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Abstract 

Background: Addressing vulnerability to heat-related mortality is a necessary step in the 

development of specific policies dictated by heat action plans. Epidemiologic studies can be used

to orient such policies. The aim of this study was to provide a systematic assessment of the 

epidemiologic evidence regarding vulnerability to heat-related mortality. 

Methods: Studies published between January 1980 and August 2014 were identified through 

PubMed and Elsevier Embase on the Ovid SP portal and in Web of Science. Studies assessing the

association between high ambient temperature or heat-waves and mortality among different 

subgroups were selected. Estimates of association for all the included subgroups were extracted. 

We assessed the presence of heterogeneous effects between subgroups conducting Cochran Q 

tests. We then conducted random effect meta-analyses of ratios of relative risks (RRR) for high 

ambient temperature studies. Finally, we performed random effects meta-regression analyses to 

investigate factors associated with the magnitude of the RRR. 

Results: Overall 61 studies were included in the review. Using the Cochran Q test we 

consistently found evidence of vulnerability for the elderly aged more than 85 years. We then 

found a pooled RRR of 0.99 (95% CI: 0.97, 1.01) for male sex, 1.02 (95% CI: 1.01, 1.03) for 

age>65 years, 1.04 (95% CI: 1.02, 1.07) for age>75 years, 1.03 (95% CI: 1.01, 1.05) for low 

individual socioeconomic status (SES) and 1.01 (95% CI: 0.99, 1.02) for low ecological 

socioeconomic status (SES). We found contrast definition use to be a determinant of 

heterogeneity in the pooled RRR. 
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Conclusions: We found strongest evidence of heat-related vulnerability for the elderly aged 

more than 65 years and more than 75 years and low SES groups (measured at the individual 

level). Further studies are needed to clarify if other subgroups like children or people living alone

are also vulnerable to heat in order to inform public health programs.

Keywords: Vulnerability, heat, population health, temperature, temperature related mortality, 

climate change, meta-analysis. 

4



Introduction

Rising temperatures, and their impact on human mortality, are a primary public health concern in

the context of climate change. Studies of heat and mortality have increased during the last two 

decades, particularly with the documentation of prominent events including heat waves in 

Chicago in 1995 1 and in Western Europe in 2003 2. In the heat-related mortality literature, it is 

typical to distinguish two types of heat exposures: first, increases in ambient temperatures which 

can be defined as periods of high temperatures over single days, associated with mortality, and 

second, consecutive days of high heat also known as heat wave days, where population mortality

is greater than on non-heat wave days. Many literature reviews 3-8 have examined the evidence 

for associations of mortality with elevated ambient temperatures, focusing on the variation of 

heat effect thresholds or heat slopes, as a measure of effect size 7.   

In epidemiologic studies of heat-related mortality, various subgroups have been identified as 

being more severely impacted, and are therefore defined as “vulnerable” 9,10. Vulnerability is 

often used synonymously with susceptibility, although they are sometimes used to refer to 

separate processes related to whether the impacts are from external factors or intrinsic 11. 

Vulnerability can thus be defined as “the condition of having one or more interacting causes 

already and therefore being susceptible to the effect of the other” 11 or as “a greater likelihood of 

an adverse outcome given a specific exposure, compared with the general population; including 

both host (individual) and environmental (contextual) factors” 12. Factors that mark greater 

vulnerability are modifiers of the association between an exposure and mortality, whenever the 

causal effect of the exposure of interest differs across levels of the modifying factor. Thus, there 

would be greater vulnerability in some subgroup whenever the causal effect of heat on mortality 

across two or more strata is heterogeneous.  

5



Several individual or contextual subgroup characteristics marking greater vulnerability have been

documented in the past decade of epidemiologic research. Individual vulnerability factors 

include age (elderly, children) 3,13, sex, and socio economic factors (education, ethnicity, income, 

or social isolation)4. Contextual vulnerability factors include urban design (micro heat islands, 

population density), neighborhood (or ecologic) socioeconomic and community factors, and 

material conditions (air conditioning). These subgroups have mostly been identified in studies on

the relationship between temperature, or heat waves, and mortality, using stratified analyses.  

