D. Evans, P. Piermarini, and K. Choe, The Multifunctional Fish Gill: Dominant Site of Gas Exchange, Osmoregulation, Acid-Base Regulation, and Excretion of Nitrogenous Waste, Physiological Reviews, vol.85, issue.1, pp.97-177, 2005.
DOI : 10.1152/physrev.00050.2003

I. Leguen, C. Carlsson, E. Perdu-durand, P. Prunet, and P. Part, Xenobiotic and steroid biotransformation activities in rainbow trout gill epithelial cells in culture, Aquatic Toxicology, vol.48, issue.2-3, pp.165-176, 2000.
DOI : 10.1016/S0166-445X(99)00043-0

E. Haugarvoll, I. Bjerkas, B. Nowak, I. Hordvik, and E. Koppang, Identification and characterization of a novel intraepithelial lymphoid tissue in the gills of Atlantic salmon, Journal of Anatomy, vol.86, issue.2, pp.202-209, 2008.
DOI : 10.1007/BF02388205

P. Laurent and S. Dunel, Anatomical relationships of the ionocytes (chloride cells) with the branchial venous compartment: definition of two types of epithelium in fish gills, C R Acad Sci Hebd Seances Acad Sci D, vol.286, pp.1447-1450, 1978.

J. Wilson and P. Laurent, Fish gill morphology: inside out, Journal of Experimental Zoology, vol.149, issue.3, pp.192-213, 2002.
DOI : 10.1002/jez.10124

A. Dymowska, P. Hwang, and G. Goss, Structure and function of ionocytes in the freshwater fish gill, Respiratory Physiology & Neurobiology, vol.184, issue.3, pp.282-292, 2012.
DOI : 10.1016/j.resp.2012.08.025

P. Hwang, T. Lee, and L. Lin, Ion regulation in fish gills: recent progress in the cellular and molecular mechanisms, AJP: Regulatory, Integrative and Comparative Physiology, vol.301, issue.1, pp.28-47, 2011.
DOI : 10.1152/ajpregu.00047.2011

M. Pisam and A. Rambourg, Mitochondria-Rich Cells in the Gill Epithelium of Teleost Fishes: An Ultrastructural Approach, International Review of Cytology, pp.191-232, 1991.
DOI : 10.1016/S0074-7696(08)61504-1

Y. Takei, J. Hiroi, H. Takahashi, and T. Sakamoto, Diverse mechanisms for body fluid regulation in teleost fishes, AJP: Regulatory, Integrative and Comparative Physiology, vol.307, issue.7, p.24965789, 2014.
DOI : 10.1152/ajpregu.00104.2014

URL : http://ajpregu.physiology.org/content/ajpregu/307/7/R778.full.pdf

M. Pisam, L. Moal, C. Auperin, B. Prunet, P. Rambourg et al., Apical structures of ?mitochondria-rich? ? and ? cells in euryhaline fish gill: Their behaviour in various living conditions, The Anatomical Record, vol.34, issue.1, pp.13-24, 1995.
DOI : 10.1086/physzool.36.2.30171260

G. Goss, S. Adamia, and F. Galvez, Peanut lectin binds to a subpopulation of mitochondria-rich cells in the rainbow trout gill epithelium, Am J Physiol Regul Integr Comp Physiol, vol.281, pp.1718-1725, 2001.

J. Hiroi and S. Mccormick, New insights into gill ionocyte and ion transporter function in euryhaline and diadromous fish, Respiratory Physiology & Neurobiology, vol.184, issue.3, pp.257-268, 2012.
DOI : 10.1016/j.resp.2012.07.019

I. Boutet, L. Ky, C. Bonhomme, and F. , A transcriptomic approach of salinity response in the euryhaline teleost, Dicentrarchus labrax, Gene, vol.379, pp.40-50, 2006.
DOI : 10.1016/j.gene.2006.04.011

URL : https://hal.archives-ouvertes.fr/halsde-00339642

W. Tse, J. Sun, H. Zhang, A. Law, and B. Yeung, Transcriptomic and iTRAQ proteomic approaches reveal novel short-term hyperosmotic stress responsive proteins in the gill of the Japanese eel (Anguilla japonica), Journal of Proteomics, vol.89, pp.81-94, 2013.
DOI : 10.1016/j.jprot.2013.05.026

