O. Muller and R. Roy, The Major Ternary Structural Families, 1974.
DOI : 10.1007/978-3-642-65706-1

A. Navrotsky and D. J. Weidner, Perovskite: a structure of great interest to geophysics and materials science, 1989.
DOI : 10.1029/GM045

L. G. Tejuca and J. L. Fierro, Properties and applications of Perovskite-type Oxides, 1993.

R. H. Mitchell, Perovskites, Modern and Ancient, 2002.

M. N. Sanz-ortiz, F. Rodriguez, J. Rodriguez, and G. Demazeau, : interplay between the spin state and Jahn???Teller effect, Journal of Physics: Condensed Matter, vol.23, issue.41, p.415501, 2011.
DOI : 10.1088/0953-8984/23/41/415501

C. A. Triana, L. T. Corredor, D. A. Landinez-téllez, and J. Roa-rojas, Structural phase transitions at high-temperature in double perovskite Sr2GdRuO6, Physica B: Condensed Matter, vol.407, issue.16, p.3150, 2012.
DOI : 10.1016/j.physb.2011.12.050

L. T. Corredor, D. A. Landinez-téllez, . J. Pimentel-jr, P. Pureur, and J. Roa-rojas, Magnetic, Structural and Morphological Characterization of Sr<sub>2</sub>GdRuO<sub>6</sub> Double Perovskite, Journal of Modern Physics, vol.02, issue.03, p.154, 2011.
DOI : 10.4236/jmp.2011.23023

S. Priya and S. Nahm, Lead-Free Piezoelectrics, 2012.
DOI : 10.1007/978-1-4419-9598-8

C. I. Thomas, M. R. Suchomel, G. V. Duong, A. M. Fogg, J. B. Claridge et al., Structure and magnetism of the A site scandium perovskite (Sc0.94Mn0.06)Mn0.65Ni0.35O3 synthesized at high pressure, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.145, issue.1, p.20130012, 2014.
DOI : 10.1038/nmat1038

A. Moure, T. Hungría, A. Castro, J. Galy, O. Peña et al., = 0, 0.1). Processing and Characterization of Nanostructured Ceramics, Chemistry of Materials, vol.22, issue.9, p.2908, 2010.
DOI : 10.1021/cm100236q

A. Moure, A. Castro, J. Tartaj, and C. Moure, Mechanosynthesis of perovskite LaGaO3 and its effect on the sintering of ceramics, Ceramics International, vol.35, issue.7, p.2659, 2009.
DOI : 10.1016/j.ceramint.2009.03.005

A. Moure, J. Tartaj, and C. Moure, Processing and characterization of Sr doped BiFeO3 multiferroic materials by high energetic milling, Journal of Alloys and Compounds, vol.509, issue.25, p.7042, 2011.
DOI : 10.1016/j.jallcom.2011.03.132

A. Waintal and J. Chenavas, Transformation sous haute pression de la forme hexagonale de MnT???O3 (T??? = Ho, Er, Tm, Yb, Lu) en une forme perovskite, Materials Research Bulletin, vol.2, issue.8, p.819, 1967.
DOI : 10.1016/0025-5408(67)90009-8

P. Duran, J. F. Fernández-lozano, F. Capel, and C. Moure, Large electromechanical anisotropic modified lead titanate ceramics, Journal of Materials Science, vol.26, issue.9, p.4463, 1988.
DOI : 10.1007/BF00551945

Y. B. Go and A. J. Jacobson, Solid Solution Precursors to Gadolinia-Doped Ceria Prepared via a Low-Temperature Solution Route, Chemistry of Materials, vol.19, issue.19, p.4702, 2007.
DOI : 10.1021/cm071310k

D. Toro, R. Hernández, P. Díaz, Y. Brito, and J. L. , Synthesis of La0.8Sr0.2FeO3 perovskites nanocrystals by Pechini sol???gel method, Materials Letters, vol.107, p.231, 2013.
DOI : 10.1016/j.matlet.2013.05.139

A. S. Nowick and Y. M. Du, Solid State Ionics, 1995.

E. Fabbri, L. Bi, D. Pergolesi, and E. Traversa, Towards the Next Generation of Solid Oxide Fuel Cells Operating Below 600 ??C with Chemically Stable Proton-Conducting Electrolytes, Advanced Materials, vol.6, issue.163, p.195, 2012.
DOI : 10.1002/adma.201103102

N. Rezlescu, E. Rezlescu, P. D. Popa, C. Doroftei, and M. Ignat, Characterization and catalytic properties of some perovskites, Composites Part B: Engineering, vol.60, p.515, 2014.
DOI : 10.1016/j.compositesb.2014.01.006