Addressing vulnerability to heat-related mortality is a necessary step in the development of heat 

action plans 14, to orient specific actions towards sensible subgroups 15,16. The need to consider 

vulnerable populations in heat action plans and other related policies is well recognized  9,17,18. 

The international epidemiologic literature can provide insights to orient policies dictated by heat 

action plans. 

Yet, no study to date has systematically assessed the epidemiologic evidence concerning the 

characterization of vulnerable subgroups in the peer-reviewed heat-related mortality literature. 

The aim of this review is thus to systematically assess heterogeneity in the heat mortality 

associations with respect to individual and contextual population characteristics. 
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Methods 

Search Strategy

We identified peer-reviewed epidemiologic studies investigating potential heterogeneity in the 

associations between either high ambient temperature, or heat waves, and mortality, published 

between January 1980 and August 2014 in English. The search was conducted in September 

2013 with an update in January 2015.  The strategy used to conduct this review, in accordance 

with the PRISMA guidelines 19, consisted of grouping keywords representing three categories: 

heat, mortality, and vulnerability (or heterogeneity). Keywords, titles, and abstracts were 

searched in PubMed and Elsevier Embase on the Ovid SP portal and in Web of Science as well. 

No restriction was put on the geographical location. The keywords used for this review were: 

(Heat OR climate OR environmental change OR heat stress OR hot weather OR high 

temperature OR heat effect OR hot effect OR hot temperature OR extreme temperature OR 

temperature) AND (Mortality OR health OR risk OR deaths) AND (vulnerability OR modif* OR

interaction OR susceptibility OR stratification OR differ* OR hetero*), where * indicates any 

combination of subsequent letters. 

Selection of studies

First, we screened manually the abstracts of all studies selected in the literature search according 

to the following exclusion criteria: 

 Studies without estimation of an association between mortality and heat.
 Studies reporting associations between mortality and heat only for the entire population 

and not for subgroups constituting vulnerability (as described in the introduction). 
 Studies not performed on human populations. 
 Commentaries, editorials, or review articles.
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We examined remaining articles from the previous step in full. In this second step, we further 

screened studies or assessments within studies (i.e. by vulnerability subgroups) based on the 

following exclusion criteria: 

 Studies or vulnerability subgroups (within a study) with either no comparison group or no

reference group. If a study assessed only one of the strata for a given vulnerability factor, 

it was not possible to assess heterogeneity, thus such estimates were not considered. For 

instance, if a study assessed the association among individuals of 65 years and older, 

without giving the corresponding association for the 0-64 years age group, this study was 

excluded.
 Studies not reporting a non-heat wave reference period (i.e. when the heat-exposure did 

not differ) were also excluded. These studies were excluded because they were not 

estimating a heat-wave effect, by comparing heat-wave days with non-heat wave days 

across different subgroups, but rather assocations across different subgroups during heat-

wave periods solely.  
 When the vulnerability subgroups considered were assessed only once in all of the final 

set of selected papers without distinguishing ambient temperature and heat-waves studies 

(e.g. body mass index in Xu et al.  20, depression in Stafoggia et al. 10, smoking in 

Madrigano et al.  21 ).   
 When subcategories of outcomes, such as cause of death or place of death, were 

considered as vulnerability factors. We excluded these subgroups as, based on the 

definition of vulnerability we use, they cannot logically modify the associations between 

heat and mortality.
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In addition, the reference sections of studies identified as described above were searched, and 

pertinent references not initially identified were thus added. Where published literature reviews 

on heat-related health effects were cited in these reference lists, we additionally searched their 

references: the reference lists of eight reviews on temperature effects in children 13,22, the elderly 3

and general population  4,5,7,8,23 were thus searched by hand.  

We separated the articles finally selected into two categories: 1) studies investigating 

associations of high ambient temperature with mortality and 2) studies investigating associations 

of heat waves with mortality. 