T. Evans and G. Somero, A microarray-based transcriptomic time-course of hyper- and hypo-osmotic stress signaling events in the euryhaline fish Gillichthys mirabilis: osmosensors to effectors, Journal of Experimental Biology, vol.211, issue.22, pp.3636-3649, 2008.
DOI : 10.1242/jeb.022160

M. Tine, J. De-lorgeril, D. Cotta, H. Pepey, E. Bonhomme et al., Transcriptional responses of the black-chinned tilapia Sarotherodon melanotheron to salinity extremes, Marine Genomics, vol.1, issue.2, pp.37-46, 2008.
DOI : 10.1016/j.margen.2008.06.001

A. Whitehead, J. Roach, S. Zhang, and F. Galvez, Salinity- and population-dependent genome regulatory response during osmotic acclimation in the killifish (Fundulus heteroclitus) gill, Journal of Experimental Biology, vol.215, issue.8, pp.1293-1305, 2012.
DOI : 10.1242/jeb.062075

W. Tse, D. Au, and C. Wong, Characterization of ion channel and transporter mRNA expressions in isolated gill chloride and pavement cells of seawater acclimating eels, Biochemical and Biophysical Research Communications, vol.346, issue.4, pp.1181-1190, 2006.
DOI : 10.1016/j.bbrc.2006.06.028

W. Tse, S. Chow, K. Lai, D. Au, and C. Wong, Modulation of ion transporter expression in gill mitochondrion-rich cells of eels acclimated to low-Na+ or-Cl??? freshwater, Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, vol.293, issue.7, pp.385-393, 2011.
DOI : 10.1152/ajpcell.00358.2007

W. Tse, S. Chow, and C. Wong, Eel osmotic stress transcriptional factor 1 (Ostf1) is highly expressed in gill mitochondria-rich cells, where ERK phosphorylated, Frontiers in Zoology, vol.9, issue.1, p.22405401, 2012.
DOI : 10.1038/emboj.2010.141

URL : https://frontiersinzoology.biomedcentral.com/track/pdf/10.1186/1742-9994-9-3?site=frontiersinzoology.biomedcentral.com

A. Ladanyi, F. Sipos, D. Szoke, O. Galamb, and B. Molnar, Laser microdissection in translational and clinical research, Cytometry Part A, vol.32, issue.9, pp.947-960, 2006.
DOI : 10.1016/S1383-5726(97)00008-3

URL : http://onlinelibrary.wiley.com/doi/10.1002/cyto.a.20322/pdf

I. Leguen, N. Odjo, L. Bras, Y. Luthringer, B. Baron et al., Effect of seawater transfer on CYP1A gene expression in rainbow trout gills, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, vol.156, issue.2, pp.211-217, 2010.
DOI : 10.1016/j.cbpa.2010.02.002

M. Eisen, P. Spellman, P. Brown, and D. Botstein, Cluster analysis and display of genome-wide expression patterns, Proceedings of the National Academy of Sciences, vol.24, issue.2, pp.14863-14868, 1998.
DOI : 10.1016/0092-8674(81)90326-3

S. Rozen and H. Skaletsky, Primer3 on the WWW for General Users and for Biologist Programmers, Methods Mol Biol, vol.132, pp.365-386, 2000.
DOI : 10.1385/1-59259-192-2:365

I. Leguen, C. Cauty, N. Odjo, A. Corlu, and P. Prunet, Trout gill cells in primary culture on solid and permeable supports, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, vol.148, issue.4, pp.903-912, 2007.
DOI : 10.1016/j.cbpa.2007.09.007

S. Perry, M. Furimsky, M. Bayaa, T. Georgalis, and A. Shahsavarani, Integrated responses of Na+/HCO3??? cotransporters and V-type H+-ATPases in the fish gill and kidney during respiratory acidosis, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1618, issue.2, pp.175-184, 2003.
DOI : 10.1016/j.bbamem.2003.09.015

P. Prunet, G. Boeuf, and L. Houdebine, Plasma and pituitary prolactin levels in rainbow trout during adaptation to different salinities, Journal of Experimental Zoology, vol.45, issue.2, pp.187-196, 1985.
DOI : 10.1093/icb/15.4.881

G. Stolting, M. Fischer, and C. Fahlke, CLC channel function and dysfunction in health and disease, Front Physiol, vol.5, p.25339907, 2014.

