. The score plot derived from the PLS-DA modelling is 

shown in Figure 1. The parameters resulting from the validation procedures and permutation 

tests are described in Table 2. 

Because hypertension and occupational exposure to solvent could also be associated with an 

increased risk in obesity, these characteristics were studied by PLS-DA modelling on urinary 

metabolic profile. The models did not produce any significant separation (data not shown). 

Next, logistic and polytomous regressions were performed on metabolites having VIP above 2: 

direction of the associations and p-values using Kruskal-Wallis test were presented in Table 3. 

Hippurate and phenylalanine levels were lower in obese and overweight women, whereas 

urinary creatinine was higher. Lactate was higher in obese (though not in overweight) women, 

as were creatine, lysine, citrate and acetate. Two unknown signals (δ = 6.925 and δ = 2.345 ppm) 

appeared modified between the BMI groups. 
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Serum analyses of cord-blood at birth 

The metabolic profiles of the cord-blood samples did not show any visual separation on the first 

latent variables, as shown in Figure 2. The parameters resulting from the validation procedure 

and permutation test are presented in Table 4. These validation procedures did not show any 

significant separation according to the BMI group, irrespective of the tested model. No bucket 

having a VIP above 2 was found significantly associated with BMI status by the Kruskal-Wallis 

test. 

 

Discussion               

Our work shows modification to seven urinary metabolites between obese, overweight, and 

normal-weight pregnant women, including hippurate, phenylalanine, lactate, creatine, lysine, 

citrate and acetate, without any measurable association with specific cord-blood metabolic 

profile at birth. The decrease in urinary hippurate and phenylalanine levels and the increase in 

creatinine levels were observed in both obese and overweight women. Increased urinary lactate, 

creatine, lysine, citrate and acetate levels concerned only the obese women. Hippurate, lactate 

and acetate are organic acids which had already been associated with obesity and type 2 

diabetes, especially in studies investigating the influence of gut microbiota (Calvani et al., 2010; 

Dewulf et al., 2013; Phipps et al., 1998; Respondek et al., 2013; Salek et al., 2007; Waldram et 

al., 2009; Williams et al., 2002). In particular, the urinary excretion of hippurate has been 

associated with gut microbiota having  a role in the metabolism of polyphenolic compounds 

(Lees et al., 2013). In addition, there is evidence to suggest that disruptions in gut flora and their 

relationship with the host are associated with the development of obesity (Gross, 2013). 

Decreases in urinary hippurate have been observed both experimentally and in humans (Calvani 

et al., 2010; Friedrich et al., 2012; Salek et al., 2007).  
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An increase in lactate has already been shown in some studies - in urine, blood and hepatic 

tissue (Rull et al., 2009; Serkova et al., 2006). It has been shown that, like hippurate, lactate is 

linked to gut microflora, in particular to Propionibacterium (Dewulf et al., 2013; Respondek et 

al., 2013). Lactate is also a precursor of gluconeogenesis and an elevation could be a sign of 

hepatic disruptions in glucose and glycogen synthesis (Xie et al., 2012b).   

Lastly, an increase in acetate levels has already been observed in the urine and blood of Zucker 

rat (Serkova et al., 2006; Waldram et al., 2009). Acetate is suspected to be linked with 

microbiome, and in particular with Bifidobacterium - which is already known to have a 

protective effect against obesity (Waldram et al., 2009). 

 

It was also shown than amino-acid metabolism could be modified in the event of obesity (Lees 

et al., 2013). The increased urinary lysine we have observed in this study is consistent with 

experimental studies carried out in rats. Changes in lysine degradation were observed in obese 

Zucker rats compared to lean rats, and are potentially associated with impairment to energy 

metabolism, implying perturbations in insulin resistance (Salek et al., 2007). Nevertheless, 

other studies also showed a decrease in plasmatic lysine levels associated with an increase in 

insulin resistance in mice (Won et al., 2013) and a decrease in lysine levels in the adipose tissue 

of obese people (Hanzu et al., 2013). Moreover, lysine acetylation seems to play a role in some 

obesity-induced cancers (Lee et al., 2013). Finally, we know that protein nutrition can have a 

consequence on lipid metabolism (Gudbrandsen et al., 2008). Similar observations were made 

of phenylalanine; several authors have linked its increase with obesity (Kim et al., 2013; Wang 

et al., 2011; Whitehead et al., 2007). A relationship between obesity and the metabolism of 

branched-chain amino acids was hypothesized (Adams, 2011; Kim et al., 2013). On the other 

hand, Won et al. showed a decrease in urinary phenylalanine concentrations in obese mice (Won 

et al., 2013). Despite this discrepancy regarding modifications observed in lysine and 
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phenylalanine levels, it could be concluded that obesity has an influence on amino acid 

metabolism, as has already been suggested in other works (Zhou et al., 2013).  

Citrate is produced from fatty acids and glucose metabolism and is an intermediate in the citrate 

cycle for energy production. Its regulation involves insulin and glucose. The increased levels 

of citrate we observed are consistent with certain studies in diabetic or obese rats (Kim et al., 

2009; Li et al., 2008; Shearer et al., 2008), suggesting a link with hyperglycaemia and insulin 

resistance, while lowered levels have sometimes been measured (Salek et al., 2007; Schirra et 

al., 2008; Zhao et al., 2010). The increased citrate levels could be associated with the increase 

in acetate and lactate levels, suggesting an up-regulation in the citrate cycle. In addition, 

changes in citrate levels could be associated with renal pathologies. It is possible that an 

increase in the urinary secretion of citrate may be a consequence of a metabolic stress induced 

by hyperglycaemia and/or dyslipidaemia, or a consequence of renal dysfunctions (Salek et al., 

2007).  