Data extraction 

From the selected studies, we extracted the estimates of association (e.g. RR, IRR or OR) for all 

the included subpopulations. The estimates were obtained from the published tables, figures 

(when it was possible to precisely determine the estimates of association from the published 

material), through text descriptions, supplemental material, and when accessible from the 

original data. When different lag effects were presented, we systematically used estimates of 

association between heat and mortality for the shortest lag effects presented. We then 

documented the location of the studies, their time period, study design, the temperature exposure 

variable and the following vulnerability factors (see details in supplemental material: Table 1S): 

i) sex; ii) age: elderly and children; iii) individual and ecological socioeconomic status; iv) urban

design and housing: intra-urban heat variations, air conditioning, and population density; v) 

marital status.  
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Heterogeneity assessment using the Cochran Q test

To assess whether there was a heterogeneous association with high temperatures between 

subgroups, we conducted a Cochran Q test (see supplemental material: Appendix 1S for details). 

We considered the presence of heterogeneity at the 10% level of significance 24,25. When 

estimates for all groups combined were not reported, we calculated them as described in the 

supplemental material (Appendix 1S) (for example, if a study presented estimates for men and 

women without presenting the estimate for both sexes combined). When analyses were 

conducted in the same study for different cities or for different time periods (e.g. different heat 

waves), we assessed the heterogeneity between different subgroups separately; for this reason, 

the number of strata comparisons is greater than the number of studies finally included. When 

more than two strata were presented, we compared only the two extreme groups. For example, if 

the heat associations were presented by quintiles of socioeconomic status (SES), we compared 

the least deprived group (first quintile) to the most deprived group (fifth quintile). For ethnic 

groups, we only compared White persons to Black persons or to Non-White persons and we did 

not include Hispanic persons in the comparisons (as this group was only assessed in one study 

26). In one study 27, many employment status categories were presented, and we only compared 

unemployed to white collar. 

Heterogeneity assessment using a meta-analysis 

In parallel to the heterogeneity assessment described above, we conducted a meta-analysis. We 

included only high ambient temperature studies. We did not conduct a meta-analysis for heat 

wave studies since the study designs and methods were not comparable to one another. The 

minimum number of studies required to conduct a meta-analysis was fixed at 10 28,29. We 

considered sex, age (more than 65 and more than 75), and SES (individual and ecological 

definitions separately) subgroups. 
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In order to compare subgroups within selected studies, we used the natural logarithm of the ratio 

of RR values (RRR) (or analogous estimates of association) for the two compared subgroups 

(e.g. RRmen/RRwomen) as described by Altman et al. 30 or Bassler et al. 31. The formula used to 

calculate the standard errors of the ratios is presented in the Supplemental Material (Appendix 

1S). Moreover, for the studies that reported contrast definition by comparing two percentiles of 

temperature distributions, the highest percentile was always above the 95th percentile. We used 

random-effects models to account for heterogeneity between studies. To assess heterogeneity of 

the ln(RRR)s across individual studies, we used the I² statistic (I² >50% was used as a threshold) 

29,32. Publication bias was assessed with funnel plots and Egger’s regression model 33. 

Meta-regression analysis

To investigate factors associated with the magnitude of the RRR, we performed random effects 

meta-regression analyses in which the dependent variable was the ln(RRR) and independent 

variables were: study design (i.e. case-crossover or time series), continent (i.e. Europe, America, 

Asia and Australia) and contrast definition (i.e. percentage increase comparing two percentiles of

the temperature distribution or percent changes associated with degree units increases above a 

city specific threshold) for sex and age >65 years; the continent and the contrast definition for 

age >75 years; study design, continent, and contrast definition for SES. We also investigated in 

all meta-regression analysis the separate associations with the following variables: local 

temperature, using the yearly summer temperature average for single cities, and when multiple 

cities were assessed simultaneously, the average for all the cities was considered; latitude, 

creating four groups of latitude positions: i) 60 °N to 30 °N;  ii) 30 °N to equator; iii) equator to 