A. Thiemann, S. Grunder, M. Pusch, and T. Jentsch, A chloride channel widely expressed in epithelial and non-epithelial cells, Nature, vol.356, issue.6364, pp.57-60, 1992.
DOI : 10.1038/356057a0

M. Catalan, I. Cornejo, C. Figueroa, M. Niemeyer, and F. Sepulveda, ClC-2 in guinea pig colon: mRNA, immunolabeling, and functional evidence for surface epithelium localization, American Journal of Physiology - Gastrointestinal and Liver Physiology, vol.283, issue.4, pp.1004-1013, 2002.
DOI : 10.1152/ajpgi.00158.2002

M. Catalan, M. Niemeyer, L. Cid, and F. Sepulveda, Basolateral ClC-2 chloride channels in surface colon epithelium: regulation by a direct effect of intracellular chloride???, Gastroenterology, vol.126, issue.4, pp.1104-1114, 2004.
DOI : 10.1053/j.gastro.2004.01.010

Y. Guh, C. Lin, and P. Hwang, Osmoregulation in zebrafish: ion transport mechanisms and functional regulation, EXCLI Journal, vol.14, pp.627-659, 2015.

C. Perez-rius, H. Gaitan-penas, R. Estevez, and A. Barrallo-gimeno, Identification and characterization of the zebrafish ClC-2 chloride channel orthologs, Pfl??gers Archiv - European Journal of Physiology, vol.279, issue.8, pp.1769-1781, 2015.
DOI : 10.1074/jbc.M309899200

H. Miyazaki, S. Uchida, Y. Takei, T. Hirano, and F. Marumo, Molecular Cloning of CLC Chloride Channels inOreochromis Mossambicusand Their Functional Complementation of YeastCLCGene Mutant, Biochemical and Biophysical Research Communications, vol.255, issue.1, pp.175-181, 1999.
DOI : 10.1006/bbrc.1999.0166

C. Tang, L. Hwang, and T. Lee, Chloride channel ClC-3 in gills of the euryhaline teleost, Tetraodon nigroviridis: expression, localization and the possible role of chloride absorption, Journal of Experimental Biology, vol.213, issue.5, pp.683-693, 2010.
DOI : 10.1242/jeb.040212

M. Bossus, G. Charmantier, E. Blondeau-bidet, B. Valletta, and V. Boulo, The ClC-3 chloride channel and osmoregulation in the European Sea Bass, Dicentrarchus labrax, Journal of Comparative Physiology B, vol.203, issue.15, pp.641-662, 2013.
DOI : 10.1002/jez.10124

D. Boyle, A. Clifford, E. Orr, D. Chamot, and G. Goss, Mechanisms of Cl??? uptake in rainbow trout: Cloning and expression of slc26a6, a prospective Cl???/HCO3??? exchanger, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, vol.180, pp.43-50, 2015.
DOI : 10.1016/j.cbpa.2014.11.001

C. Toyoshima, R. Kanai, and F. Cornelius, First Crystal Structures of Na+,K+-ATPase: New Light on the Oldest Ion Pump, Structure, vol.19, issue.12, pp.1732-1738, 2011.
DOI : 10.1016/j.str.2011.10.016

S. Madsen, P. Kiilerich, and C. Tipsmark, Multiplicity of expression of Na+,K+-ATPase ??-subunit isoforms in the gill of Atlantic salmon (Salmo salar): cellular localisation and absolute quantification in response to salinity change, Journal of Experimental Biology, vol.212, issue.1, pp.78-88, 2009.
DOI : 10.1242/jeb.024612

S. Mccormick, A. Regish, and A. Christensen, Distinct freshwater and seawater isoforms of Na+/K+-ATPase in gill chloride cells of Atlantic salmon, Journal of Experimental Biology, vol.212, issue.24, pp.3994-4001, 2009.
DOI : 10.1242/jeb.037275

J. Richards, J. Semple, J. Bystriansky, and P. Schulte, Na+/K+-ATPase ??-isoform switching in gills of rainbow trout (Oncorhynchus mykiss) during salinity transfer, Journal of Experimental Biology, vol.206, issue.24, pp.4475-4486, 2003.
DOI : 10.1242/jeb.00701

S. Parks, M. Tresguerres, and G. Goss, Interactions between Na+ channels and Na+-HCO3- cotransporters in the freshwater fish gill MR cell: a model for transepithelial Na+ uptake, AJP: Cell Physiology, vol.292, issue.2, pp.935-944, 2007.
DOI : 10.1152/ajpcell.00604.2005

