A. C. Amaro, C. P. Samora, R. Holtackers, E. Wang, I. J. Kingston et al., Molecular control of kinetochore-microtubule dynamics and chromosome oscillations, Nature Cell Biology, vol.11, issue.4, pp.319-348, 2010.
DOI : 10.1038/ncb2033

S. Cai, C. B. O-'connell, A. Khodjakov, and C. E. Walczak, Chromosome congression in the absence of kinetochore fibres, Nature Cell Biology, vol.61, issue.7, pp.832-840, 2009.
DOI : 10.1038/ncb1890

G. Civelekoglu-scholey and D. Cimini, Modelling chromosome dynamics in mitosis: a historical perspective on models of metaphase and anaphase in eukaryotic cells, Interface Focus, vol.17, issue.16, 2014.
DOI : 10.1016/j.cub.2007.07.058

G. Civelekoglu-scholey, B. He, M. Shen, X. Wan, E. Roscioli et al., Dynamic bonds and polar ejection force distribution explain kinetochore oscillations in PtK1 cells, The Journal of Cell Biology, vol.1786, issue.4, pp.577-93, 2013.
DOI : 10.1103/PhysRevE.84.062902

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3653364

G. Civelekoglu-scholey, D. J. Sharp, A. Mogilner, and J. M. Scholey, Model of Chromosome Motility in Drosophila Embryos: Adaptation of a General Mechanism for Rapid Mitosis, Biophysical Journal, vol.90, issue.11, pp.3966-82, 2006.
DOI : 10.1529/biophysj.105.078691

T. Courtheoux, G. Gay, Y. Gachet, and S. Tournier, Ase1/Prc1-dependent spindle elongation corrects merotely during anaphase in fission yeast, The Journal of Cell Biology, vol.148, issue.3, pp.399-412, 2009.
DOI : 10.1083/jcb.200902093.dv

A. Desai, P. S. Maddox, T. J. Mitchison, and E. D. Salmon, Extract Spindles, The Journal of Cell Biology, vol.107, issue.3, pp.703-716, 1998.
DOI : 10.1083/jcb.131.3.721

R. Ding, K. L. Mcdonald, and J. R. Mcintosh, Three-dimensional reconstruction and analysis of mitotic spindles from the yeast, Schizosaccharomyces pombe, The Journal of Cell Biology, vol.120, issue.1, pp.141-51, 1993.
DOI : 10.1083/jcb.120.1.141

S. Dumont and T. J. Mitchison, Compression Regulates Mitotic Spindle Length by a Mechanochemical Switch at the Poles, Current Biology, vol.19, issue.13, pp.1086-95, 2009.
DOI : 10.1016/j.cub.2009.05.056

A. Edelstein, N. Amodaj, K. Hoover, R. Vale, and N. Stuurman, Computer control of microscopes using microManager, Curr Protoc Mol Biol Chapter, vol.14, issue.20, 2010.

D. Foethke, T. Makushok, D. Brunner, and F. Nedelec, Force-and lengthdependent catastrophe activities explain interphase microtubule organization in fission yeast, Mol Syst Biol, vol.5, p.241, 2009.
DOI : 10.1038/msb.2008.76

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2671915

H. Funabiki and A. W. Murray, The Xenopus Chromokinesin Xkid Is Essential for Metaphase Chromosome Alignment and Must Be Degraded to Allow Anaphase Chromosome Movement, Cell, vol.102, issue.4, pp.411-435, 2000.
DOI : 10.1016/S0092-8674(00)00047-7

Y. Gachet, C. Reyes, T. Courtheoux, S. Goldstone, G. Gay et al., Sister Kinetochore Recapture in Fission Yeast Occurs by Two Distinct Mechanisms, Both Requiring Dam1 and Klp2, Molecular Biology of the Cell, vol.19, issue.4, pp.1646-62, 2008.
DOI : 10.1091/mbc.E07-09-0910

URL : https://hal.archives-ouvertes.fr/hal-00318596

M. A. Garcia, N. Koonrugsa, and T. Toda, Spindle???kinetochore attachment requires the combined action of Kin I-like Klp5/6 and Alp14/Dis1-MAPs in fission yeast, The EMBO Journal, vol.115, issue.22, pp.6015-6039, 2002.
DOI : 10.1093/emboj/cdf611

M. A. Garcia, N. Koonrugsa, and T. Toda, Two Kinesin-like Kin I Family Proteins in Fission Yeast Regulate the Establishment of Metaphase and the Onset of Anaphase A, Current Biology, vol.12, issue.8, pp.610-631, 2002.
DOI : 10.1016/S0960-9822(02)00761-3