Creatinine is a break-down product of creatine metabolism in muscles. Urinary and blood 

increases in creatinine and creatine have been observed in obese rodents (Calvani et al., 2010; 

Duggan et al., 2011; Salek et al., 2007; Schirra et al., 2008; Williams et al., 2005; Zhao et al., 

2010). This phenomenon could be explained by cardiac or skeletal muscle hypertrophy as an 

adaptation to support the increase of body mass induced by obesity (Xie et al., 2012b). Urinary 

secretion of creatinine is also used to measure renal function. An increase could be the 

consequence of renal dysfunctions, linked with obesity (Kim et al., 1969; Proczko et al., 2013). 

In recent years, studies have shown that NMR-based metabolomics on urine samples is able to 

identify obesity biomarkers. To the best of our knowledge, our study is the first to use 

metabolomics trying to investigate the mechanisms governing the transmission of obesity. Our 

inability to observe the effect of obese or overweight mothers on offspring metabolic profile 

must be put into perspective. First, the low number of obese women (n= 19) induces a low 
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statistical power. Obesity measurement by BMI, calculated using physiological parameters 

(weight, height) collected by questionnaire may result in measurement errors, in particular an 

underestimation of obese women's weight, leading to a weak separation of BMI subgroups. 

Lastly, it is possible that certain modifications to metabolic profile are not visible at birth - but 

appear later. 

The NMR technique used does have certain advantages: the analysis is highly quantitative, 

measures are reproducible and required preparation is minimal (Dumas et al., 2006; Smolinska 

et al., 2012). The other commonly-used technique in metabolomics is mass spectrometry 

coupled with chromatographic techniques, the advantage of which is the possibility of detecting 

metabolites in lower concentrations (Werner et al. 2008; Breitling et al. 2006). It would be 

interesting to reproduce this kind of study using mass spectrometry, in order to confirm and 

improve the results of our study. 

 

Concluding remarks 

Metabolomics has potential for the study of obesity and the identification of biomarkers, with 

the possibility of a global measurement of metabolic dysfunctions in a biological matrix. This 

study has shown several modifications to the urinary metabolic profile of obese and overweight 

pregnant women when compared with normal-weight pregnant women, yet without being able 

to show any modification to blood metabolic profile of offspring at birth. Changes observed 

include modifications to amino acid metabolism, citrate cycle, and microbiome-host 

relationships. More studies on large human samples will be necessary to establishing strong 

evidence on metabolic modifications involved in the transmission of obesity. 

 

Acknowledgments including grant information 

Acce
pte

d m
an

usc
rip

t



17 

 

We acknowledge financial support from the EHESP School of Public Health, France. We 

gratefully acknowledge Marie Tremblay-Franco for helpful advice on statistics, and Sven 

Delaye for advice on English translation.  

 

References 

Adams, S.H., 2011. Emerging perspectives on essential amino acid metabolism in obesity 

and the insulin-resistant state. Adv. Nutr. Bethesda Md 2, 445–456. doi:10.3945/an.111.000737 

Bonvallot, N., Tremblay-Franco, M., Chevrier, C., Canlet, C., Warembourg, C., Cravedi, 

J.-P., Cordier, S., 2013. Metabolomics tools for describing complex pesticide exposure in 

pregnant women in Brittany (France). PloS One 8, e64433. doi:10.1371/journal.pone.0064433 

Bouanane, S., Merzouk, H., Benkalfat, N.B., Soulimane, N., Merzouk, S.A., Gresti, J., 

Tessier, C., Narce, M., 2010. Hepatic and very low-density lipoprotein fatty acids in obese 

offspring of overfed dams. Metabolism. 59, 1701–1709. doi:10.1016/j.metabol.2010.04.003 

Bouchard, L., Hivert, M.-F., Guay, S.-P., St-Pierre, J., Perron, P., Brisson, D., 2012. 

Placental adiponectin gene DNA methylation levels are associated with mothers’ blood glucose 

concentration. Diabetes 61, 1272–1280. doi:10.2337/db11-1160 

Bouchard, L., Thibault, S., Guay, S.-P., Santure, M., Monpetit, A., St-Pierre, J., Perron, P., 

Brisson, D., 2010. Leptin gene epigenetic adaptation to impaired glucose metabolism during 

pregnancy. Diabetes Care 33, 2436–2441. doi:10.2337/dc10-1024 

Breitling R., Pitt A.R., Barrett M.P. Precision Mapping of the Metabolome. Trends in 

Biotechnology. 2006;24(12):543-548. 