E. C. De-souza and R. Muccillo, Properties and applications of perovskite proton conductors, Materials Research, vol.13, issue.3, p.385, 2010.
DOI : 10.1590/S1516-14392010000300018

H. Uchida, N. Maeda, and H. Iwahara, Relation between proton and hole conduction in SrCeO3-based solid electrolytes under water-containing atmospheres at high temperatures, Solid State Ionics, vol.11, issue.2, p.117, 1983.
DOI : 10.1016/0167-2738(83)90048-6

H. Iwahara, H. Uchida, K. Ono, and K. Ogaki, Proton Conduction in Sintered Oxides Based on BaCeO[sub 3], Journal of The Electrochemical Society, vol.135, issue.2, p.529, 1988.
DOI : 10.1149/1.2095649

S. M. Choi, J. Lee, H. An, J. Hong, H. Kim et al., Fabrication of anode-supported protonic ceramic fuel cell with Ba(Zr0.85Y0.15)O3????????Ba(Ce0.9Y0.1)O3????? dual-layer electrolyte, International Journal of Hydrogen Energy, vol.39, issue.24, p.12812, 2014.
DOI : 10.1016/j.ijhydene.2014.06.018

A. S. Babu and R. Bauri, Synthesis, phase stability and conduction behavior of rare earth and transition elements doped barium cerates, International Journal of Hydrogen Energy, vol.39, issue.26, p.14487, 2014.
DOI : 10.1016/j.ijhydene.2014.03.249

H. Iwahara, Y. Asakura, K. Katahira, and M. Tanaka, Prospect of hydrogen technology using proton-conducting ceramics, Solid State Ionics, vol.168, issue.3-4, p.299, 2004.
DOI : 10.1016/j.ssi.2003.03.001

G. C. Mather, S. Garcia-martin, D. Benne, C. Ritter, and U. Amador, A-site-cation deficiency in the SrCe0.9Yb0.1O3????? perovskite: effects of charge-compensation mechanism on structure and proton conductivity, Journal of Materials Chemistry, vol.72, issue.30, p.5764, 2011.
DOI : 10.1039/c0jm04464d

I. Antunes, G. C. Mather, J. R. Frade, J. Gracio, and D. P. Fagg, Stability of Ba(Zr,Pr,Y)O3????? materials for potential application in electrochemical devices, Journal of Solid State Chemistry, vol.183, issue.12, p.2826, 2010.
DOI : 10.1016/j.jssc.2010.09.021

K. D. Kreuer, Proton-Conducting Oxides, Annual Review of Materials Research, vol.33, issue.1, p.333, 2003.
DOI : 10.1146/annurev.matsci.33.022802.091825

Y. Liu, R. Ran, M. O. Tade, and Z. Shao, Structure, sinterability, chemical stability and conductivity of proton-conducting BaZr0.6M0.2Y0.2O3????? electrolyte membranes: The effect of the M dopant, Journal of Membrane Science, vol.467, p.100, 2014.
DOI : 10.1016/j.memsci.2014.05.020

A. Moure, A. Castro, J. Galy, C. Moure, and J. Tartaj, Nanostructured La1???xSrxGa1???yMgyO3????? Ceramics Processed by Spark Plasma Sintering of Mechanosynthesized Precursors, Journal of the American Ceramic Society, vol.14, issue.10, p.3206, 2010.
DOI : 10.1111/j.1551-2916.2010.03920.x

A. Moure, A. Castro, J. Tartaj, and C. Moure, Single-phase ceramics with La1???xSrxGa1???yMgyO3????? composition from precursors obtained by mechanosynthesis, Journal of Power Sources, vol.188, issue.2, p.489, 2009.
DOI : 10.1016/j.jpowsour.2008.11.103

M. Morales, J. M. Pérez-falcón, A. Moure, J. Tartaj, F. Espiell et al., Performance and degradation of La0.8Sr0.2Ga0.85Mg0.15O3????? electrolyte-supported cells in single-chamber configuration, International Journal of Hydrogen Energy, vol.39, issue.10, p.5451, 2014.
DOI : 10.1016/j.ijhydene.2014.01.019

K. Huang, R. S. Tichy, and J. B. Goodenough, Superior Perovskite Oxide-Ion Conductor; Strontium- and Magnesium-Doped LaGaO3: I, Phase Relationships and Electrical Properties, Journal of the American Ceramic Society, vol.52, issue.19, p.2565, 1998.
DOI : 10.1111/j.1151-2916.1998.tb02662.x

