A. Yano, S. Oda, T. Fukami, M. Nakajima, and T. Yokoi, Development of a cell-based assay system considering drug metabolism and immune- and inflammatory-related factors for the risk assessment of drug-induced liver injury, Toxicology Letters, vol.228, issue.1, pp.22813-22837, 2014.
DOI : 10.1016/j.toxlet.2014.04.005

R. Edmondson, J. J. Broglie, A. F. Adcock, and L. Yang, Three-Dimensional Cell Culture Systems and Their Applications in Drug Discovery and Cell-Based Biosensors, ASSAY and Drug Development Technologies, vol.12, issue.4, pp.12-207, 2014.
DOI : 10.1089/adt.2014.573

R. Daník, A. Narayan, W. Subramanian, T. R. Winckler, A. E. Golub et al., Toward performance-diverse small-molecule libraries for cell-based phenotypic screening using multiplexed high-dimensional profiling, Proc. Natl. Acad. Sci. USA, pp.10911-10916, 2014.

A. B. Lyons and C. R. Parish, Determination of lymphocyte division by flow cytometry, Journal of Immunological Methods, vol.171, issue.1, pp.131-137, 1994.
DOI : 10.1016/0022-1759(94)90236-4

K. E. Howard, I. L. Fisher, G. A. Dean, and M. J. Burkhard, Methodology for isolation and phenotypic characterization of feline small intestinal leukocytes, Journal of Immunological Methods, vol.302, issue.1-2, pp.36-53, 2005.
DOI : 10.1016/j.jim.2005.04.019

G. Freer and L. Rindi, Intracellular cytokine detection by fluorescence-activated flow cytometry: Basic principles and recent advances, Methods, vol.61, issue.1, pp.30-38, 2013.
DOI : 10.1016/j.ymeth.2013.03.035

H. T. Maecker and N. U. , Multiparameter Flow Cytometry Monitoring of T Cell Responses, Methods in Mol. Biol
DOI : 10.1007/978-1-59745-170-3_25

H. J. Mayerson, A Practical Approach to the Flow Cytometric Detection and Diagnosis of T-Cell Lymphoproliferative Disorders, Laboratory Hematology, vol.16, issue.3, pp.32-52, 2010.
DOI : 10.1532/LH96.10001

G. Freer, Intracellular Staining and Detection of Cytokines by Fluorescence-Activated Flow Cytometry, Methods Mol. Biol, pp.1172-221, 2014.
DOI : 10.1007/978-1-4939-0928-5_20

J. T. Wessels, K. Yamauchi, R. M. Hoffman, and F. S. Wouters, Advances in cellular, subcellular, and nanoscale imaging in vitro and in vivo, Cytometry Part A, vol.71, issue.7, pp.77-667, 2010.
DOI : 10.1002/cyto.a.20931

C. Radu, H. S. Adrar, A. Alamir, I. Hatherley, T. Trinh et al., Designs and Concept Reliance of a Fully Automated High-Content Screening Platform, Journal of Laboratory Automation, vol.17, issue.5, pp.17-359, 2012.
DOI : 10.1177/1087057109352236

M. Haller, E. Bier, P. C. Derose, G. A. Cooksey, S. J. Choquette et al., An automated protocol for performance benchmarking a widefield fluorescence microscope, Cytometry A, 2014.

C. R. Thoma, M. Zimmermann, I. Agarkova, J. M. Kelm, and W. Krek, 3D cell culture systems modeling tumor growth determinants in cancer target discovery, Advanced Drug Delivery Reviews, vol.69, issue.70, pp.69-70, 2014.
DOI : 10.1016/j.addr.2014.03.001

M. Suzuki, Y. Ito, E. H. Savage, Y. Husimi, and K. T. Douglas, Protease-sensitive signaling by chemically engineered intramolecular fluorescent resonance energy transfer mutants of green fluorescent protein

M. Suzuki, Y. Ito, I. Sakata, T. Sakai, Y. Husimi et al., Caspase-3 sensitive signaling in vivo in M

A. Miyawaki, Visualization of the Spatial and Temporal Dynamics of Intracellular Signaling, Developmental Cell, vol.4, issue.3, pp.295-305, 2003.
DOI : 10.1016/S1534-5807(03)00060-1

W. B. Wiechert and . Frommer, Optical sensors for monitoring dynamic changes of intracellular metabolite levels in mammalian cells, Nat. Protoc, vol.6, pp.1818-1833, 2011.

