]. D. Adams, J. J. Popma, M. J. Reardon, S. J. Yakubov, J. S. Coselli et al., Oh, ?Transcatheter Aortic-Valve Replacement with a Self-Expanding Prosthesis ?Transcatheter versus Surgical Aortic-Valve Replacement in High-Risk Patients aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery, N. Engl. J. Med. N. Engl. J. Med. N. Engl. J. Med, vol.370, issue.363 17, pp.1790-1798, 2010.

M. B. Laborde, A. N. Leon, N. Azadani, P. B. Jaussaud, L. Matthews et al., ?Energy loss due to paravalvular leak with transcatheter aortic valve implantation.,? Ann Montorfano, and A. Colombo, ?Recognition and management of complications during transcatheter aortic valve implantation, Management, and Avoidance of Procedural Complications Sirois, Q. Wang, and W. Sun, ?Fluid Simulation of a Transcatheter Aortic Valve Deployment into a Patient-Specific Aortic Root, pp.3006-3008, 2002.

N. Claeys, G. Drinkovic, G. Filippatos, . Habib, R. Pieter-kappetein et al., ?Guidelines on the management of valvular heart disease ?A prospective survey of patients with valvular heart disease in Europe: The Euro Heart Survey on valvular heart disease,? Eur, Heart J. Heart J, vol.33, issue.24 13, pp.2451-2496, 2003.

]. G. Eveborn, H. Schirmer, G. Heggelund, P. Lunde, and K. Rasmussen, ?The evolving epidemiology of valvular aortic stenosis. The Tromso Study,? Heart, 2012.

C. Clark, Energy losses in flow through stenosed valves, Journal of Biomechanics, vol.12, issue.10, pp.737-746, 1978.
DOI : 10.1016/0021-9290(79)90159-3

D. Garcia and L. Kadem, Effective Orifice Area , or Gorlin Area, 2006.

]. P. Dyverfeldt, M. D. Hope, E. E. Tseng, D. Saloner, C. Md et al., ?Magnetic resonance measurement of turbulent kinetic energy for the estimation of irreversible pressure loss in aortic stenosis ?Rate of progression of severity of valvular aortic stenosis in the adult.,? Am, JACC Cardiovasc. Imaging Heart J, vol.616, issue.98 6, pp.64-71, 1979.

J. Turina, O. Hess, F. Sepulcri, and H. P. Eur, Spontaneous course of aortic valve disease, European Heart Journal, vol.8, issue.5, pp.471-483, 1987.
DOI : 10.1093/oxfordjournals.eurheartj.a062307

]. V. Goyal, S. Devgarha, S. Kalla, C. P. Srivastava-]-w, L. Edwards et al., Comparative evaluation of hemodynamic performance in early post-operative period of tilting disc vs. bileaflet mechanical valve at mitral position ??? A prospective study, 22] M. Neyt, H. Van Brabandt, S. Van De Sande, and S. Devriese, ?Transcatheter Aortic Valve Implantation (TAVI): a Health Technology Assessment Update, pp.52-55, 1958.
DOI : 10.1007/s12055-009-0033-9

D. J. Stockwell and . Cohen, ?Clinical and economic outcomes after surgical aortic valve replacement in Medicare patients,? Risk Manag, The Lancet, pp.117-126, 2009.

B. Iung and A. Vahanian, Epidemiology of valvular heart disease in the adult, Nature Reviews Cardiology, vol.54, issue.3, pp.162-172, 2011.
DOI : 10.1038/nrcardio.2010.202

R. L. Osnabrugge, D. Mylotte, S. J. Head, N. M. Van-mieghem, V. T. Nkomo et al., Aortic Stenosis in the Elderly, 27] A. Ielasi, A. Latib, and M. Tespili, ?Current and new-generation transcatheter aortic valve devices: an update on emerging technologies, pp.1002-1012, 2013.
DOI : 10.1016/j.jacc.2013.05.015

]. D. Dvir, I. Lavi, H. Eltchaninoff, D. Himbert, Y. Almagor et al., Multicenter Evaluation of Edwards SAPIEN Positioning During Transcatheter Aortic Valve Implantation With Correlates for Device Movement During Final Deployment, JACC: Cardiovascular Interventions, vol.5, issue.5, pp.563-70, 2012.
DOI : 10.1016/j.jcin.2012.03.005

A. Heimeshoff, M. Luik, L. Thoenes, and . Mandinov, ?How to Adapt the Implantation Technique for the New SAPIEN 3 Transcatheter Heart Valve Design, J. Interv. Cardiol, vol.28, issue.1, pp.82-89, 2015.