Calvani, R., Miccheli, A., Capuani, G., Tomassini Miccheli, A., Puccetti, C., Delfini, M., 

Iaconelli, A., Nanni, G., Mingrone, G., 2010. Gut microbiome-derived metabolites characterize 

a peculiar obese urinary metabotype. Int. J. Obes. 2005 34, 1095–1098. doi:10.1038/ijo.2010.44 

Acce
pte

d m
an

usc
rip

t



18 

 

Challier, J.C., Basu, S., Bintein, T., Minium, J., Hotmire, K., Catalano, P.M., Hauguel-de 

Mouzon, S., 2008. Obesity in pregnancy stimulates macrophage accumulation and 

inflammation in the placenta. Placenta 29, 274–281. doi:10.1016/j.placenta.2007.12.010 

Chevrier, C., Limon, G., Monfort, C., Rouget, F., Garlantézec, R., Petit, C., Durand, G., 

Cordier, S., 2011. Urinary biomarkers of prenatal atrazine exposure and adverse birth outcomes 

in the PELAGIE birth cohort. Environ. Health Perspect. 119, 1034–1041. 

doi:10.1289/ehp.1002775 

Dahlhoff, M., Pfister, S., Blutke, A., Rozman, J., Klingenspor, M., Deutsch, M.J., Rathkolb, 

B., Fink, B., Gimpfl, M., Hrabě de Angelis, M., Roscher, A.A., Wolf, E., Ensenauer, R., 2014. 

Peri-conceptional obesogenic exposure induces sex-specific programming of disease 

susceptibilities in adult mouse offspring. Biochim. Biophys. Acta 1842, 304–317. 

doi:10.1016/j.bbadis.2013.11.021 

Dewulf, E.M., Cani, P.D., Claus, S.P., Fuentes, S., Puylaert, P.G.B., Neyrinck, A.M., 

Bindels, L.B., de Vos, W.M., Gibson, G.R., Thissen, J.-P., Delzenne, N.M., 2013. Insight into 

the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-

type fructans in obese women. Gut 62, 1112–1121. doi:10.1136/gutjnl-2012-303304 

Dong, M., Zheng, Q., Ford, S.P., Nathanielsz, P.W., Ren, J., 2013. Maternal obesity, 

lipotoxicity and cardiovascular diseases in offspring. J. Mol. Cell. Cardiol. 55, 111–116. 

doi:10.1016/j.yjmcc.2012.08.023 

Duggan, G.E., Hittel, D.S., Hughey, C.C., Weljie, A., Vogel, H.J., Shearer, J., 2011. 

Differentiating short- and long-term effects of diet in the obese mouse using (1) H-nuclear 

magnetic resonance metabolomics. Diabetes Obes. Metab. 13, 859–862. doi:10.1111/j.1463-

1326.2011.01410.x 

Dumas, M.-E., Maibaum, E.C., Teague, C., Ueshima, H., Zhou, B., Lindon, J.C., Nicholson, 

J.K., Stamler, J., Elliott, P., Chan, Q., Holmes, E., 2006. Assessment of analytical 

Acce
pte

d m
an

usc
rip

t



19 

 

reproducibility of 1H NMR spectroscopy based metabonomics for large-scale epidemiological 

research: the INTERMAP Study. Anal. Chem. 78, 2199–2208. doi:10.1021/ac0517085 

Farley, D.M., Choi, J., Dudley, D.J., Li, C., Jenkins, S.L., Myatt, L., Nathanielsz, P.W., 

2010. Placental amino acid transport and placental leptin resistance in pregnancies complicated 

by maternal obesity. Placenta 31, 718–724. doi:10.1016/j.placenta.2010.06.006 

Fiehn, O., 2002. Metabolomics--the link between genotypes and phenotypes. Plant Mol. 

Biol. 48, 155–171. 

Friedrich, N., Budde, K., Wolf, T., Jungnickel, A., Grotevendt, A., Dressler, M., Völzke, 

H., Blüher, M., Nauck, M., Lohmann, T., Wallaschofksi, H., 2012. Short-term changes of the 

urine metabolome after bariatric surgery. Omics J. Integr. Biol. 16, 612–620. 

doi:10.1089/omi.2012.0066 

Godfrey, K.M., Barker, D.J., 2000. Fetal nutrition and adult disease. Am. J. Clin. Nutr. 71, 

1344S–52S. 

Gross, M., 2013. Does the gut microbiome hold clues to obesity and diabetes? Curr. Biol. 

CB 23, R359–362. 

Gudbrandsen, O.A., Wergedahl, H., Liaset, B., Espe, M., Mørk, S., Berge, R.K., 2008. 

Dietary single cell protein reduces fatty liver in obese Zucker rats. Br. J. Nutr. 100, 776–785. 

doi:10.1017/S0007114508960906 

Guzmán, C., Cabrera, R., Cárdenas, M., Larrea, F., Nathanielsz, P.W., Zambrano, E., 2006. 

Protein restriction during fetal and neonatal development in the rat alters reproductive function 

and accelerates reproductive ageing in female progeny. J. Physiol. 572, 97–108. 

doi:10.1113/jphysiol.2005.103903 

Hanzu, F.A., Vinaixa, M., Papageorgiou, A., Párrizas, M., Correig, X., Delgado, S., 

Carmona, F., Samino, S., Vidal, J., Gomis, R., 2013. Obesity rather than regional fat depots 

Acce
pte

d m
an

usc
rip

t



20 

 

marks the metabolomic pattern of adipose tissue: An untargeted metabolomic approach. Obes. 

Silver Spring Md. doi:10.1002/oby.20541 

Inadera, H., 2013. Developmental origins of obesity and type 2 diabetes: molecular aspects 

and role of chemicals. Environ. Health Prev. Med. 18, 185–197. doi:10.1007/s12199-013-0328-

8 

Janesick, A., Blumberg, B., 2011. Endocrine disrupting chemicals and the developmental 

programming of adipogenesis and obesity. Birth Defects Res. Part C Embryo Today Rev. 93, 

34–50. doi:10.1002/bdrc.20197 

Jones, H.N., Woollett, L.A., Barbour, N., Prasad, P.D., Powell, T.L., Jansson, T., 2009. 