C. F. Kaminski, E. J. Rees, and G. S. Schierie, A Quantitative Protocol for Intensity-Based Live Cell FRET Imaging, Methods Mol. Biol, pp.1076-445, 2014.
DOI : 10.1007/978-1-62703-649-8_19

E. Galperin, V. V. Verkhusha, and A. Sorkin, Three-chromophore FRET microscopy to analyze multiprotein interactions in living cells, Nature Methods, vol.84, issue.3, pp.209-217, 2004.
DOI : 10.1073/pnas.192433499

T. Vojnovic and S. M. Ng, Ameer-Beg, A multi-functional imaging approach to high-content protein interaction screening, PLoS One, vol.7, p.33231, 2012.

T. Su, S. Pan, Q. Luo, and Z. Zhang, Monitoring of dual bio-molecular events using FRET biosensors based on mTagBFP/sfGFP and mVenus/mKO?? fluorescent protein pairs, Biosensors and Bioelectronics, vol.46, pp.97-101, 2013.
DOI : 10.1016/j.bios.2013.02.024

J. Korczynski and J. Wlodarczyk, Fluorescence lifetime imaging microscopy (FLIM) in biological and medical research, Postepy. Biochem, vol.55, pp.434-440, 2009.

H. Wallrabe and A. Periasamy, Imaging protein molecules using FRET and FLIM microscopy, Current Opinion in Biotechnology, vol.16, issue.1
DOI : 10.1016/j.copbio.2004.12.002

S. Padilla-parra, N. Audugé, H. Lalucque, J. C. Mevel, M. Coppey-moisan et al., Quantitative Comparison of Different Fluorescent Protein Couples for Fast FRET-FLIM Acquisition, Biophysical Journal, vol.97, issue.8, pp.97-236, 2009.
DOI : 10.1016/j.bpj.2009.07.044

URL : https://hal.archives-ouvertes.fr/hal-00441625

M. Martin-fernandez, S. V. Longshaw, I. Kirby, G. Santis, M. J. Tobin et al., Adenovirus Type-5 Entry and Disassembly Followed in Living Cells by FRET, Fluorescence Anisotropy, and FLIM, Biophysical Journal, vol.87, issue.2, pp.1316-1327, 2004.
DOI : 10.1529/biophysj.103.035444

K. Suhling, J. A. Levitt, P. H. Chung, M. K. Kuimova, and G. Yahioglu, Fluorescence Lifetime Imaging of Molecular Rotors in Living Cells, Journal of Visualized Experiments, issue.60, p.602025, 2012.
DOI : 10.3791/2925

. Szollsi, Novel calibration method for flow cytometric fluorescence resonance energy transfer measurements between visible fluorescent proteins, Cytometry A, vol.67, pp.86-96, 2005.

X. Wu, J. Simone, D. Hewgill, R. Siegel, P. E. Lipsky et al., Measurement of two caspase activities simultaneously in living cells by a novel dual FRET fluorescent indicator probe, Cytometry Part A, vol.273, issue.6, pp.69-477, 2006.
DOI : 10.1002/cyto.a.20300

R. Fox and M. Aubert, Flow cytometric detection of activated caspase-3, Methods Mol. Biol, vol.414, pp.47-56, 2008.

W. Zhang, M. Suzuki, Y. Ito, and K. T. Douglas, A Chemically Modified Green-Fluorescent Protein that Responds to Cleavage of an Engineered Disulphide Bond by Fluorescence Resonance Energy Transfer (FRET)-Based Changes, Chemistry Letters, vol.34, issue.6, pp.34-766, 2005.
DOI : 10.1246/cl.2005.766

T. Kihara, C. Nakamura, M. Suzuki, S. W. Han, K. Fukazawa et al., Development of a method to evaluate caspase-3 activity in a single cell using a nanoneedle and a fluorescent probe, Biosensors and Bioelectronics, vol.25, issue.1, pp.22-27, 2009.
DOI : 10.1016/j.bios.2009.05.036

J. T. Pai, M. S. Brown, and J. L. Goldstein, Purification and cDNA cloning of a second apoptosis-related cysteine protease that cleaves and activates sterol regulatory element binding proteins., Proc. Natl. Acad. Sci. USA 93, pp.5437-5442, 1996.
DOI : 10.1073/pnas.93.11.5437

H. S. Choi, S. Han, H. Yokota, and K. H. Cho, Coupled positive feedbacks provoke slow induction plus fast switching in apoptosis, FEBS Letters, vol.5, issue.14, pp.581-2684, 2007.
DOI : 10.1016/j.febslet.2007.05.016