]. L. Lehmkuhl, B. Foldyna, K. Von-aspern, C. Lücke, M. Grothoff et al., Inter-individual variance and cardiac cycle dependency of aortic root dimensions and shape as assessed by ECG-gated multi-slice computed tomography in patients with severe aortic stenosis prior to transcatheter aortic valve implantation: is it crucial for correct sizing?, The International Journal of Cardiovascular Imaging, vol.114, issue.15, pp.693-703, 2013.
DOI : 10.1007/s10554-012-0123-4

H. B. Ribeiro, L. Nombela-franco, M. Urena, M. Mok, S. Pasian et al., Coronary Obstruction Following Transcatheter Aortic Valve Implantation, JACC: Cardiovascular Interventions, vol.6, issue.5, pp.452-461, 2013.
DOI : 10.1016/j.jcin.2012.11.014

R. G. Seipelt, G. Hanekop, F. A. Schoendube, and W. Schillinger, Heart team approach for transcatheter aortic valve implantation procedures complicated by coronary artery occlusion, Interactive CardioVascular and Thoracic Surgery, vol.14, issue.4, pp.431-434, 2012.
DOI : 10.1093/icvts/ivr136

]. A. Windecker35, N. Azadani, P. B. Jaussaud, L. Matthews, T. Ge et al., ?Transcatheter aortic valves inadequately relieve stenosis in small degenerated bioprostheses, J. Am. Coll. Cardiol. Interact. Cardiovasc. Thorac. Surg, vol.64, issue.11, pp.129-140, 2010.

J. B. Doyle, S. Masson, O. F. Bergeron, J. S. Bertrand, M. Ewe et al., Rodés-Cabau, ?Comparison of the Hemodynamic Performance of Percutaneous and Surgical Bioprostheses for the Treatment of Severe Aortic Stenosis ?Hemodynamic and clinical impact of prosthesispatient mismatch after transcatheter aortic valve implantation, J. Am. Coll. Cardiol. J. Am. Coll. Cardiol, vol.53, issue.58 18, pp.1883-1891, 1910.

M. Pasic, A. Unbehaun, S. Buz, T. Drews, R. Hetzer-hayashida et al., ?Potential mechanism of annulus rupture during transcatheter aortic valve implantation, Rupture During Transcatheter Aortic Valve Replacement,? JACC Cardiovasc. Interv. Catheter. Cardiovasc. Interv, vol.8, issue.82 5, pp.1-9, 2013.

P. W. Alu, A. P. Serruys, M. B. Kappetein, R. Leon, V. Zegdi et al., ?Paravalvular leak after transcatheter aortic valve replacement: The new achilles' heel? A comprehensive review of the literature, Journal of the American College of Cardiology, vol.61, issue.11

]. W. Sun, K. Li, E. Sirois-]-p, F. Kahlert, P. Al-rashid et al., ?Cerebral embolization during transcatheter aortic valve implantation: A transcranial doppler study Grube, ?First-in-man use of a novel embolic protection device for patients undergoing transcatheter aortic valve implantation, J. Biomech. Circulation EuroIntervention J. Am. Coll. Cardiol, vol.43, issue.60 6, pp.3085-90, 2010.

J. G. Webb, Percutaneous Transarterial Aortic Valve Replacement in Selected High-Risk Patients With Aortic Stenosis, Circulation, vol.116, issue.7, 2007.
DOI : 10.1161/CIRCULATIONAHA.107.698258

I. B. , L. C. , H. D. , E. H. , C. K. et al., ?Predictive factors of early mortality after transcatheter aortic valve implantation: Individual risk assessment using a simple score, ?Computational fluid dynamics simulation of transcatheter aortic valve degeneration.,? Interact, pp.1016-1023, 2009.