30 °S; iv) 30 °S to 60 °S); study period, including the median year of study period (as indicated 

in Table 1) as indicator of change of heat associations over time.
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We conducted a meta-regression for each variable separately. We estimated from these meta-

regressions the regression coefficients (betas and 95% CI), the P Value, the R2 statistic (which 

represents the proportion of between-study variance explained by the covariate), the residual I2 

(which represents after adjustment for the predictors, a measure of the percentage of the residual 

variation that is attributable to between-study heterogeneity), and the adjusted pooled RRR (and 

95% CI). 
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Results 

Selection of studies

Altogether the abstracts of 299 articles were assessed and 111 underwent in-depth review, with 

61 studies fulfilling the inclusion criteria. Figure 1 presents the inclusion and exclusion of 

studies. Among the 111 articles retained based on the first exclusion criteria with abstract 

screening, 43 studies were excluded entirely because they did not report a comparison group. 

Among them, three studies 34-36 were excluded because they used a case-only design that did not 

permit the comparison of different subgroups, and seven studies were excluded because they 

only assessed the spatial variability of heat-related mortality. Eight studies were excluded 

because they showed variation only according to cities or regions. Among the 61 remaining 

studies, seven were identified through reference searching. Two studies were excluded because it

was impossible to precisely determine the estimates of association from the published material. 

Description of selected studies

The characteristics of the included studies are presented in Table 1 and Table 2. All the studies 

were published between 1998 and 2014. Twenty-four studies were conducted in Europe, 12 in 

North America, 19 in Asia, seven in Australia, one in Africa, and two studies that assessed 

multiple regions.  

Fortyone studies retained assessed the association of high ambient temperature (Table 1) with 

mortality. Among these studies, 35 used a time-series design and six used a case-crossover 

design. Various contrast definitions between mortality and high ambient temperature were 

reported: 27 studies assessed the relationship by reporting percent changes or RR (or IRR) 

associated with degree unit increases (1°C, 3°C, 10°C, 10°F) above a city-specific threshold, and

14 reported percent increase or RR or odds ratios (OR) comparing two percentiles of temperature

distributions. 
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Twenty of the retained studies assessed the association of heat waves (Table 2) with mortality. 

The definitions were very different from one study to another 3,4 as described in Table 2. Two 

types of definition have been used: one criterion requires 2 or 3 consecutive days with a specific 

temperature threshold, whereas the other criterion is based on single days above a temperature 

threshold.   Among these studies, ten used a descriptive design in which observed mortality rates 

during heat-wave days were compared to mortality rates during non-heat-wave days across 

different subgroups.  Seven studies used a time-series design, and three used a case-crossover 

design (see Table 2). Various contrast definitions between mortality and heat waves were 

reported. Seven studies reported this relationship by a percent increase on heat wave days 

compared to non-heat-wave days, and 13 with RR, IRR or excess mortality rates for heat-wave 

days compared with non-heat-wave days. 

Heterogeneity findings 

We systematically compared all the included subgroup estimates of association between heat and

mortality, separately for high ambient temperature (Table 3) and for heat wave studies (Table 4). 

A description of the stratified estimates included in the review is presented in supplemental Table

6S for high ambient temperature studies and Table 7S for heat-waves studies. For studies of the 

association between high ambient temperature and mortality, we consistently found evidence of 

vulnerability for one subgroup: populations living in areas characterized by a low percentage of 

households having central air conditioning. For studies on the association between heat waves 

and mortality, we consistently found evidence of vulnerability for the following three subgroups: 

elderly persons above 85 years of age, populations living in hot places, and individuals who were

not married (used as a proxy for social isolation 37). Heterogeneity was not always found for 

other subgroups studied, such as SES subgroups or children. 
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Nonetheless when heterogeneity was found from studies on the association between temperature 

and mortality, the following subgroups were always identified as vulnerable: elderly persons by 

every age cut-point examined,  low individual SES groups, populations living in high density 

areas, and unmarried individuals. The comparison of heterogeneity findings between high 

ambient temperature and heat waves studies is presented in Supplemental Table 2S. 