C. Maueröder, R. A. Chaurio, S. Platzer, L. E. Muño, and C. Berens, Model systems for rapid and slow induction of apoptosis obtained by inducible expression of pro-apoptotic proteins, Autoimmunity, vol.9, issue.5, pp.329-335, 2013.
DOI : 10.4161/cbt.4.5.1658

R. Kim, M. Emi, and K. Tanabe, Role of mitochondria as the gardens of cell death, Cancer Chemotherapy and Pharmacology, vol.290, issue.5
DOI : 10.1007/s00280-005-0111-7

I. N. Lavrik, Systems biology of death receptor networks: live and let die, Cell Death and Disease, vol.691, issue.5, p.1259, 2014.
DOI : 10.1038/cddis.2013.157

S. W. Ryter, K. Mizumura, and A. M. Choi, The Impact of Autophagy on Cell Death Modalities, International Journal of Cell Biology, vol.4, issue.1, pp.2014-502676, 2014.
DOI : 10.1007/s00018-010-0335-5

A. Rasul, M. Khan, M. Ali, J. Li, and X. Li, Targeting Apoptosis Pathways in Cancer with Alantolactone and Isoalantolactone, The Scientific World Journal, vol.63, issue.9, pp.2013-248532, 2013.
DOI : 10.1016/S0304-3835(00)00425-0

S. Zhang, M. Yu, H. Deng, G. Shen, and Y. Wei, Polyclonal rabbit anti-human ovarian cancer globulins inhibit tumor growth through apoptosis involving the caspase signaling, Scientific Reports, vol.109, p.4984, 2014.
DOI : 10.1038/srep04984

E. J. Sohon, M. J. Shin, D. W. Kim, E. H. Ahn, H. S. Jo et al., Tat-Fused Recombinant Human SAG Prevents Dopaminergic Neurodegeneration in a MPTP-Induced Parkinson???s Disease Model, Molecules and Cells, vol.37, issue.3, pp.226-233, 2014.
DOI : 10.14348/molcells.2014.2314

. Mensah-nyangan, Gamma-hydroxybutyrate, acting through an anti-apoptotic mechanism, protects native and amyloid-precursor-protein-transfected neuroblastoma cells against oxidative stress-induced death, Neuroscience, vol.263, pp.203-215, 2014.

Z. Qualls, D. Brown, C. Raminochansingh, L. L. Hurley, and Y. Tozabi, Protective effects of curcumin against rotenone and saisolinol-induced toxicity implications for Parkinson's disease, Neurotox. Res, pp.25-81, 2014.

B. Fadeel, Z. Hassan, E. Hellström-lindberg, J. Henter, S. Orrenius et al., Cleavae of Bcl-2 is an early event in chemotherapy-induced apoptosis of human meyloid leukemia cells, Leukemia, p.13, 1999.

J. Liu, Y. Yao, H. Ding, and R. Chen, Oxymatrine triggers apoptosis by regulating Bcl-2 family proteins and activating caspase-3/caspase-9 pathway in human leukemia HL-60 cells, Tumor Biology, vol.37, issue.1, pp.5409-5415, 2014.
DOI : 10.1007/s13277-014-1705-7

M. L. Wurstle and M. Rehm, A Systems Biology Analysis of Apoptosome Formation and Apoptosis Execution Supports Allosteric Procaspase-9 Activation, Journal of Biological Chemistry, vol.289, issue.38, pp.26277-26289, 2014.
DOI : 10.1074/jbc.M114.590034

R. Swaminathan, C. P. Hoang, and A. S. Verkman, Photobleaching recovery and anisotropy decay of green fluorescent protein GFP-S65T in solution and cells: cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion, Biophysical Journal, vol.72, issue.4, pp.72-1900, 1997.
DOI : 10.1016/S0006-3495(97)78835-0

A. Sacchetti, R. Cioccocioppo, and S. Alberti, The molecular determinants of the efficiency of green fluorescent protein mutants, Histol. Histopathol, vol.15, pp.101-107, 2000.

A. J. Visser, S. P. Laptenok, N. Y. Visser, A. Van-hoek, D. J. Birch et al., Time-resolved FRET fluorescence spectroscopy of visible fluorescent protein pairs, European Biophysics Journal, vol.3, issue.Suppl, pp.39-241, 2010.
DOI : 10.1007/s00249-009-0528-8