S. Taylor and . Schievano, ?Patient-specific simulations of transcatheter aortic valve stent implantation, Med. Biol. Eng. Comput, vol.50, issue.2, pp.183-92, 2012.

Q. Wang, E. Sirois, and W. Sun, Patient-specific modeling of biomechanical interaction in transcatheter aortic valve deployment, Journal of Biomechanics, vol.45, issue.11, pp.1965-71, 2012.
DOI : 10.1016/j.jbiomech.2012.05.008

]. R. Hopf, M. Gessat, V. Falk, E. Mazza, C. Russ et al., ?Simulation of transcatheter aortic valve implantation under consideration of leaflet calcification, ?Reconstruction of Stent Induced Loading Forces on the Aortic Valve Complex, pp.104-111, 2012.

]. S. Tzamtzis, J. Viquerat, J. Yap, M. J. Mullen, and G. Burriesci, Numerical analysis of the radial force produced by the Medtronic-CoreValve and Edwards-SAPIEN after transcatheter aortic valve implantation (TAVI), Medical Engineering & Physics, vol.35, issue.1, pp.125-155, 2013.
DOI : 10.1016/j.medengphy.2012.04.009

]. I. Kemp, K. Dellimore, R. Rodriguez, C. Scheffer, D. Blaine et al., Weich, and a. Doubell, ?Experimental validation of the fluid-structure interaction simulation of a bioprosthetic aortic heart valve,? Australas, Phys. Eng. Sci. Med, vol.3657, issue.3, pp.363-373, 2013.

F. Auricchio, M. Conti, and S. Morganti, Simulation of transcatheter aortic valve implantation: a patient-specific finite element approach, Computer Methods in Biomechanics and Biomedical Engineering, vol.10, issue.12, pp.1347-57, 2014.
DOI : 10.1002/jbm.820280107

]. Q. Wang, S. Kodali, C. Primiano, and W. Sun, Simulations of transcatheter aortic valve implantation: implications for aortic root rupture, Biomechanics and Modeling in Mechanobiology, vol.45, issue.11, 2014.
DOI : 10.1007/s10237-014-0583-7

]. S. Morganti, M. Conti, M. Aiello, and . Valentini, a Mazzola, a Reali, and F. Auricchio, ?Simulation of transcatheter aortic valve implantation through patient-specific finite element analysis: Two clinical cases, J. Biomech, 2012.

P. S. Gunning, T. J. Vaughan, and L. M. Mcnamara, Simulation of Self Expanding Transcatheter Aortic Valve in a Realistic Aortic Root: Implications of Deployment Geometry on Leaflet Deformation, Annals of Biomedical Engineering, vol.51, issue.9, 1989.
DOI : 10.1007/s10439-014-1051-3

M. Gessat, R. Hopf, T. Pollok, C. Russ, T. Frauenfelder et al., Image-Based Mechanical Analysis of Stent Deformation: Concept and Exemplary Implementation for Aortic Valve Stents, IEEE Transactions on Biomedical Engineering, vol.61, issue.1, pp.4-15, 2014.
DOI : 10.1109/TBME.2013.2273496

M. R. Grande-allen, A. Mofrad, B. Falahatpisheh, F. Griffith, S. H. Baaijens et al., ?Emerging Trends in Heart Valve Engineering: Part II. Novel and Standard Technologies for Aortic Valve Replacement, Ann. Biomed. Eng, 2014.

S. F. Stewart, E. G. Paterson, G. W. Burgreen, P. Hariharan, M. Giarra et al., Malinauskas, ?Assessment of CFD Performance in Simulations of an Idealized Medical Device: Results of FDA's First Computational Interlaboratory Study ?Toward patient-specific simulations of cardiac valves: State-of-the-art and future directions, Sotiropoulos, ?Computational Fluid Dynamics for Medical Device Design and Evaluation: Are We There Yet, pp.137-138, 2012.