High-fat diet before and during pregnancy causes marked up-regulation of placental nutrient 

transport and fetal overgrowth in C57/BL6 mice. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 

23, 271–278. doi:10.1096/fj.08-116889 

Karmaus, W., Osuch, J.R., Eneli, I., Mudd, L.M., Zhang, J., Mikucki, D., Haan, P., Davis, 

S., 2009. Maternal levels of dichlorodiphenyl-dichloroethylene (DDE) may increase weight and 

body mass index in adult female offspring. Occup. Environ. Med. 66, 143–149. 

doi:10.1136/oem.2008.041921 

Kim, K.E., Onesti, G., Ramirez, O., Brest, A.N., Swartz, C., 1969. Creatinine clearance in 

renal disease. A reappraisal. Br. Med. J. 4, 11–14. 

Kim, M.J., Yang, H.J., Kim, J.H., Ahn, C.-W., Lee, J.H., Kim, K.S., Kwon, D.Y., 2013. 

Obesity-related metabolomic analysis of human subjects in black soybean peptide intervention 

study by ultraperformance liquid chromatography and quadrupole-time-of-flight mass 

spectrometry. J. Obes. 2013, 874981. doi:10.1155/2013/874981 

Kim, S.-H., Yang, S.-O., Kim, H.-S., Kim, Y., Park, T., Choi, H.-K., 2009. 1H-nuclear 

magnetic resonance spectroscopy-based metabolic assessment in a rat model of obesity induced 

by a high-fat diet. Anal. Bioanal. Chem. 395, 1117–1124. doi:10.1007/s00216-009-3054-8 

Acce
pte

d m
an

usc
rip

t



21 

 

Kirk, S.L., Samuelsson, A.-M., Argenton, M., Dhonye, H., Kalamatianos, T., Poston, L., 

Taylor, P.D., Coen, C.W., 2009. Maternal obesity induced by diet in rats permanently 

influences central processes regulating food intake in offspring. PloS One 4, e5870. 

doi:10.1371/journal.pone.0005870 

Lee, J.V., Shah, S.A., Wellen, K.E., 2013. Obesity, cancer, and acetyl-CoA metabolism. 

Drug Discov. Today Dis. Mech. 10, e55–e61. doi:10.1016/j.ddmec.2013.03.005 

Lees, H.J., Swann, J.R., Wilson, I.D., Nicholson, J.K., Holmes, E., 2013. Hippurate: the 

natural history of a mammalian-microbial cometabolite. J. Proteome Res. 12, 1527–1546. 

doi:10.1021/pr300900b 

Li, H., Xie, Z., Lin, J., Song, H., Wang, Q., Wang, K., Su, M., Qiu, Y., Zhao, T., Song, K., 

Wang, X., Zhou, M., Liu, P., Zhao, G., Zhang, Q., Jia, W., 2008. Transcriptomic and 

metabonomic profiling of obesity-prone and obesity-resistant rats under high fat diet. J. 

Proteome Res. 7, 4775–4783. doi:10.1021/pr800352k 

Lowe, W.L., Karban, J., 2014. Genetics, genomics and metabolomics: new insights into 

maternal metabolism during pregnancy. Diabet. Med. J. Br. Diabet. Assoc. 31, 254–262. 

doi:10.1111/dme.12352 

Magyar, D.M., Fridshal, D., Elsner, C.W., Glatz, T., Eliot, J., Klein, A.H., Lowe, K.C., 

Buster, J.E., Nathanielsz, P.W., 1980. Time-trend analysis of plasma cortisol concentrations in 

the fetal sheep in relation to parturition. Endocrinology 107, 155–159. doi:10.1210/endo-107-

1-155 

Muhlhausler, B.S., Gugusheff, J.R., Ong, Z.Y., Vithayathil, M.A., 2013. Nutritional 

approaches to breaking the intergenerational cycle of obesity. Can. J. Physiol. Pharmacol. 91, 

421–428. doi:10.1139/cjpp-2012-0353 

Norman, J.D., Ferguson, M.M., Danzmann, R.G., 2014. Transcriptomics of salinity 

tolerance capacity in Arctic charr (Salvelinus alpinus): a comparison of gene expression profiles 

Acce
pte

d m
an

usc
rip

t



22 

 

between divergent QTL genotypes. Physiol. Genomics 46, 123–137. 

doi:10.1152/physiolgenomics.00105.2013 

Nuermaimaiti Tuersunjiang, J.F.O., 2013. Diet reduction in obese ewes from early gestation 

prevents glucose-insulin dysregulation and returns fetal adiposity and organ development to 

control levels. Am. J. Physiol. Endocrinol. Metab. doi:10.1152/ajpendo.00117.2013 

O’Reilly, J.R., Reynolds, R.M., 2013. The risk of maternal obesity to the long-term health 

of the offspring. Clin. Endocrinol. (Oxf.) 78, 9–16. doi:10.1111/cen.12055 

Orsi, C.M., Hale, D.E., Lynch, J.L., 2011. Pediatric obesity epidemiology. Curr. Opin. 

Endocrinol. Diabetes Obes. 18, 14–22. doi:10.1097/MED.0b013e3283423de1 

Phipps, A.N., Stewart, J., Wright, B., Wilson, I.D., 1998. Effect of diet on the urinary 

excretion of hippuric acid and other dietary-derived aromatics in rat. A complex interaction 

between diet, gut microflora and substrate specificity. Xenobiotica Fate Foreign Compd. Biol. 