T. Ishihara, H. Matsuda, and Y. Takita, Doped LaGaO3 Perovskite Type Oxide as a New Oxide Ionic Conductor, Journal of the American Chemical Society, vol.116, issue.9, p.3801, 1994.
DOI : 10.1021/ja00088a016

P. Huang and A. Petric, Superior Oxygen Ion Conductivity of Lanthanum Gallate Doped with Strontium and Magnesium, Journal of The Electrochemical Society, vol.143, issue.5, p.1644, 1996.
DOI : 10.1149/1.1836692

J. Wolfenstine, P. Huang, and A. Petric, High-Temperature Mechanical Behavior of the Solid-State Electrolyte: La[sub 0.8]Sr[sub 0.2]Ga[sub 0.85]Mg[sub 0.15]O[sub 2.825], Journal of The Electrochemical Society, vol.147, issue.5, p.1668, 2000.
DOI : 10.1149/1.1393415

M. Morales, J. J. Roa, J. M. Perez-falcon, A. Moure, J. Tartaj et al., Correlation between electrical and mechanical properties in La1???xSrxGa1???yMgyO3????? ceramics used as electrolytes for solid oxide fuel cells, Journal of Power Sources, vol.246, p.918, 2014.
DOI : 10.1016/j.jpowsour.2013.08.028

L. Sanchez and J. R. Jurado, Correlaci??n entre la estructura de bandas y las propiedades f??sicas de ??xidos cer??micos de estructura perovskita con metales de transici??n (I): Propiedades de conducci??n electr??nica, Bolet??n de la Sociedad Espa??ola de Cer??mica y Vidrio, vol.40, issue.4, p.253, 2001.
DOI : 10.3989/cyv.2001.v40.i4.733

J. B. Goodenough, Covalency Criterion for Localized vs Collective Electrons in Oxides with the Perovskite Structure, Journal of Applied Physics, vol.37, issue.3, p.1415, 1966.
DOI : 10.1063/1.1708496

V. Gil, J. Tartaj, and C. Moure, Chemical and thermomechanical compatibility between neodymium manganites and electrolytes based on ceria, Journal of the European Ceramic Society, vol.29, issue.9, p.1763, 2009.
DOI : 10.1016/j.jeurceramsoc.2008.10.009

J. M. Perez-falcon, A. Moure, and J. Tartaj, Low-Temperature Preparation of La0.6Sr0.4Fe0.8Co0.2O3-?? Sinterable Nanopowders by the Polymeric Organic Complex Solution Method, Fuel Cells, vol.145, issue.10, p.75, 2011.
DOI : 10.1002/fuce.201000061

S. Baumann, W. A. Meulenberg, and H. P. Buchkremer, Manufacturing strategies for asymmetric ceramic membranes for efficient separation of oxygen from air, Journal of the European Ceramic Society, vol.33, issue.7, p.1251, 2013.
DOI : 10.1016/j.jeurceramsoc.2012.12.005

Y. Liu, X. Tan, and K. Li, Catalysis Reviews, Science and Engineering, vol.48, p.145, 2006.

P. Ciambelli, S. Cimino, S. De-rossi, M. Faticanti, L. Lisi et al., AMnO3 (A=La, Nd, Sm) and Sm1???xSrxMnO3 perovskites as combustion catalysts: structural, redox and catalytic properties, Applied Catalysis B: Environmental, vol.24, issue.3-4, p.243, 2000.
DOI : 10.1016/S0926-3373(99)00110-1

S. Liu, Y. Lin, and . Ch, Catalysis Today, p.62, 2014.

P. M. Price, E. Rabenberg, D. Thomsen, S. T. Misture, and D. P. Butt, Phase Transformations in Calcium-Substituted Lanthanum Ferrite, Journal of the American Ceramic Society, vol.218, issue.6, p.2241, 2014.
DOI : 10.1111/jace.12891

B. P. Barbero, J. A. Gamboa, and L. E. Cadus, Synthesis and characterisation of La1???xCaxFeO3 perovskite-type oxide catalysts for total oxidation of volatile organic compounds, Applied Catalysis B: Environmental, vol.65, issue.1-2, p.21, 2006.
DOI : 10.1016/j.apcatb.2005.11.018

L. A. Isupova, I. S. Yakovleva, I. I. Gainutdinov, Y. T. Pavlyukhin, and V. A. Sadykov, system as related to the reactivity of surface and bulk oxygen, Reaction Kinetics and Catalysis Letters, vol.81, issue.2, p.373, 2004.
DOI : 10.1023/B:REAC.0000019446.25192.67

