T. Le, A. Yap, and J. Stow, Recycling of E-Cadherin, The Journal of Cell Biology, vol.95, issue.1, pp.219-232, 1999.
DOI : 10.1083/jcb.144.2.351

A. Classen, K. Anderson, E. Marois, and S. Eaton, Hexagonal Packing of Drosophila Wing Epithelial Cells by the Planar Cell Polarity Pathway, Developmental Cell, vol.9, issue.6, pp.805-817, 2005.
DOI : 10.1016/j.devcel.2005.10.016

K. Harris and U. Tepass, neuroectoderm through regulation of apical endocytosis, The Journal of Cell Biology, vol.129, issue.6, pp.1129-1143, 2008.
DOI : 10.1534/genetics.106.066761

D. Shaye, J. Casanova, and M. Llimargas, Modulation of intracellular trafficking regulates cell intercalation in the Drosophila trachea, Nature Cell Biology, vol.46, issue.8, pp.964-970, 2008.
DOI : 10.1242/dev.02482

R. Levayer, A. Pelissier-monier, and T. Lecuit, Spatial regulation of Dia and Myosin-II by RhoGEF2 controls initiation of E-cadherin endocytosis during epithelial morphogenesis, Nature Cell Biology, vol.4, issue.3, pp.529-540, 2011.
DOI : 10.1038/ncb2224

H. Oda, T. Uemura, and M. Takeichi, Phenotypic analysis of null mutants for DE-cadherin and Armadillo in Drosophila ovaries reveals distinct aspects of their functions in cell adhesion and cytoskeletal organization. Genes to cells : devoted to molecular & cellular mechanisms, pp.29-40, 1997.

P. Niewiadomska, D. Godt, and U. Tepass, Oogenesis, The Journal of Cell Biology, vol.11, issue.3, pp.533-547, 1999.
DOI : 10.1101/gad.7.1.29

X. Song, C. Zhu, C. Doan, and T. Xie, Germline Stem Cells Anchored by Adherens Junctions in the Drosophila Ovary Niches, Science, vol.296, issue.5574, pp.1855-1857, 2002.
DOI : 10.1126/science.1069871

K. Haglund, I. Nezis, and H. Stenmark, Structure and functions of stable intercellular bridges formed by incomplete cytokinesis during development, Communicative & Integrative Biology, vol.153, issue.1, pp.1-9, 2011.
DOI : 10.4161/cib.13550

P. Mclean and L. Cooley, Protein Equilibration Through Somatic Ring Canals in Drosophila, Science, vol.340, issue.6139, pp.1445-1447, 2013.
DOI : 10.1126/science.1234887

R. Warn, H. Gutzeit, L. Smith, and A. Warn, F-actin rings are associated with the ring canals of the Drosophila egg chamber, Experimental Cell Research, vol.157, issue.2, pp.355-363, 1985.
DOI : 10.1016/0014-4827(85)90120-X

A. Mahowald, The formation of ring canals by cell furrows in Drosophila, Zeitschrift f???r Zellforschung und Mikroskopische Anatomie, vol.29, issue.2, pp.162-167, 1971.
DOI : 10.1007/BF00341561

D. Robinson, K. Cant, and L. Cooley, Morphogenesis of Drosophila ovarian ring canals, Development, vol.120, issue.7, pp.2015-2025, 1994.

R. Kelso, A. Hudson, and L. Cooley, Kelch regulates actin organization via Src64-dependent tyrosine phosphorylation, The Journal of Cell Biology, vol.125, issue.4, pp.703-713, 2002.
DOI : 10.1074/jbc.C100418200

L. Yue and A. Spradling, hu-li tai shao, a gene required for ring canal formation during Drosophila oogenesis, encodes a homolog of adducin., Genes & Development, vol.6, issue.12b, pp.2443-2454, 1992.
DOI : 10.1101/gad.6.12b.2443

N. Sokol and L. Cooley, Drosophila Filamin encoded by the cheerio locus is a component of ovarian ring canals, Current Biology, vol.9, issue.21, pp.1221-1230, 1999.
DOI : 10.1016/S0960-9822(99)80502-8

C. Field and B. Alberts, Anillin, a contractile ring protein that cycles from the nucleus to the cell cortex, The Journal of Cell Biology, vol.131, issue.1, pp.165-178, 1995.
DOI : 10.1083/jcb.131.1.165