Syst. 28, 527–537. doi:10.1080/004982598239443 

Proczko, M., Kaska, Ł., Kobiela, J., Stefaniak, T., Zadrożny, D., Śledziński, Z., 2013. 

Bariatric surgery in morbidly obese patients with chronic renal failure, prepared for kidney 

transplantation--case reports. Pol. Przegl. Chir. 85, 407–411. doi:10.2478/pjs-2013-0062 

Respondek, F., Gerard, P., Bossis, M., Boschat, L., Bruneau, A., Rabot, S., Wagner, A., 

Martin, J.-C., 2013. Short-chain fructo-oligosaccharides modulate intestinal microbiota and 

metabolic parameters of humanized gnotobiotic diet induced obesity mice. PloS One 8, e71026. 

doi:10.1371/journal.pone.0071026 

Rull, A., Vinaixa, M., Angel Rodríguez, M., Beltrán, R., Brezmes, J., Cañellas, N., Correig, 

X., Joven, J., 2009. Metabolic phenotyping of genetically modified mice: An NMR 

metabonomic approach. Biochimie 91, 1053–1057. doi:10.1016/j.biochi.2009.04.019 

Salek, R.M., Maguire, M.L., Bentley, E., Rubtsov, D.V., Hough, T., Cheeseman, M., Nunez, 

D., Sweatman, B.C., Haselden, J.N., Cox, R.D., Connor, S.C., Griffin, J.L., 2007. A 

Acce
pte

d m
an

usc
rip

t



23 

 

metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat, and human. 

Physiol. Genomics 29, 99–108. doi:10.1152/physiolgenomics.00194.2006 

Sarlio-Lähteenkorva, S., Silventoinen, K., Jousilahti, P., Hu, G., Tuomilehto, J., 2004. The 

association between thinness and socio-economic disadvantage, health indicators, and adverse 

health behaviour: a study of 28 000 Finnish men and women. Int. J. Obes. Relat. Metab. Disord. 

J. Int. Assoc. Study Obes. 28, 568–573. doi:10.1038/sj.ijo.0802596 

Schirra, H.J., Anderson, C.G., Wilson, W.J., Kerr, L., Craik, D.J., Waters, M.J., Lichanska, 

A.M., 2008. Altered metabolism of growth hormone receptor mutant mice: a combined NMR 

metabonomics and microarray study. PloS One 3, e2764. doi:10.1371/journal.pone.0002764 

Serkova, N.J., Jackman, M., Brown, J.L., Liu, T., Hirose, R., Roberts, J.P., Maher, J.J., 

Niemann, C.U., 2006. Metabolic profiling of livers and blood from obese Zucker rats. J. 

Hepatol. 44, 956–962. doi:10.1016/j.jhep.2005.07.009 

Shearer, J., Duggan, G., Weljie, A., Hittel, D.S., Wasserman, D.H., Vogel, H.J., 2008. 

Metabolomic profiling of dietary-induced insulin resistance in the high fat-fed C57BL/6J 

mouse. Diabetes Obes. Metab. 10, 950–958. doi:10.1111/j.1463-1326.2007.00837.x 

Shelley, P., Martin-Gronert, M.S., Rowlerson, A., Poston, L., Heales, S.J.R., Hargreaves, 

I.P., McConnell, J.M., Ozanne, S.E., Fernandez-Twinn, D.S., 2009. Altered skeletal muscle 

insulin signaling and mitochondrial complex II-III linked activity in adult offspring of obese 

mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297, R675–681. 

doi:10.1152/ajpregu.00146.2009 

Simmons, R.A., Suponitsky-Kroyter, I., Selak, M.A., 2005. Progressive accumulation of 

mitochondrial DNA mutations and decline in mitochondrial function lead to beta-cell failure. 

J. Biol. Chem. 280, 28785–28791. doi:10.1074/jbc.M505695200 

Smink, A., Ribas-Fito, N., Garcia, R., Torrent, M., Mendez, M.A., Grimalt, J.O., Sunyer, J., 

2008. Exposure to hexachlorobenzene during pregnancy increases the risk of overweight in 

Acce
pte

d m
an

usc
rip

t



24 

 

children aged 6 years. Acta Paediatr. Oslo Nor. 1992 97, 1465–1469. doi:10.1111/j.1651-

2227.2008.00937.x 

Smit, S., van Breemen, M.J., Hoefsloot, H.C.J., Smilde, A.K., Aerts, J.M.F.G., de Koster, 

C.G., 2007. Assessing the statistical validity of proteomics based biomarkers. Anal. Chim. Acta 

592, 210–217. doi:10.1016/j.aca.2007.04.043 

Smolinska, A., Blanchet, L., Buydens, L.M.C., Wijmenga, S.S., 2012. NMR and pattern 

recognition methods in metabolomics: from data acquisition to biomarker discovery: a review. 

Anal. Chim. Acta 750, 82–97. doi:10.1016/j.aca.2012.05.049 

Suter, M.A., Sangi-Haghpeykar, H., Showalter, L., Shope, C., Hu, M., Brown, K., Williams, 

S., Harris, R.A., Grove, K.L., Lane, R.H., Aagaard, K.M., 2012. Maternal high-fat diet 

modulates the fetal thyroid axis and thyroid gene expression in a nonhuman primate model. 