A. Kumar, D. Selvasekarapandian, S. Nithya, H. Leiro, J. Masuda et al., Effect of calcium doping on LaCoO3 prepared by Pechini method, Powder Technology, vol.235, p.140, 2013.
DOI : 10.1016/j.powtec.2012.09.030

A. Bussmann-holder, The polarizability model for ferroelectricity in perovskite oxides, Journal of Physics: Condensed Matter, vol.24, issue.27, p.273202, 2012.
DOI : 10.1088/0953-8984/24/27/273202

P. Durán and C. Moure, Piezoelectric ceramics, Materials Chemistry and Physics, vol.15, issue.3-4, p.193, 1986.
DOI : 10.1016/0254-0584(86)90001-5

A. E. Dranetz, G. N. Howatt, and J. W. Crownover, Tele-Tech, The Institute of Radio Engineers, p.29, 1949.

G. Goodman, Electrical Conduction Anomaly in Samarium-Doped Barium Titanate, Journal of the American Ceramic Society, vol.40, issue.7, p.48, 1963.
DOI : 10.1063/1.1735973

P. Durán, J. F. Fernandez-lozano, F. Capel, and C. Moure, Large electromechanical anisotropic modified lead titanate ceramics, Journal of Materials Science, vol.11, issue.supplement 20-4, p.447, 1989.
DOI : 10.1007/BF01107425

B. Jaffe, R. S. Roth, and S. Marzullo, Piezoelectric Properties of Lead Zirconate???Lead Titanate Solid???Solution Ceramics, Journal of Applied Physics, vol.25, issue.6, p.809, 1954.
DOI : 10.1063/1.1721741

B. Jaffe, C. W. Jr, and H. Jaffe, Piezoelectric Ceramics, Journal of the American Ceramic Society, vol.36, issue.11, 1971.
DOI : 10.1143/JPSJ.7.333

R. Kirchhofer, D. R. Diercks, B. R. Gorman, J. F. Ihlefeld, P. G. Kotula et al., Using Atom Probe Tomography, Journal of the American Ceramic Society, vol.31, issue.1-2, p.2677, 2014.
DOI : 10.1111/jace.13135

J. F. Fernandez, C. Moure, M. Villegas, P. Duran, M. Kosec et al., Compositional fluctuations and properties of fine-grained acceptor-doped PZT ceramics, Journal of the European Ceramic Society, vol.18, issue.12, p.1695, 1998.
DOI : 10.1016/S0955-2219(98)00090-9

Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori et al., Lead-free piezoceramics, Nature, vol.136, issue.7013, p.84, 2004.
DOI : 10.1143/JJAP.36.5963

J. Fang, X. Wang, Z. Tian, C. Zhong, and L. Li, Two-Step Sintering: An Approach to Broaden the Sintering Temperature Range of Alkaline Niobate-Based Lead-Free Piezoceramics, Journal of the American Ceramic Society, vol.90, issue.[2], p.3552, 2010.
DOI : 10.1111/j.1551-2916.2010.04085.x

J. Gomah-pettry, S. Saïd, P. Marchet, and J. Mercurio, Sodium-bismuth titanate based lead-free ferroelectric materials, Journal of the European Ceramic Society, vol.24, issue.6, p.1165, 2004.
DOI : 10.1016/S0955-2219(03)00473-4

J. Li, K. Wang, F. Zhu, L. Cheng, and F. Yao, -Based Lead-Free Piezoceramics: Fundamental Aspects, Processing Technologies, and Remaining Challenges, Journal of the American Ceramic Society, vol.5, issue.5, p.3677, 2013.
DOI : 10.1111/jace.12715

URL : https://hal.archives-ouvertes.fr/tel-00807841

E. Taghaddos, M. Hejazi, and A. Safari, Electromechanical Properties of Acceptor-Doped Lead-Free Piezoelectric Ceramics, Journal of the American Ceramic Society, vol.13, issue.4, p.1756, 2014.
DOI : 10.1111/jace.12805

E. Beaudrouet, A. Vivet, M. Lejeune, C. Santerne, F. Rossignol et al., Stability of Aqueous Barium Titanate Suspensions for MLCC Inkjet Printing, Journal of the American Ceramic Society, vol.4, issue.439, p.1248, 2014.
DOI : 10.1111/jace.12729

URL : https://hal.archives-ouvertes.fr/hal-00946619

Y. L. Chen and S. F. Yang, PTCR effect in donor doped barium titanate: review of compositions, microstructures, processing and properties, Advances in Applied Ceramics, vol.91, issue.1, p.257, 2011.
DOI : 10.1016/S0955-2219(03)00379-0