T. Hirata, T. Kaneko, T. Ono, T. Nakazato, and N. Furukawa, Mechanism of acid adaptation of a fish living in a pH 3.5 lake, American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, vol.284, issue.5, pp.1199-1212, 2003.
DOI : 10.1152/ajpregu.00267.2002

Y. Lee, J. Yan, S. Cruz, J. Horng, and P. Hwang, Anion exchanger 1b, but not sodium-bicarbonate cotransporter 1b, plays a role in transport functions of zebrafish H+-ATPase-rich cells, AJP: Cell Physiology, vol.300, issue.2, pp.295-307, 2011.
DOI : 10.1152/ajpcell.00263.2010

F. Furukawa, S. Watanabe, M. Inokuchi, and T. Kaneko, Responses of gill mitochondria-rich cells in Mozambique tilapia exposed to acidic environments, 2011.

A. Dymowska, A. Schultz, S. Blair, D. Chamot, and G. Goss, Acid-sensing ion channels are involved in epithelial Na+ uptake in the rainbow trout Oncorhynchus mykiss, AJP: Cell Physiology, vol.307, issue.3, pp.255-265, 2014.
DOI : 10.1152/ajpcell.00398.2013

S. Boulkroun, D. Ruffieux-daidie, J. Vitagliano, O. Poirot, and R. Charles, Vasopressin-inducible ubiquitin-specific protease 10 increases ENaC cell surface expression by deubiquitylating and stabilizing sorting nexin 3, AJP: Renal Physiology, vol.295, issue.4, pp.889-900, 2008.
DOI : 10.1152/ajprenal.00001.2008

R. Soundararajan, D. Pearce, and T. Ziera, The role of the ENaC-regulatory complex in aldosterone-mediated sodium transport, Molecular and Cellular Endocrinology, vol.350, issue.2, pp.242-247, 2012.
DOI : 10.1016/j.mce.2011.11.003

C. Da-silva, T. Polli, J. Swaan, and P. , The solute carrier family 10 (SLC10): Beyond bile acid transport, Molecular Aspects of Medicine, vol.34, issue.2-3, pp.252-269, 2013.
DOI : 10.1016/j.mam.2012.07.004

J. Jeong and D. Eide, The SLC39 family of zinc transporters, Molecular Aspects of Medicine, vol.34, issue.2-3, pp.612-619, 2013.
DOI : 10.1016/j.mam.2012.05.011

A. Bradshaw, Diverse biological functions of the SPARC family of proteins, The International Journal of Biochemistry & Cell Biology, vol.44, issue.3, pp.480-488, 2012.
DOI : 10.1016/j.biocel.2011.12.021

P. Seear, S. Carmichael, R. Talbot, J. Taggart, and J. Bron, Differential Gene Expression During Smoltification of Atlantic Salmon (Salmo salar L.): a First Large-Scale Microarray Study, Marine Biotechnology, vol.45, issue.2, pp.126-140, 2010.
DOI : 10.1139/f72-027

A. Ramalingam, J. Duhadaway, E. Sutanto-ward, Y. Wang, and J. Dinchuk, Bin3 Deletion Causes Cataracts and Increased Susceptibility to Lymphoma during Aging, Cancer Research, vol.68, issue.6, p.18339847, 2008.
DOI : 10.1158/0008-5472.CAN-07-6072

URL : http://cancerres.aacrjournals.org/content/canres/68/6/1683.full.pdf

O. Thompson, J. Moghraby, K. Ayscough, and S. Winder, Depletion of the actin bundling protein SM22/transgelin increases actin dynamics and enhances the tumourigenic phenotypes of cells, BMC Cell Biology, vol.13, issue.1, p.22257561, 2012.
DOI : 10.1186/1471-2121-13-1

Y. Chen, F. Ip, L. Shi, Z. Zhang, and H. Tang, Coronin 6 Regulates Acetylcholine Receptor Clustering through Modulating Receptor Anchorage to Actin Cytoskeleton, Journal of Neuroscience, vol.34, issue.7, pp.2413-2421, 2014.
DOI : 10.1523/JNEUROSCI.3226-13.2014

URL : http://www.jneurosci.org/content/jneuro/34/7/2413.full.pdf

K. Pfister, E. Fisher, I. Gibbons, T. Hays, and E. Holzbaur, Cytoplasmic dynein nomenclature: Table I., The Journal of Cell Biology, vol.108, issue.3, pp.411-413, 2005.
DOI : 10.1073/pnas.90.17.7928