Meta-analysis results 

We conducted meta-analyses of the ln(RRR) for sex, age (more than 65 and more than 75 years) 

and SES (individual and ecologic separately) only on studies of high ambient temperature. We 

found that the pooled RRR for male sex was 0.99 (95% CI: 0.97, 1.01) (Figure 2). We found that

the pooled ratio of RRs for individuals aged > 65 years, compared to adults aged between 15 and

64 years was 1.02 (95% CI: 1.01, 1.03) (Figure 3), and that the pooled ratio of RRs for those 

aged >75 years, compared to adults aged between 15 and 74 years  was 1.04 (95% CI: 1.02, 

1.07) (Figure 4). For SES measured at the individual level, we found that the pooled RRR for 

low SES compared to high SES groups was 1.03 (95% CI: 1.01, 1.05) (Figure 5). For SES 

measured at the ecologic level, we found that the pooled RRR for low SES compared to high 

SES groups was 1.01 (95% CI: 0.99, 1.02) (Figure 6). Evidence of bias (assessed with Egger’s 

test) was apparent for studies that assessed sex and age > 75 years as vulnerable factors, but not 

for age > 65 years and SES (see Supplemental Figures 1S to 4S). 

Meta-regression results

The large heterogeneity (all I2 > 50%) found in the pooled RRR suggests the existence of study 

characteristics influencing this variability. We conducted meta-regression analyses to assess the 

influence of different study characteristics on meta-analysis heterogeneity. 
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Of the study characteristics assessed for articles exploring age > 75 years, only the contrast 

definition was a significant factor in explaining heterogeneity in the pooled RRR, such that the 

use of a percentage increase comparing two percentiles of the temperature distribution was 

associated with a higher vulnerability for the elderly. This suggests that when studies used a 

percentage increase as the contrast definition they were more likely to find vulnerability 

differences by age as compared to using the comparison of two percentiles of the temperature 

distribution. For individual SES studies, contrast definition was also related to the heterogeneity 

in the pooled RRR. Similarly to older age, the use of a percentage increase as the contrast was 

associated with higher vulnerability for low individual SES groups. Finally, we did not find that 

local temperature, latitude or study period were related to the heterogeneity in the pooled RRR in

any of  the meta-regression conducted (see Tables 5, 6; see supplemental material for sex, aged >

65 years and aged > 75 years). The pooled estimate for the ratios for age > 75 years vs. younger 

age groups, adjusted for the contrast definition, was 1.11 (95% CI: 1.05, 1.17). The pooled ratio 

for low vs. high SES measured at the individual level, adjusted for measures of associations, was

1.05 (95% CI: 1.03, 1.07). It is interesting to note that for individual SES, adjustment for the 

contrast definition decreased the I2 to 50%, which we define as a low degree of heterogeneity in 

the pooled RRR. The meta-regression results for individual SES and ecologic SES are 

respectively presented in Tables 5 and 6 and other meta-regression results for sex, age > 65 years

and > 75 years are presented in Supplemental Tables 3S to 5S. 
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Discussion 

Summary of results 

In this systematic review we assessed the published evidence supporting the presence of 

subgroups vulnerable to heat-related mortality. Using Cochran’s Q test we found evidence of 

particular vulnerability for the most elderly and for populations living in areas characterized by a

low percentage of households having central air conditioning. Vulnerability was also noted, in 

heat wave studies, for populations living in hot places and for unmarried people, and in high 

ambient temperature studies, for people living in areas with a low percentage of households with 

central air conditioning, although very few assessments were available. On the other hand, 

results of the meta-analyses, focusing on high ambient temperature studies only, showed that 

elderly persons 65+ and 75+ and low individual SES groups  were more vulnerable than their 

respective counterparts using the pooled estimate (RRR). 