Mol. Endocrinol. Baltim. Md 26, 2071–2080. doi:10.1210/me.2012-1214 

Symonds, M.E., Mendez, M.A., Meltzer, H.M., Koletzko, B., Godfrey, K., Forsyth, S., van 

der Beek, E.M., 2013. Early life nutritional programming of obesity: mother-child cohort 

studies. Ann. Nutr. Metab. 62, 137–145. doi:10.1159/000345598 

Szymańska, E., Saccenti, E., Smilde, A.K., Westerhuis, J.A., 2012. Double-check: 

validation of diagnostic statistics for PLS-DA models in metabolomics studies. Metabolomics 

Off. J. Metabolomic Soc. 8, 3–16. doi:10.1007/s11306-011-0330-3 

Vinayavekhin, N., Homan, E.A., Saghatelian, A., 2010. Exploring disease through 

metabolomics. ACS Chem. Biol. 5, 91–103. doi:10.1021/cb900271r 

Waldram, A., Holmes, E., Wang, Y., Rantalainen, M., Wilson, I.D., Tuohy, K.M., 

McCartney, A.L., Gibson, G.R., Nicholson, J.K., 2009. Top-down systems biology modeling 

of host metabotype-microbiome associations in obese rodents. J. Proteome Res. 8, 2361–2375. 

doi:10.1021/pr8009885 

Acce
pte

d m
an

usc
rip

t



25 

 

Wang, C., Feng, R., Sun, D., Li, Y., Bi, X., Sun, C., 2011. Metabolic profiling of urine in 

young obese men using ultra performance liquid chromatography and Q-TOF mass 

spectrometry (UPLC/Q-TOF MS). J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci. 879, 

2871–2876. doi:10.1016/j.jchromb.2011.08.014 

Waterman, D.S., Bonner, F.W., Lindon, J.C. 2009. Review: Spectroscopic and statistical 

methods in metabonomics. Bioanalysis,1(9):1559-1578 , doi:10.4155/bio.09.143  

Wen, X., Triche, E.W., Hogan, J.W., Shenassa, E.D., Buka, S.L., 2011. Prenatal factors for 

childhood blood pressure mediated by intrauterine and/or childhood growth? Pediatrics 127, 

e713–721. doi:10.1542/peds.2010-2000. 

Werner E., Heilier J-F.,  Ducruix C., Ezan E., Junot C., Tabet J-C. Mass Spectrometry for 

the Identification of the Discriminating Signals from Metabolomics: Current Status and Future 

Trends. Journal of Chromatography B. 2008;871(2):143-163. 

Whitehead, T.L., Holley, A.W., Korourian, S., Shaaf, S., Kieber-Emmons, T., Hakkak, R., 

2007. (1)H nuclear magnetic resonance metabolomic analysis of mammary tumors from lean 

and obese Zucker rats exposed to 7,12-dimethylbenz[a]anthracene. Int. J. Mol. Med. 20, 573–

580. 

WHO Expert Consultation, 2004. Appropriate body-mass index for Asian populations and 

its implications for policy and intervention strategies. Lancet 363, 157–163. 

doi:10.1016/S0140-6736(03)15268-3 

Williams, R.E., Eyton-Jones, H.W., Farnworth, M.J., Gallagher, R., Provan, W.M., 2002. 

Effect of intestinal microflora on the urinary metabolic profile of rats: a (1)H-nuclear magnetic 

resonance spectroscopy study. Xenobiotica Fate Foreign Compd. Biol. Syst. 32, 783–794. 

doi:10.1080/00498250210143047 

Williams, R.E., Lenz, E.M., Evans, J.A., Wilson, I.D., Granger, J.H., Plumb, R.S., Stumpf, 

C.L., 2005. A combined (1)H NMR and HPLC-MS-based metabonomic study of urine from 

Acce
pte

d m
an

usc
rip

t

http://www.future-science.com/loi/bio


26 

 

obese (fa/fa) Zucker and normal Wistar-derived rats. J. Pharm. Biomed. Anal. 38, 465–471. 

doi:10.1016/j.jpba.2005.01.013 

Won, E.-Y., Yoon, M.-K., Kim, S.-W., Jung, Y., Bae, H.-W., Lee, D., Park, S.G., Lee, C.-

H., Hwang, G.-S., Chi, S.-W., 2013. Gender-specific metabolomic profiling of obesity in leptin-

deficient ob/ob mice by 1H NMR spectroscopy. PloS One 8, e75998. 

doi:10.1371/journal.pone.0075998 

Worley, B., Powers, R., 2013. Multivariate Analysis in Metabolomics. Curr. Metabolomics 

1, 92–107. doi:10.2174/2213235X11301010092 

Xie, B., Waters, M.J., Schirra, H.J., 2012a. Investigating potential mechanisms of obesity 

by metabolomics. J. Biomed. Biotechnol. 2012, 805683. doi:10.1155/2012/805683 

Xie, B., Waters, M.J., Schirra, H.J., 2012b. Investigating potential mechanisms of obesity 

by metabolomics. J. Biomed. Biotechnol. 2012, 805683. doi:10.1155/2012/805683 

Yan, X., Huang, Y., Zhao, J.-X., Rogers, C.J., Zhu, M.-J., Ford, S.P., Nathanielsz, P.W., 

Du, M., 2013. Maternal obesity downregulates microRNA let-7g expression, a possible 

mechanism for enhanced adipogenesis during ovine fetal skeletal muscle development. Int. J. 