URL : http://jcb.rupress.org/content/jcb/171/3/411.full.pdf

M. Takahashi, Y. Tajika, A. Khairani, H. Ueno, and T. Murakami, The localization of VAMP5 in skeletal and cardiac muscle, Histochemistry and Cell Biology, vol.9, issue.4, pp.573-582, 2013.
DOI : 10.1091/mbc.9.9.2423

A. Errico, A. Ballabio, and E. Rugarli, Spastin, the protein mutated in autosomal dominant hereditary spastic paraplegia, is involved in microtubule dynamics, Human Molecular Genetics, vol.11, issue.2, pp.153-163, 2002.
DOI : 10.1093/hmg/11.2.153

M. Yanez-mo, R. Tejedor, P. Rousselle, and F. Sanchez-madrid, Tetraspanins in intercellular adhesion of polarized epithelial cells: spatial and functional relationship to integrins and cadherins, J Cell Sci, vol.114, pp.577-587, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00314034

T. Transcriptome, P. Gill-ionocytes, . One, C. Doi-serra-pages, Q. Medley et al., Liprins, a family of LAR transmembrane protein-tyrosine phosphatase-interacting proteins, J Biol Chem, vol.63, issue.273, pp.15611-15620, 1998.

R. Bai, H. Bai, M. Kuse, A. Ideta, and Y. Aoyagi, Involvement of VCAM1 in the bovine conceptus adhesion to the uterine endometrium, Reproduction, vol.148, issue.2, pp.119-127, 2014.
DOI : 10.1530/REP-13-0655

K. Kuespert, S. Pils, and C. Hauck, CEACAMs: their role in physiology and pathophysiology, Current Opinion in Cell Biology, vol.18, issue.5, pp.565-571, 2006.
DOI : 10.1016/j.ceb.2006.08.008

URL : https://kops.uni-konstanz.de/bitstream/123456789/8236/1/CEACAMs.pdf

M. Avella, A. Masoni, M. Bornancin, and N. Mayergostan, Gill morphology and sodium influx in the rainbow trout (Salmo gairdneri) acclimated to artificial freshwater environments, Journal of Experimental Zoology, vol.82, issue.2, pp.159-169, 1987.
DOI : 10.1007/BF00706596

W. Zenker, H. Ferguson, I. Barker, and B. Woodward, Epithelial and pillar cell replacement in gills of juvenile trout, Salmo gairdneri Richardson, Comparative Biochemistry and Physiology Part A: Physiology, vol.86, issue.3, pp.423-428, 1987.
DOI : 10.1016/0300-9629(87)90518-4

G. Krause, L. Winkler, S. Mueller, R. Haseloff, and J. Piontek, Structure and function of claudins, BBA)?Biomembranes 1778, pp.631-645, 2008.
DOI : 10.1016/j.bbamem.2007.10.018

C. Tipsmark, D. Baltzegar, O. Ozden, B. Grubb, and R. Borski, Salinity regulates claudin mRNA and protein expression in the teleost gill, AJP: Regulatory, Integrative and Comparative Physiology, vol.294, issue.3, p.18184770, 2008.
DOI : 10.1152/ajpregu.00112.2007

C. Tipsmark, J. Luckenbach, S. Madsen, P. Kiilerich, and R. Borski, Osmoregulation and expression of ion transport proteins and putative claudins in the gill of Southern Flounder (Paralichthys lethostigma), Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, vol.150, issue.3, pp.265-273, 2008.
DOI : 10.1016/j.cbpa.2008.03.006

L. Notterpek, K. Roux, S. Amici, A. Yazdanpour, and C. Rahner, Peripheral myelin protein 22 is a constituent of intercellular junctions in epithelia, Proceedings of the National Academy of Sciences, vol.19, issue.9, pp.14404-14409, 2001.
DOI : 10.1023/A:1010927001378

K. Roux, S. Amici, B. Fletcher, and L. Notterpek, Modulation of Epithelial Morphology, Monolayer Permeability, and Cell Migration by Growth Arrest Specific 3/Peripheral Myelin Protein 22, Molecular Biology of the Cell, vol.16, issue.3, pp.1142-1151, 2005.
DOI : 10.1091/mbc.E04-07-0551

S. Ohsakaya, M. Fujikawa, T. Hisabori, and M. Yoshida, Knockdown of DAPIT (Diabetes-associated Protein in Insulin-sensitive Tissue) Results in Loss of ATP Synthase in Mitochondria, Journal of Biological Chemistry, vol.1793, issue.23, pp.20292-20296, 2011.
DOI : 10.1534/genetics.106.062208

H. Lin and D. Randall, Evidence for the presence of an electrogenic proton pump on the trout gill epithelium, Journal of Experimental Biology, vol.161, pp.119-134, 1991.