J. Coutelis and A. Ephrussi, Rab6 mediates membrane organization and determinant localization during Drosophila oogenesis, Development, vol.134, issue.7, pp.1419-1430, 2007.
DOI : 10.1242/dev.02821

URL : http://dev.biologists.org/cgi/content/short/134/7/1419

T. Vaccari, Comparative analysis of ESCRT-I, ESCRT-II and ESCRT-III function in Drosophila by efficient isolation of ESCRT mutants, Journal of Cell Science, vol.122, issue.14, pp.2413-2423, 2009.
DOI : 10.1242/jcs.046391

M. Murthy, Sec6 mutations and the Drosophila exocyst complex, Journal of Cell Science, vol.118, issue.6, pp.1139-1150, 2005.
DOI : 10.1242/jcs.01644

URL : http://jcs.biologists.org/cgi/content/short/118/6/1139

M. Murthy and T. Schwarz, The exocyst component Sec5 is required for membrane traffic and polarity in the Drosophila ovary, Development, vol.131, issue.2, pp.377-388, 2004.
DOI : 10.1242/dev.00931

J. Januschke, Rab6 and the secretory pathway affect oocyte polarity in Drosophila, Development, vol.134, issue.19, pp.3419-3425, 2007.
DOI : 10.1242/dev.008078

URL : https://hal.archives-ouvertes.fr/hal-00180841

J. Tan, K. Oh, J. Burgess, D. Hipfner, and J. Brill, PI4KIII?? is required for cortical integrity and cell polarity during Drosophila oogenesis, Journal of Cell Science, vol.127, issue.5, pp.954-966, 2014.
DOI : 10.1242/jcs.129031

N. Bogard, L. Lan, J. Xu, and R. Cohen, Rab11 maintains connections between germline stem cells and niche cells in the Drosophila ovary, Development, vol.134, issue.19, pp.3413-3418, 2007.
DOI : 10.1242/dev.008466

J. Bonifacino, Adaptor proteins involved in polarized sorting, The Journal of Cell Biology, vol.4, issue.1, pp.7-17, 2014.
DOI : 10.1074/jbc.274.9.5385

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3882786

E. Nicolas, N. Chenouard, J. Olivo-marin, and A. Guichet, A Dual Role for Actin and Microtubule Cytoskeleton in the Transport of Golgi Units from the Nurse Cells to the Oocyte Across Ring Canals, Molecular Biology of the Cell, vol.20, issue.1, pp.556-568, 2009.
DOI : 10.1091/mbc.E08-04-0360

URL : https://hal.archives-ouvertes.fr/hal-00339162

W. Romer, Shiga toxin induces tubular membrane invaginations for its uptake into cells, Nature, vol.328, issue.7170, pp.670-675, 2007.
DOI : 10.1038/nature05996

URL : https://hal.archives-ouvertes.fr/hal-00323875

J. Manneville, COPI coat assembly occurs on liquid-disordered domains and the associated membrane deformations are limited by membrane tension, Proceedings of the National Academy of Sciences, vol.105, issue.44, pp.16946-16951, 2008.
DOI : 10.1073/pnas.0807102105

URL : https://hal.archives-ouvertes.fr/hal-00339180

A. Diz-munoz, D. Fletcher, and O. Weiner, Use the force: membrane tension as an organizer of cell shape and motility, Trends in Cell Biology, vol.23, issue.2, pp.47-53, 2013.
DOI : 10.1016/j.tcb.2012.09.006

J. Huang, W. Zhou, W. Dong, A. Watson, and Y. Hong, Directed, efficient, and versatile modifications of the Drosophila genome by genomic engineering, Proceedings of the National Academy of Sciences, vol.106, issue.20, pp.8284-8289, 2009.
DOI : 10.1073/pnas.0900641106

C. Delevoye, AP-1 and KIF13A coordinate endosomal sorting and positioning during melanosome biogenesis, The Journal of Cell Biology, vol.95, issue.2, pp.247-264, 2009.
DOI : 10.1083/jcb.200907122.dv