]. S. Krucinski, I. Vesely, M. A. Dokainish, G. J. Campbell68-]-k, R. P. Grande et al., ?Numerical simulation of leaflet flexure in bioprosthetic valves mounted on rigid and expansile stents ?Stress variations in the human aortic root and valve: the role of anatomic asymmetry ?Re-creation of sinuses is important for sparing the aortic valve: a finite element study, J. Biomech. Ann. Biomed. Eng. J. Thorac. Cardiovasc. Surg, vol.26, issue.119 4, pp.929-943, 1993.

]. R. Gnyaneshwar, R. K. Kumar, and K. R. Balakrishnan, ?Dynamic analysis of the aortic valve using a finite element model.,? Ann [71] I. C. Howard, E. a Patterson, and a Yoxall, ?On the opening mechanism of the aortic valve: some observations from simulations, Thorac. Surg. J. Med. Eng. Technol, vol.7372, issue.27 6, pp.1122-1131, 2002.

M. A. Nicosia, R. P. Cochran, and K. S. Kunzelman, ?Coupled fluid-structure finite element modeling of the aortic valve and root Patterson, ?The use of LS-DYNA fluid-structure interaction to simulate fluid-driven deformation in the aortic valve, Proc. Second Jt. 24th Annu. Conf. Annu. Fall Meet, pp.1278-1279, 2002.

J. Hart, F. P. Baaijens, G. W. Peters, and P. J. , Schreurs, ?A computational fluid-structure interaction analysis of a fiber-reinforced stentless aortic valve, J. Biomech, vol.3675, issue.5, pp.699-712, 2003.

G. Arcidiacono, T. Corvi, D. R. Severi, A. J. Hose, J. M. Narracott et al., Lawford, ?Fundamental mechanics of aortic heart valve closure ?Computational simulations of the aortic valve validated by imaging data: evaluation of valve-sparing techniques Mofrad, ?Transient, three-dimensional, multiscale simulations of the human aortic valve, 79] S. Katayama, N. Umetani, S. Sugiura, and T. Hisada, ?The sinus of Valsalva relieves abnormal stress on aortic valve leaflets by facilitating smooth closure, pp.1483-1490, 2005.

F. Viscardi, C. Vergara, L. Antiga, S. Merelli, A. Veneziani et al., ?Comparative Finite Element Model Analysis of Ascending Aortic Flow in Bicuspid and Tricuspid Aortic Valve, ?Dynamic finite element analysis of the aortic root from MRI-derived parameters, Artif. Organs Med. Eng. Phys, vol.3482, issue.32 2, pp.1114-1120, 2010.

M. R. Labrosse, K. Lobo, C. J. Beller83-]-t, B. D. Koch, P. Reddy et al., ?Structural analysis of the natural aortic valve in dynamics: From unpressurized to physiologically loaded ?Aortic valve leaflet mechanical properties facilitate diastolic valve function.,? Comput, ?A fluid-structure interaction model of the aortic valve with coaptation and compliant aortic root, pp.1916-1922, 2010.

I. Borazjani, G. Marom, M. Peleg, R. Halevi, M. Rosenfeld et al., Fluid???structure interaction, immersed boundary-finite element method simulations of bio-prosthetic heart valves, Computer Methods in Applied Mechanics and Engineering, vol.257, issue.135 10, pp.103-116, 2013.
DOI : 10.1016/j.cma.2013.01.010

]. F. Sturla, E. Votta, M. Stevanella, C. Conti, and A. Redaelli, Impact of modeling fluid???structure interaction in the computational analysis of aortic root biomechanics, Medical Engineering & Physics, vol.35, issue.12, pp.1721-1730, 2013.
DOI : 10.1016/j.medengphy.2013.07.015

M. Y. Kuan and D. M. Espino, Systolic fluid???structure interaction model of the congenitally bicuspid aortic valve: assessment of modelling requirements, Computer Methods in Biomechanics and Biomedical Engineering, vol.113, issue.6, pp.37-41, 2014.
DOI : 10.1016/0021-9991(66)90001-5

]. W. Sun, C. Martin, and T. Pham, Computational Modeling of Cardiac Valve Function and Intervention, Annual Review of Biomedical Engineering, vol.16, issue.1, pp.53-76, 2014.
DOI : 10.1146/annurev-bioeng-071813-104517

M. Swanson and R. E. Clark, Structure Interaction Models of Aortic Valves,? 2014 ?Dimensions and geometric relationships of the human aortic valve as a function of pressure, ?Three-dimensional stress distribution in arteries, Circ. Res. J. Biomech. Eng, vol.35, issue.105 3, pp.871-882, 1974.