J. Soengas, P. Barciela, M. Aldegunde, and D. Andres, Gill carbohydrate metabolism of rainbow trout is modified during gradual adaptation to sea water, Journal of Fish Biology, vol.249, issue.5, pp.845-856, 1995.
DOI : 10.1007/BF00386668

R. Kohen and A. Nyska, Invited Review: Oxidation of Biological Systems: Oxidative Stress Phenomena, Antioxidants, Redox Reactions, and Methods for Their Quantification, Toxicologic Pathology, vol.59, issue.6, pp.620-650, 2002.
DOI : 10.1016/S0891-5849(00)00375-0

C. Chen, L. Sun, and D. Mochly-rosen, Mitochondrial aldehyde dehydrogenase and cardiac diseases, Cardiovascular Research, vol.88, issue.1, pp.51-57, 2010.
DOI : 10.1093/cvr/cvq192

URL : https://academic.oup.com/cardiovascres/article-pdf/88/1/51/17877824/cvq192.pdf

H. Freeman, K. Shimomura, R. Cox, and F. Ashcroft, Nicotinamide nucleotide transhydrogenase: a link between insulin secretion, glucose metabolism and oxidative stress, Biochemical Society Transactions, vol.34, issue.5, pp.806-810, 2006.
DOI : 10.1042/BST0340806

URL : http://www.biochemsoctrans.org/content/ppbiost/34/5/806.full.pdf

H. Nishi, R. Inagi, H. Kato, M. Tanemoto, and I. Kojima, Hemoglobin Is Expressed by Mesangial Cells and Reduces Oxidant Stress, Journal of the American Society of Nephrology, vol.19, issue.8, pp.1500-1508, 2008.
DOI : 10.1681/ASN.2007101085

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2488266

C. Grabbe, K. Husnjak, and I. Dikic, The spatial and temporal organization of ubiquitin networks, Nature Reviews Molecular Cell Biology, vol.10, issue.5, pp.295-307, 2011.
DOI : 10.1038/ncb1716

L. Hicke, Protein regulation by monoubiquitin, Nature Reviews Molecular Cell Biology, vol.2, issue.3, pp.195-201, 2001.
DOI : 10.1038/35056583

S. Zhang, W. Wu, Y. Wu, J. Zheng, and T. Suo, RNF152, a novel lysosome localized E3 ligase with pro-apoptotic activities, Protein & Cell, vol.102, issue.7, pp.656-663, 2010.
DOI : 10.1016/S0092-8674(00)00057-X

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4875278

S. Ko, H. Uehara, T. Tsuruma, K. Nomura, and Y. , Ubiquilin interacts with ubiquitylated proteins and proteasome through its ubiquitin-associated and ubiquitin-like domains, Febs Letters, vol.566, pp.110-114, 2004.

S. Cal, V. Quesada, C. Garabaya, and C. Lopez-otin, Polyserase-I, a human polyprotease with the ability to generate independent serine protease domains from a single translation product, Proceedings of the National Academy of Sciences, vol.274, issue.21, pp.9185-9190, 2003.
DOI : 10.1074/jbc.274.21.14926

D. Huang, O. Ayrault, H. Hunt, A. Taherbhoy, and D. Duda, E2-RING Expansion of the NEDD8 Cascade Confers Specificity to Cullin Modification, Molecular Cell, vol.33, issue.4, pp.483-495, 2009.
DOI : 10.1016/j.molcel.2009.01.011

A. Kim, C. Bommelje, B. Lee, Y. Yonekawa, and L. Choi, SCCRO (DCUN1D1) Is an Essential Component of the E3 Complex for Neddylation, Journal of Biological Chemistry, vol.161, issue.48, pp.33211-33220, 2008.
DOI : 10.1016/S0006-291X(03)00501-1

S. Lyapina, G. Cope, A. Shevchenko, G. Serino, and T. Tsuge, Promotion of NEDD8-CUL1 Conjugate Cleavage by COP9 Signalosome, Science, vol.292, issue.5520, pp.1382-1385, 2001.
DOI : 10.1126/science.1059780