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2768840

M. Schmidt, Regulation of endosomal membrane traffic by a Gadkin/AP-1/kinesin KIF5 complex, Proceedings of the National Academy of Sciences, vol.106, issue.36, pp.15344-15349, 2009.
DOI : 10.1073/pnas.0904268106

J. Lock and J. Stow, Rab11 in Recycling Endosomes Regulates the Sorting and Basolateral Transport of E-Cadherin, Molecular Biology of the Cell, vol.16, issue.4, pp.1744-1755, 2005.
DOI : 10.1091/mbc.E04-10-0867

K. Ling, Type I?? phosphatidylinositol phosphate kinase modulates adherens junction and E-cadherin trafficking via a direct interaction with ??1B adaptin, The Journal of Cell Biology, vol.4, issue.3, pp.343-353, 2007.
DOI : 10.1146/annurev.cellbio.13.1.119

M. Desclozeaux, Active Rab11 and functional recycling endosome are required for E-cadherin trafficking and lumen formation during epithelial morphogenesis, AJP: Cell Physiology, vol.295, issue.2, pp.545-556, 2008.
DOI : 10.1152/ajpcell.00097.2008

M. Ren, Hydrolysis of GTP on rab11 is required for the direct delivery of transferrin from the pericentriolar recycling compartment to the cell surface but not from sorting endosomes, Proceedings of the National Academy of Sciences, vol.95, issue.11, pp.6187-6192, 1998.
DOI : 10.1073/pnas.95.11.6187

M. Peifer, S. Orsulic, D. Sweeton, and E. Wieschaus, A role for the Drosophila segment polarity gene armadillo in cell adhesion and cytoskeletal integrity during oogenesis, Development, vol.118, issue.4, pp.1191-1207, 1993.

D. Godt and U. Tepass, Drosophila oocyte localization is mediated by differential cadherinbased adhesion, Nature, vol.395, issue.6700, pp.387-391, 1998.
DOI : 10.1038/26493

M. Grammont, oogenesis, The Journal of Cell Biology, vol.113, issue.1, pp.139-150, 2007.
DOI : 10.1083/jcb.146.5.1075

URL : https://hal.archives-ouvertes.fr/hal-00330489

W. Denk and H. Horstmann, Serial Block-Face Scanning Electron Microscopy to Reconstruct Three-Dimensional Tissue Nanostructure, PLoS Biology, vol.314, issue.11, p.329, 2004.
DOI : 10.1371/journal.pbio.0020329.s002

URL : http://doi.org/10.1371/journal.pbio.0020329

G. Wahlstrom, V. Lahti, J. Pispa, C. Roos, and T. Heino, Drosophila non-muscle ??-actinin is localized in nurse cell actin bundles and ring canals, but is not required for fertility, Mechanisms of Development, vol.121, issue.11, pp.1377-1391, 2004.
DOI : 10.1016/j.mod.2004.06.004

J. Gates, Enabled and Capping protein play important roles in shaping cell behavior during Drosophila oogenesis, Developmental Biology, vol.333, issue.1, pp.90-107, 2009.
DOI : 10.1016/j.ydbio.2009.06.030

K. Hase, AP-1B???Mediated Protein Sorting Regulates Polarity and Proliferation of Intestinal Epithelial Cells in Mice, Gastroenterology, vol.145, issue.3, 2013.
DOI : 10.1053/j.gastro.2013.05.013

G. Gillard, Control of E-cadherin apical localisation and morphogenesis by a SOAP-1/AP-1/clathrin pathway in C. elegans epidermal cells, Development, vol.142, issue.9, pp.1684-1694, 2015.
DOI : 10.1242/dev.118216

URL : https://hal.archives-ouvertes.fr/hal-01141743

J. Langevin, Drosophila Exocyst Components Sec5, Sec6, and Sec15 Regulate DE-Cadherin Trafficking from Recycling Endosomes to the Plasma Membrane, Developmental Cell, vol.9, issue.3, pp.365-376, 2005.
DOI : 10.1016/j.devcel.2005.07.013

C. Tong, Rich Regulates Target Specificity of Photoreceptor Cells and N-Cadherin Trafficking in the Drosophila Visual System via Rab6, Neuron, vol.71, issue.3, pp.447-459, 2011.
DOI : 10.1016/j.neuron.2011.06.040