Comparison of the results with current knowledge 

The results of the present study can be compared to factors of vulnerability reported in various 

institutional guidelines, aimed at informing interventions for the prevention of heat-related 

mortality such as the WHO heat action plan 38,39. Heat action plans include heat warning systems 

during heat waves, plans for emergency measures, as well as actions aimed at reducing high 

ambient temperatures over the long term (e.g. greening activities). 

In the European WHO heat health action plan 38, the vulnerable subgroups identified are the 

elderly, infants, and children, people with chronic diseases, people taking particular medications, 

people with low SES, and people in specific occupations. The identification of elderly people 

and those from low SES subgroups as being of particular vulnerability is concordant with our 

results. 
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Lowe et al.40 , in assessing the content of 12 European heat health action plans, also reported that 

in 11 out of 12 plans, the elderly, children, the chronically ill, and those on medication were 

considered vulnerable subgroups. Thus, it appears that some subgroups identified as vulnerable 

in both the heat action plans and in guidelines for planning were not assessed, or not reported as 

having heterogeneous associations with mortality, in the present study. Other reviews addressed 

heat-related vulnerability. Bouchama et al. 41 conducted a meta-analysis of 6 case-control studies 

on heat wave-related mortality, and found that both not leaving home daily and having a pre-

existing illness were associated with higher risk, while greater social contact and having air 

conditioning were protective. 

Limitations of the review 

This review has some limitations. First, we excluded a number of studies because the statistical 

heterogeneity test could not be performed. 

In epidemiologic studies addressing inequalities in the health effects of heat, such as those 

included in this review, the relative scale (e.g. risk ratio, incidence rate ratio, odds ratio...) is most

often used and the absolute scale (e.g. risk difference, incidence rate difference ...) is generally 

ignored 42. However, baseline risks can differ considerably across different subgroups, as for 

elderly compared to younger adults. Using absolute measures when addressing vulnerabilities 

reflects not only differences in health impacts across different subgroups, but can be a more 

useful public health strategy, as risk difference corresponds directly to attributable cases 43,44. 

Moreover, absolute measures will often highlight different patterns of inequalities between 

subgroups than relative measures 43,45. 

We conducted meta-analyses only for high ambient temperature studies to minimize the 

differences between study designs and methods of analysis. 
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Still, we found considerable heterogeneity between studies (all I2 > 50%), which makes 

complicates the interpretation of a single summary estimate 28,46. Hence, we conducted meta-

regression analyses to investigate factors associated with the magnitude of the RRR, and found 

that only the inclusion of contrast definition reduced the I2 estimate to 50% for the individual 

SES meta-analysis. However, other study-related factors that were not assessed in this review, 

such as population age and sex structures, presence of local heat action plans or population’s 

resilience facing hot temperatures 7, could explain some of the residual heterogeneity. We also 

did not assess the influence of lag effects on modification effects. Yet, mortality displacement 

could be heterogeneous because of subgroups in different populations. Further studies may 

address this matter. Finally, it is worth noting that in addition to the previous factors that can 

affect heterogeneity between studies, the differences between two subgroups within a study’s 

population can impact heterogeneity between studies as well. For instance, the magnitude of 

socio-economic inequalities can differ widely between two cities over the world, so that the 

comparison of the lowest to highest groups can reflect completely different degrees of disparity. 

We assessed socioeconomic vulnerability to heat, considering together income, education, 

immigration status, deprivation composite indexes, and other ecologic or individual 

characteristics, assuming that they represent the comparable measures of social hierarchy. 

However, the various individual and/or ecologic socioeconomic measures may not represent the 

same social dimension 47-50. For example, education may influence the understanding of 

preventive messages, while income may limit access to air conditioning. 

We considered vulnerability factors independently as assessed in the majority of the studies since

many of the factors considered are highly correlated. Yet, when assessing vulnerability according

to sex, for example, it is possible that sex differences in age distribution could explain some of 

this heterogeneity. 
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Finally, as many vulnerability definitions exist, the one adopted in our study could be disputed 

51,52. We chose an epidemiologic definition (i.e. effect measure modification) to identify factors of

vulnerability to heat, but vulnerability can encompass other dimensions beyond this definition, 

such as the notion of social trajectory 52. Also, in the literature reviewed in this paper, 

vulnerability factors were considered separately, but it is reasonable to think that several 

modifying factors might interact synergistically in the heat-related mortality relationship.  