W. Huang and R. T. Yen, ?Zero-stress states of human pulmonary arteries and veins, J. Appl. Physiol, vol.8594, issue.3, pp.867-873, 1998.

J. Zhao, J. Day, Z. F. Yuan, H. G. Huang, C. Yang et al., Regional arterial stress-strain distributions referenced to the zero-stress state in the rat, ?Initial stress and nonlinear material behavior in patient-specific AAA wall stress analysis, pp.622-629, 2002.
DOI : 10.1152/ajpheart.00620.2000

]. S. Grbic, T. Mansi, R. Ionasec, I. Voigt, H. Houle et al., Comaniciu, ?Image-based computational models for TAVI planning: From CT images to implant deployment, ? in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) LNCS, vol.8150, pp.395-402, 2013.

R. Haj-ali, G. Marom, S. B. Zekry, M. Rosenfeld, and E. Raanani, A general three-dimensional parametric geometry of the native aortic valve and root for biomechanical modeling, Journal of Biomechanics, vol.45, issue.14, pp.2392-2397, 2012.
DOI : 10.1016/j.jbiomech.2012.07.017

J. S. Rankin, M. C. Bone, P. M. Fries, D. Aicher, H. J. Schäfers et al., A refined hemispheric model of normal human aortic valve and root geometry, The Journal of Thoracic and Cardiovascular Surgery, vol.146, issue.1, 2013.
DOI : 10.1016/j.jtcvs.2012.06.043

Y. Zheng, M. John, R. Liao, A. Nöttling, J. Boese et al., Automatic Aorta Segmentation and Valve Landmark Detection in C-Arm CT for Transcatheter Aortic Valve Implantation, IEEE Transactions on Medical Imaging, vol.31, issue.12, pp.2307-2321, 2012.
DOI : 10.1109/TMI.2012.2216541

A. M. Pouch, H. Wang, M. Takabe, B. M. Jackson, C. M. Sehgal et al., Yushkevich, ?Automated segmentation and geometrical modeling of the tricuspid aortic valve in 3D echocardiographic images, ? in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol.8149, issue.1, pp.485-492, 2013.

T. Mansi, I. Voigt, B. Georgescu, X. Zheng, E. A. Mengue et al., An integrated framework for finite-element modeling of mitral valve biomechanics from medical images: Application to MitralClip intervention planning, Medical Image Analysis, vol.16, issue.7, pp.1330-1346, 2012.
DOI : 10.1016/j.media.2012.05.009

A. Valentín, J. D. Humphrey, and G. A. , A Multi-Layered Computational Model of Coupled Elastin Degradation, Vasoactive Dysfunction, and Collagenous Stiffening in Aortic Aging, Annals of Biomedical Engineering, vol.35, issue.1, pp.2027-2045, 2011.
DOI : 10.1007/s10439-011-0287-4

N. Xiao, J. D. Humphrey, and C. A. Figueroa, Multi-scale computational model of three-dimensional hemodynamics within a deformable full-body arterial network, Journal of Computational Physics, vol.244, pp.22-40, 2013.
DOI : 10.1016/j.jcp.2012.09.016

S. Roccabianca, C. A. Figueroa, G. Tellides, and J. D. Humphrey, Quantification of regional differences in aortic stiffness in the aging human, Journal of the Mechanical Behavior of Biomedical Materials, vol.29, pp.618-634, 2014.
DOI : 10.1016/j.jmbbm.2013.01.026