Obes. 2005 37, 568–575. doi:10.1038/ijo.2012.69 

Zambrano, E., Nathanielsz, P.W., 2013. Mechanisms by which maternal obesity programs 

offspring for obesity: evidence from animal studies. Nutr. Rev. 71 Suppl 1, S42–54. 

doi:10.1111/nure.12068 

Zhang, A., Sun, H., Wang, X., 2013. Power of metabolomics in biomarker discovery and 

mining mechanisms of obesity. Obes. Rev. Off. J. Int. Assoc. Study Obes. 14, 344–349. 

doi:10.1111/obr.12011 

Zhao, L.-C., Zhang, X.-D., Liao, S.-X., Gao, H.-C., Wang, H.-Y., Lin, D.-H., 2010. A 

metabonomic comparison of urinary changes in Zucker and GK rats. J. Biomed. Biotechnol. 

2010, 431894. doi:10.1155/2010/431894 

Acce
pte

d m
an

usc
rip

t



27 

 

Zhou, Y., Qiu, L., Xiao, Q., Wang, Y., Meng, X., Xu, R., Wang, S., Na, R., 2013. Obesity 

and diabetes related plasma amino acid alterations. Clin. Biochem. 46, 1447–1452. 

doi:10.1016/j.clinbiochem.2013.05.045 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Acce
pte

d m
an

usc
rip

t



28 

 

 

 

Figure 1: PLS-DA score plot from the 1H NMR urinary metabolic profile from 321 pregnant 

women. The score plot is the projection of observations onto the first two latent variables. The 

PLS-DA model was run on Pareto-scaled data (N=321, R2 =0.02, Q2=0.01). Three groups of 

Body Mass Index (BMI). Green triangles: normal weight women, blue circles: overweight 

women; red squares: obese women.   
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Figure 2: PLS-DA score plot from the 1H NMR cord-blood metabolic profile from 321 

individuals. The score plot is the projection of observations onto the first two latent variables. 

The PLS-DA model was run on Pareto-scaled data, (N=324, R2 =-0.04, Q2=-0.07). Three 

groups of Body Mass Index (BMI). Green triangles: normal weight women, blue circles: 

overweight women; red squares: obese women.  
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Table 1: Characteristics of the 321 pregnant women enrolled in the metabolomics analysis 

according to their Body Mass Index (BMI). Three groups were identified according to the WHO 

definition: Normal-weight women (18.5<BMI<25), overweight women (25<BMI<30) and 

obese women (BMI≥30). 

Characteristics 

General 

population 

(n=321) 

Normal-weight 

women (n=256) 

Overweight 

women 

(n=46) 

Obese 

women 

(n=19) 

p value1 

Maternal characteristics          

BMI (mean ± SD) 22.96 +/- 3.85 21.36 +/- 1.64 27.35 +/- 1.47 33.89 +/- 2.96   

Maternal weight after  

pregnancy, in kg (mean ± SD) 
74.67 +/- 11.16 71.13 +/- 7.94 83.13 +/- 5.95 

100.67 +/- 

13.05 
  

Parity = 1 (N,%) 134 (41.88) 116 (45.49) 13 (28.26) 5 (26.32) 0.03 

Age (mean ± SD) 30.27 +/- 4.22 30.2 +/- 4.21 30.77 +/- 4.55 29.92 +/- 3.61 0.78 

Higher education2 (N,%) 194 (60.62) 161 (63.14) 23 (50) 10 (52.63) 0.19 

High blood pressure (N,%) 12 (3.75) 6 (2.35) 3 (6.52) 3 (15.79) 0.01 

Smoking in early pregnancy 

(N,%) 
90 (28.21) 71 (27.95) 15 (32.61) 4 (21.05) 0.68 

Regular or occasional  

alcohol consumption   (N,%) 
51 (15.94) 46 (17.97) 4 (8.89) 1 (5.26) 0.18 

Regular or occasional 

occupational  

exposure to solvents (N,%) 

138 (50.92) 103 (47.25) 25 (67.57) 10 (62.5) 0.05 

New-born characteristics           

Gestational age at birth in 

weeks  

(mean ± SD) 

39.62 +/- 1.14 39.59 +/- 1.15 39.59 +/- 1.13 40.11 +/- 1.05 0.16 

Male children (N,%) 157 (48.91) 125 (48.83) 23 (50) 9 (47.37) 1 

Birth weight, in g (mean ± SD) 
3494.22 +/- 

393.13 
3464.2 +/- 368.88 

3598.48 +/- 

493.54 

3646.32 +/- 

382.03 
0.06 

Birth height, in cm (mean ± SD) 50.11 +/- 1.79 50.06 +/- 1.73 50.32 +/- 2.2 50.21 +/- 1.36 0.79 

Birth head circumference in cm  

(mean ± SD) 
34.86 +/- 1.32 34.82 +/- 1.31 35.01 +/- 1.44 35.03 +/- 1.12 0.52 

Apgar score  at 5 min (mean ± 

SD) 
9.9 +/- 0.43 9.91 +/- 0.4 9.93 +/- 0.25 9.63 +/- 0.9 0.21 

1 Kruskal-Wallis test for continuous characteristics, chi-squared test for categorical characteristics. 
2 

 University degree 
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Table 2: Validation of the PLS-DA regression models based on maternal urinary metabolic 

profiles in early pregnancy. Models were validated by a 3-2 double cross validation procedure. 