M. K. Gardner, C. G. Pearson, B. L. Sprague, T. R. Zarzar, K. Bloom et al., Tension-dependent Regulation of Microtubule Dynamics at Kinetochores Can Explain Metaphase Congression in Yeast, Molecular Biology of the Cell, vol.16, issue.8, pp.3764-75, 2005.
DOI : 10.1091/mbc.E05-04-0275

G. Gay, T. Courtheoux, C. Reyes, S. Tournier, and Y. Gachet, A stochastic model of kinetochore???microtubule attachment accurately describes fission yeast chromosome segregation, The Journal of Cell Biology, vol.53, issue.6, pp.757-74, 2012.
DOI : 10.1093/emboj/cdg222

M. L. Gupta, . Jr, P. Carvalho, D. M. Roof, and D. Pellman, Plus end-specific depolymerase activity of Kip3, a kinesin-8 protein, explains its role in positioning the yeast mitotic spindle, Nature Cell Biology, vol.269, issue.9, pp.913-936, 2006.
DOI : 10.1083/JCB.145.5.993

A. E. Ikui, K. Furuya, M. Yanagida, and T. Matsumoto, Control of localization of a spindle checkpoint protein, Mad2, in fission yeast, J Cell Sci, vol.115, pp.1603-1613, 2002.

K. Jaqaman, E. M. King, A. C. Amaro, J. R. Winter, J. F. Dorn et al., Kinetochore alignment within the metaphase plate is regulated by centromere stiffness and microtubule depolymerases, The Journal of Cell Biology, vol.89, issue.5, pp.665-79, 2010.
DOI : 10.1083/jcb.200909005.dv

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2835940

A. P. Joglekar, K. S. Bloom, and E. D. Salmon, Mechanisms of force generation by end-on kinetochore-microtubule attachments, Current Opinion in Cell Biology, vol.22, issue.1, pp.57-67, 2010.
DOI : 10.1016/j.ceb.2009.12.010

A. P. Joglekar and A. J. Hunt, A Simple, Mechanistic Model for Directional Instability during Mitotic Chromosome Movements, Biophysical Journal, vol.83, issue.1, pp.42-58, 2002.
DOI : 10.1016/S0006-3495(02)75148-5

URL : http://doi.org/10.1016/s0006-3495(02)75148-5

T. M. Kapoor, M. A. Lampson, P. Hergert, L. Cameron, D. Cimini et al., Chromosomes Can Congress to the Metaphase Plate Before Biorientation, Science, vol.311, issue.5759, pp.388-91, 2006.
DOI : 10.1126/science.1122142

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4768465

T. S. Kitajima, M. Ohsugi, and J. Ellenberg, Complete Kinetochore Tracking Reveals Error-Prone Homologous Chromosome Biorientation in Mammalian Oocytes, Cell, vol.146, issue.4, pp.568-81, 2011.
DOI : 10.1016/j.cell.2011.07.031

URL : http://doi.org/10.1016/j.cell.2011.07.031

G. J. Kops, A. T. Saurin, and P. Meraldi, Finding the middle ground: how kinetochores power chromosome congression, Cellular and Molecular Life Sciences, vol.104, issue.Pt 4, pp.2145-61, 2010.
DOI : 10.1007/s00018-010-0321-y

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2883098

J. R. Manuscript-lafountain, . Jr, R. Oldenbourg, R. W. Cole, and C. L. Rieder, Microtubule Flux Mediates Poleward Motion of Acentric Chromosome Fragments during Meiosis in Insect Spermatocytes, Molecular Biology of the Cell, vol.12, issue.12, pp.4054-65, 2001.
DOI : 10.1091/mbc.12.12.4054

J. R. Mcintosh, Motors or dynamics: What really moves chromosomes?, Nature Cell Biology, vol.14, issue.12, 1234.
DOI : 10.1038/ncb2649

T. E. Oliphant, Python for Scientific Computing, Computing in Science & Engineering, vol.9, issue.3, pp.10-20, 2007.
DOI : 10.1109/MCSE.2007.58

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.474.6460

C. G. Pearson, P. S. Maddox, E. D. Salmon, and K. Bloom, Budding Yeast Chromosome Structure and Dynamics during Mitosis, The Journal of Cell Biology, vol.108, issue.6, pp.1255-66, 2001.
DOI : 10.1083/jcb.130.3.687

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2199205

C. Reyes, C. Serrurier, T. Gauthier, Y. Gachet, and S. Tournier, Aurora B prevents chromosome arm separation defects by promoting telomere dispersion and disjunction, The Journal of Cell Biology, vol.101, issue.6, pp.713-740, 2015.
DOI : 10.1101/gad.177873.111

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4362453

J. Schindelin, I. Arganda-carreras, E. Frise, V. Kaynig, M. Longair et al., Fiji: an open-source platform for biological-image analysis, Nature Methods, vol.27, issue.7, pp.676-82, 2012.
DOI : 10.1038/nmeth.2019