D. Klepach, L. C. Lee, J. F. Wenk, M. B. Ratcliffe, T. I. Zohdi et al., Growth and remodeling of the left ventricle: A case study of myocardial infarction and surgical ventricular restoration, Mechanics Research Communications, vol.42, pp.134-141, 2012.
DOI : 10.1016/j.mechrescom.2012.03.005

D. M. Ebenstein, D. Coughlin, J. Chapman, C. Li, and L. A. Pruitt, Nanomechanical properties of calcification, fibrous tissue, and hematoma from atherosclerotic plaques, Journal of Biomedical Materials Research Part A, vol.298, issue.2 Pt 1, pp.1028-1037, 2009.
DOI : 10.1002/jbm.a.32321

G. Holzapfel, T. C. Gasser, and R. W. Ogden, ?A new constitutive framework for arterial wall mechanics and a comperative study of material models, Journal of Elasticity, vol.61, issue.1/3, pp.1-48, 2000.
DOI : 10.1023/A:1010835316564

T. C. Gasser, R. W. Ogden, and G. , Hyperelastic modelling of arterial layers with distributed collagen fibre orientations, Journal of The Royal Society Interface, vol.37, issue.7, pp.15-35, 2006.
DOI : 10.1016/j.jbiomech.2003.11.026

G. A. Holzapfel, G. Sommer, and P. Regitnig, Anisotropic Mechanical Properties of Tissue Components in Human Atherosclerotic Plaques, Journal of Biomechanical Engineering, vol.126, issue.5, p.657, 2004.
DOI : 10.1115/1.1800557

A. P. Selvadurai, Deflections of a rubber membrane, Journal of the Mechanics and Physics of Solids, vol.54, issue.6, pp.1093-1119, 2006.
DOI : 10.1016/j.jmps.2006.01.001

N. J. Driessen, R. Boerboom, J. M. Huyghe, C. Bouten, and F. P. , Computational Analyses of Mechanically Induced Collagen Fiber Remodeling in the Aortic Heart Valve, Journal of Biomechanical Engineering, vol.125, issue.4, pp.549-557, 2003.
DOI : 10.1115/1.1590361

F. Auricchio and R. L. Taylor, Shape-memory alloys: modelling and numerical simulations of the finite-strain superelastic behavior, Computer Methods in Applied Mechanics and Engineering, vol.143, issue.1-2, 1997.
DOI : 10.1016/S0045-7825(96)01147-4

A. Wittek, K. Karatolios, P. Bihari, T. Schmitz-rixen, R. Moosdorf et al., IN VIVO DETERMINATION OF ELASTIC PROPERTIES OF THE HUMAN AORTA BASED ON 4D ULTRASOUND DATA, Journal of Biomechanics, vol.45, pp.167-183, 2013.
DOI : 10.1016/S0021-9290(12)70020-9

V. Flamini, A. P. Creane, C. M. Kerskens, and C. Lally, Imaging and finite element analysis: A methodology for non-invasive characterization of aortic tissue, Medical Engineering & Physics, vol.37, issue.1, pp.48-54, 2015.
DOI : 10.1016/j.medengphy.2014.10.006

L. Cardamone, A. Valentín, J. F. Eberth, and J. D. Humphrey, Origin of axial prestretch and residual stress in arteries, Biomechanics and Modeling in Mechanobiology, vol.35, issue.6, pp.431-446, 2009.
DOI : 10.1007/s10237-008-0146-x

C. Schramm, A. Huber, and K. Plaschke, The Accuracy and Responsiveness of Continuous Noninvasive Arterial Pressure During Rapid Ventricular Pacing for Transcatheter Aortic Valve Replacement, Anesthesia & Analgesia, vol.117, issue.1, pp.76-82, 2013.
DOI : 10.1213/ANE.0b013e3182910df5

C. Capelli, J. Nordmeyer, S. Schievano, P. Lurz, S. Khambadkone et al., How do angioplasty balloons work: a computational study on balloon expansion forces, EuroIntervention, vol.6, issue.5, pp.638-680, 2010.
DOI : 10.4244/EIJV6I5A106