K. Schlichting, M. Wilsch-brauninger, F. Demontis, and C. Dahmann, Cadherin Cad99C is required for normal microvilli morphology in Drosophila follicle cells, Journal of Cell Science, vol.119, issue.6, pp.1184-1195, 2006.
DOI : 10.1242/jcs.02831

S. Crawley, Intestinal Brush Border Assembly Driven by Protocadherin-Based Intermicrovillar Adhesion, Cell, vol.157, issue.2, pp.433-446, 2014.
DOI : 10.1016/j.cell.2014.01.067

C. Glowinski, R. Liu, X. Chen, A. Darabie, and D. Godt, Myosin VIIA regulates microvillus morphogenesis and interacts with cadherin Cad99C in Drosophila oogenesis, Journal of Cell Science, vol.127, issue.22, pp.4821-4832, 2014.
DOI : 10.1242/jcs.099242

S. Huelsmann, J. Ylanne, and N. Brown, Filopodia-like Actin Cables Position Nuclei in Association with Perinuclear Actin in Drosophila Nurse Cells, Developmental Cell, vol.26, issue.6, pp.604-615, 2013.
DOI : 10.1016/j.devcel.2013.08.014

S. Kuphal, I. Poser, C. Jobin, C. Hellerbrand, and A. Bosserhoff, Loss of E-cadherin leads to upregulation of NF??B activity in malignant melanoma, Oncogene, vol.23, issue.52, pp.8509-8519, 2004.
DOI : 10.1038/sj.onc.1207831

K. Hawkins, L. Mohamet, S. Ritson, C. Merry, and C. Ward, E-cadherin and, in Its Absence, N-cadherin Promotes Nanog Expression in Mouse Embryonic Stem Cells via STAT3 Phosphorylation, STEM CELLS, vol.453, issue.9, pp.1842-1851, 2012.
DOI : 10.1002/stem.1148

N. Benhra, AP-1 Controls the Trafficking of Notch and Sanpodo toward E-Cadherin Junctions in Sensory Organ Precursors, Current Biology, vol.21, issue.1, pp.87-95, 2011.
DOI : 10.1016/j.cub.2010.12.010

URL : https://hal.archives-ouvertes.fr/inserm-00554412

C. Polesello, I. Delon, P. Valenti, P. Ferrer, and F. Payre, Dmoesin controls actin-based cell shape and polarity during Drosophila melanogaster oogenesis, Nature Cell Biology, vol.4, issue.10, pp.782-789, 2002.
DOI : 10.1038/ncb856

M. Prasad, A. Jang, M. Starz-gaiano, M. Melani, and D. Montell, A protocol for culturing Drosophila melanogaster stage 9 egg chambers for live imaging, Nature Protocols, vol.125, issue.10, pp.2467-2473, 2007.
DOI : 10.1038/nprot.2007.363

T. Starborg, Using transmission electron microscopy and 3View to determine collagen fibril size and three-dimensional organization, Nature Protocols, vol.268, issue.7, pp.1433-1448, 2013.
DOI : 10.2353/ajpath.2009.090380

URL : https://www.escholar.manchester.ac.uk/api/datastream?publicationPid=uk-ac-man-scw:202601&datastreamId=POST-PEER-REVIEW-NON-PUBLISHERS.PDF

I. Kolotuev, Positional Correlative Anatomy of Invertebrate Model Organisms Increases Efficiency of TEM Data Production, Microscopy and Microanalysis, vol.127, issue.05, pp.1392-1403, 2013.
DOI : 10.1111/j.1600-0854.2012.01363.x

S. Claret, J. Jouette, B. Benoit, K. Legent, and A. Guichet, PI(4,5)P2 Produced by the PI4P5K SKTL Controls Apical Size by Tethering PAR-3 in Drosophila Epithelial Cells, Current Biology, vol.24, issue.10, pp.1071-1079, 2014.
DOI : 10.1016/j.cub.2014.03.056

URL : https://hal.archives-ouvertes.fr/hal-00995091

K. Hayashi, S. Yonemura, T. Matsui, and S. Tsukita, Immunofluorescence detection of ezrin/radixin/moesin (ERM) proteins with their carboxyl-terminal threonine phosphorylated in cultured cells and tissues, Journal of cell science, vol.112, pp.1149-1158, 1999.