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3855844

R. V. Skibbens, V. P. Skeen, and E. D. Salmon, Directional instability of kinetochore motility during chromosome congression and segregation in mitotic newt lung cells: a push-pull mechanism, The Journal of Cell Biology, vol.122, issue.4, pp.859-75, 1993.
DOI : 10.1083/jcb.122.4.859

J. Stumpff, G. Von-dassow, M. Wagenbach, C. Asbury, and L. Wordeman, The Kinesin-8 Motor Kif18A Suppresses Kinetochore Movements to Control Mitotic Chromosome Alignment, Developmental Cell, vol.14, issue.2, pp.252-62, 2008.
DOI : 10.1016/j.devcel.2007.11.014

URL : http://doi.org/10.1016/j.devcel.2007.11.014

C. Tischer, D. Brunner, and M. Dogterom, Force- and kinesin-8-dependent effects in the spatial regulation of fission yeast microtubule dynamics, Molecular Systems Biology, vol.12, p.250, 2009.
DOI : 10.1091/mbc.E05-08-0811

S. Tournier, Y. Gachet, V. Buck, J. S. Hyams, and J. B. Millar, Disruption of Astral Microtubule Contact with the Cell Cortex Activates a Bub1, Bub3, and Mad3-dependent Checkpoint in Fission Yeast, Molecular Biology of the Cell, vol.15, issue.7, pp.3345-56, 2004.
DOI : 10.1091/mbc.E04-03-0256

URL : https://hal.archives-ouvertes.fr/hal-00318617

K. Umesono, T. Toda, S. Hayashi, and M. Yanagida, Two cell division cycle genes NDA2 and NDA3 of the fission yeast Schizosaccharomyces pombe control microtubular organization and sensitivity to anti-mitotic benzimidazole compounds, Journal of Molecular Biology, vol.168, issue.2, pp.271-84, 1983.
DOI : 10.1016/S0022-2836(83)80018-7

A. Unsworth, H. Masuda, S. Dhut, and T. Toda, Fission Yeast Kinesin-8 Klp5 and Klp6 Are Interdependent for Mitotic Nuclear Retention and Required for Proper Microtubule Dynamics, Molecular Biology of the Cell, vol.19, issue.12, pp.5104-5119, 2008.
DOI : 10.1091/mbc.E08-02-0224

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2592636

V. Varga, C. Leduc, V. Bormuth, S. Diez, and J. Howard, Kinesin-8 Motors Act Cooperatively to Mediate Length-Dependent Microtubule Depolymerization, Cell, vol.138, issue.6, pp.1174-83, 2009.
DOI : 10.1016/j.cell.2009.07.032

URL : https://hal.archives-ouvertes.fr/hal-00670549

E. Vladimirou, E. Harry, N. Burroughs, and A. D. Mcainsh, Springs, clutches and motors: driving forward kinetochore mechanism by modelling, Chromosome Research, vol.131, issue.3, pp.409-430, 2011.
DOI : 10.1007/s10577-011-9191-x

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3078324

E. Vladimirou, N. Mchedlishvili, I. Gasic, J. W. Armond, C. P. Samora et al., Nonautonomous Movement of Chromosomes in Mitosis, Developmental Cell, vol.27, issue.1, pp.60-71, 2013.
DOI : 10.1016/j.devcel.2013.08.004

C. Wandke, M. Barisic, R. Sigl, V. Rauch, F. Wolf et al., Human chromokinesins promote chromosome congression and spindle microtubule dynamics during mitosis, The Journal of Cell Biology, vol.115, issue.5, pp.847-63, 2012.
DOI : 10.1091/mbc.E05-02-0167

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3432768

R. R. West, T. Malmstrom, and J. R. Mcintosh, Kinesins klp5(+) and klp6(+) are required for normal chromosome movement in mitosis, J Cell Sci, vol.115, pp.931-971, 2002.

R. R. West, T. Malmstrom, C. L. Troxell, and J. R. Mcintosh, Two Related Kinesins, klp5+ and klp6+, Foster Microtubule Disassembly and Are Required for Meiosis in Fission Yeast, Molecular Biology of the Cell, vol.12, issue.12, pp.3919-3951, 2001.
DOI : 10.1091/mbc.12.12.3919

M. Wuhr, S. Dumont, A. C. Groen, D. J. Needleman, and T. J. Mitchison, How does a millimeter-sized cell find its center?, Cell Cycle, vol.8, issue.8, pp.1115-1136, 2009.
DOI : 10.4161/cc.8.8.8150

A. Yamamoto and Y. Hiraoka, Monopolar spindle attachment of sister chromatids is ensured by two distinct mechanisms at the first meiotic division in fission yeast, The EMBO Journal, vol.22, issue.9, pp.2284-96, 2003.
DOI : 10.1093/emboj/cdg222