Recommendations for studies on the relationship between heat and death 

We noted some limitations in the selected studies of our review, so here we present 

recommendations to guide further research on heat-related mortality vulnerability. As noted 

above, the absolute scale is rarely used in this context; therefore we encourage integrating risk 

differences in case-crossover designs for example. To do so, we recommend that future studies 

estimate risk differences directly from logistic regressions.  The use of novel inequality measures

in time-series analyses is also encouraged, such as use of the Index of Disparity 53, or simple 

measurement of differences in daily death counts between two subgroups as outcomes 45,54.

We excluded both cause of death and place of death as modifying factors as they are 

subcategories of the mortality outcome. In the studies reviewed, causes of death for instance 

were used as proxies for existing cardiovascular or respiratory diseases. We argue that this is an 

inappropriate proxy as these factors are themselves due to heat (i.e. stratification for factors 

affected by exposure). Even if association estimates across these strata are observed to be 

heterogeneous, they do not constitute a modifying factor in the same sense. This point should be 

further explored using appropriately designed studies with prospective data, in which the 

diagnosis of a pre-existing illness is used, as was undertaken in a recent paper on elderly persons 

55. 
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Some effect modifiers were difficult to assess in the present study due to the lack of published 

examples. These include marital status or living in hot places (e.g. micro heat islands), and could 

be addressed in the future studies. 

We found that contrast definition can influence the heterogeneity between studies. Further 

studies may assess effect modification using different contrast definitions, as sensitivity analyses.

The causal pathways linking vulnerability factors (i.e. modifying factors) are complex and need 

further consideration. More effort is needed toward the inclusion of causal inference methods to 

properly consider the role of measured individual or contextual determinants in the heat-related 

mortality studies, and their synergic influence. Using directed acyclic graphs can be useful for 

identifying inappropriate practices in causal structures investigating vulnerable subgroups to 

heat-related mortality 56,57, as illustrated with respect to confounding in two recent papers 58,59. 

Methodologic developments are also required since the distinction between individual and 

contextual factors remains unclear, and methods used to date do not permit one to elucidate the 

association of place characteristics with individual outcomes while accounting for non-

independence of observations 60,61. 

Conclusions

While the link between excess heat and mortality is well established, the needed fundamental 

evidence on heat-vulnerable subgroups remains incomplete. Knowledge about vulnerable 

subgroups is essential for the success of public health programs 15,16,62, and is necessary for the 

application of blended intervention strategies, such as proportionate universalism and targeting 

within universalism 63,64. Where specific interventions are planned to reduce health impacts in 

vulnerable populations or territories, such as adapted campaigns or urban modifications, 

misclassification of vulnerability status may challenge intervention effectiveness and 

implementation success. 21
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Figure Legends

Figure 1: Flowchart outlining study selection. NB: 2 studies 89, 100 investigated both ambient 
temperature and heat waves. 

Figure 2: Meta-analysis of the ratio of the RRs according to sex (RRmen/RRwomen); ES: Effect 
Size; n=39 studies  

Figure 3: Meta-analysis of the ratio of the RRs according to age 65+ (individuals aged > 65 
years, compared to adults aged between 15 and 64 years) (RR65+/RR15-64); ES: Effect Size; 
n=39 studies     

Figure 4: Meta-analysis of the ratio of the RRs according to age 75+ (individuals aged > 75 
years, compared to adults aged between 15 and 74 years) (RR75+/RR15-74); ES: Effect Size; 
n=13 studies    

Figure 5: Meta-analysis of the ratio of the RRs according to individual SES 
(RRlowSES/RRhighSES); ES: Effect Size; n=15 studies

Figure 6: Meta-analysis of the ratio of the RRs according to ecologic SES (RRlowSES/RRhighSES);
ES: Effect Size; n=12 studies
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