Inner loops were used to define the best number of Latent Variables (LV), using the lower 

PRESS criteria, while parameters were estimated in outer loops. P values were calculated using 

permutation tests (1000 iterations). 

Model 

Best number 

of LV (mean 

+/- SD) 

Parameter Mean +/- SD p value 

Normal vs. Overweight vs. Obese 1.77 +/- 0.76 

Q2 0.01 +/- 0.08 0.006 

R2 0.02 +/- 0.03 0.003 

Normal vs. others 1.33 +/- 0.52 

AUROC 0.71 +/- 0.02 0.001 

Q2 0.02 +/- 0.12 0.004 

R2 0.05 +/- 0.04 0.001 

Obese vs. others 1.77 +/- 0.83 

AUROC 0.76 +/- 0.05 0.001 

Q2 -0.11 +/- 0.11 0.460 

R2 -0.04 +/- 0.03 0.070 

Normal vs. Overweight 1.03 +/- 0.05 

AUROC 0.66 +/- 0.03 0.003 

Q2 0.02 +/- 0.04 0.001 

R2 0 +/- 0.03 0.008 

Overweight vs. obese 1.85 +/- 0.56 

AUROC 0.53 +/- 0.06 0.370 

Q2 -0.69 +/- 1.14 0.540 

R2 -0.19 +/- 0.13 0.160 
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Table 3: Metabolites linked with separation of the BMI groups in the urine of pregnant women, 

direction of the association and p value.  

   Obese Overweight 
 

δ 1H (ppm) 
metabolite 

(VIP > 2) 
BMI class Trend p Trend p 

global 

p 

7.56-7.53, 7.97-

7.96, 7.84-7.82, 

7.64-7.62, 

7.56-7.53 

Hippurate 

versus Normal ↘ <10-3 ↘ 0.002 

<10-3 
Versus Normal + 

Overweight 
↘ <10-3 - - 

versus Overweight ↘ 0.14 nd nd 

7.42-7.41, 7.36, 

3.99-3,98 
Phenylalanine 

versus Normal ↘ <10-3 ↘ 0.04 

<10-3 
versus Normal + 

Overweight 
↘ <10-3 nd nd 

versus Overweight ↘ 0.006 nd nd 

4.12, 1.34-1.32 Lactate 

versus Normal ↗ <10-3 ↗ 0.21 

<10-3 
versus Normal + 

Overweight 
↗ <10-3 nd nd 

versus Overweight ↗ 0.003 nd nd 

4.06, 3.05 Creatinine 

versus Normal ↗ 0.02 ↗ 0.002 

<10-3 
versus Normal + 

Overweight 
↗ 0.05 nd nd 

versus Overweight = 0.88 nd nd 

3.955, 3.045 Creatine 

versus Normal ↗ 0.03 = 0.74 

0.15 
versus Normal + 

Overweight 
↗ 0.04 nd nd 

versus Overweight ↗ 0.52 nd nd 

3.015 Lysine 

versus Normal ↗ 0.005 = 0.96 

0.06 
versus Normal + 

Overweight 
↗ 0.004 nd nd 

versus Overweight ↗ 0.009 nd nd 

2.69, 2.67, 2.65-

2.64, 2.56-2.52 
Citrate 

versus Normal ↗ <10-3 = 0.84 

0.01 
versus Normal + 

Overweight 
↗ <10-3 nd nd 

versus Overweight ↗ 0.01 nd nd 

1.925 
Acetate 

versus Normal ↗ 0.06 ↗ 0.17 

0.03 
versus Normal + 

Overweight 
↗ 0.09 nd nd 

versus Overweight = 0.43 nd nd 

p value are the result of a likelihood ratio test in logistic regression modelling or in ordered polytomous 

regression Normal < Overweight < Obesity (global p value). To ensure the normality of continuous 

variables, logarithms of hippurate, phenylalanine, lactate, creatinine and creatine were used. Acetate has 

been used as a categorical variable, with a cut-off at the median. VIP: Variable Importance in the 

Projection. nd: non determined 
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Table 4: Validation of the PLS-DA regression models based on cord-blood metabolic profiles 

at birth. Models were validated by a 3-2 double cross validation procedure. Inner loops used to 

define the best number of Latent Variables (LV), using the lower PRESS criteria, while the 

parameters were estimated in the outer loops. P values were calculated using permutation test 

(1000 iterations). 

Model 

Best number of 

LV (mean +/- 

SD) 

Parameter Mean +/- SD p value 

Normal vs. Overweight vs Obese 1.6 +/- 1.37 

Q2 -0.07 +/- 0.06 0.594 

R2 -0.04 +/- 0.03 0.474 

Normal vs. others 1.13 +/- 0.23 

AUROC 0.53 +/- 0.05 0.339 

Q2 -0.06 +/- 0.03 0.513 

R2 -0.04 +/- 0.03 0.314 

Obese vs. others 1.08 +/- 0.14 

AUROC 0.45 +/- 0.04 0.711 

Q2 -0.06 +/- 0.02 0.530 

R2 -0.06 +/- 0.02 0.530 

Normal vs. Overweight 1.55 +/- 0.77 

AUROC 0.53 +/- 0.04 0.322 

Q2 -0.12 +/- 0.05 0.845 

R2 -0.08 +/- 0.03 0.653 

Overweight vs. Obese 1.37 +/- 0.48 

AUROC 0.39 +/- 0.06 0.830 

Q2 -0.45 +/- 0.14 0.720 

R2 -0.37 +/- 0.08 0.640 
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