S. Wada, T. Hoshina, K. Takizawa, M. Ohishi, H. Yasuno et al., Origin of Ultrahigh Dielectric Constants for Barium Titanate Nanoparticles, Journal of the Korean Physical Society, vol.51, issue.92, p.878, 2007.
DOI : 10.3938/jkps.51.878

J. B. Macchesney and J. F. Potter, Factors and Mechanisms Affecting the Positive Temperature Coefficient of Resistivity of Barium Titanate, Journal of the American Ceramic Society, vol.107, issue.3, p.81, 1965.
DOI : 10.1063/1.1728927

R. W. Whatmore, Pyroelectric devices and materials, Reports on Progress in Physics, vol.49, issue.12, p.1335, 1986.
DOI : 10.1088/0034-4885/49/12/002

P. Muralt, Micromachined infrared detectors based on pyroelectric thin films, Reports on Progress in Physics, vol.64, issue.10, p.1339, 2001.
DOI : 10.1088/0034-4885/64/10/203

A. Rogalski, Infrared detectors: an overview, Infrared Physics & Technology, vol.43, issue.3-5, p.187, 2002.
DOI : 10.1016/S1350-4495(02)00140-8

G. H. Haertling, PLZT electrooptic materials and applications???a review, Ferroelectrics, vol.22, issue.1, p.25, 1987.
DOI : 10.1364/AO.23.002187

G. H. Haertling, Improved Hot-Pressed Electrooptic Ceramics in the (Pb,La)(Zr,Ti)O3 System, Journal of the American Ceramic Society, vol.22, issue.1, p.303, 1971.
DOI : 10.1111/j.1151-2916.1971.tb12296.x

S. Kamba, V. Bovtun, J. Petzelt, I. Rychetsky, R. Mizaras et al., Dielectric dispersion of the relaxor PLZT ceramics in the frequency range 20 Hz-100 THz, Journal of Physics: Condensed Matter, vol.12, issue.4, p.497, 2000.
DOI : 10.1088/0953-8984/12/4/309

I. Fujii, R. Yoshida, T. Imai, S. Yamazoe, and T. Wada, Based Ceramics by Conventional Sintering, Journal of the American Ceramic Society, vol.87, issue.1, p.3782, 2013.
DOI : 10.1111/jace.12574

K. W. Kwok, F. Li, and D. Lin, A NOVEL LEAD-FREE TRANSPARENT CERAMIC WITH HIGH ELECTRO-OPTIC COEFFICIENT, Functional Materials Letters, vol.04, issue.03, p.237, 2011.
DOI : 10.1142/S1793604711001968

F. Li and K. W. Kwok, Fabrication of transparent electro-optic (K0.5Na0.5)1???xLixNb1???xBixO3 lead-free ceramics, Journal of the European Ceramic Society, vol.33, issue.1, p.123, 2013.
DOI : 10.1016/j.jeurceramsoc.2012.08.017

F. Li and K. W. Kwok, -Based Lead-Free Transparent Electro-Optic Ceramics Prepared by Pressureless Sintering, Journal of the American Ceramic Society, vol.95, issue.1, p.3557, 2013.
DOI : 10.1111/jace.12539

URL : https://hal.archives-ouvertes.fr/tel-00807841

G. Shirane, P. M. Gehring, R. Guo, K. M. Nair, W. K. Vong-ng et al., Ceramic Transactions Morphotropic Phase Boundary Perovskites, High Strain Piezoelectric and Dielectric Ceramics, p.17, 2003.

Y. Tomita and T. Kato, Relaxor Behavior and Morphotropic Phase Boundary in a Simple Model, Journal of the Physical Society of Japan, vol.82, issue.6, p.63002, 2013.
DOI : 10.7566/JPSJ.82.063002

Y. J. Kim and J. H. Lee, Phase Transition and Relaxor Behaviors in the Lead Magnesium Niobate-based Ferroelectrics, Journal of the Korean Vacuum Society, vol.17, issue.2, p.148, 2008.
DOI : 10.5757/JKVS.2008.17.2.148

A. A. Bokov and Z. Ye, Recent progress in relaxor ferroelectrics with perovskite structure, Journal of Materials Science, vol.45, issue.156, p.31, 2006.
DOI : 10.1007/s10853-005-5915-7

M. A. Akbas and P. K. Davies, Perovskite Relaxor Ferroelectric Oxides, Journal of the American Ceramic Society, vol.74, issue.7, p.2933, 1997.
DOI : 10.1111/j.1151-2916.1990.tb05188.x

R. Skulski, D. Bochenek, P. Wawrza?a, G. Dercz, and D. Brzezinska, Technology and Properties of PBZTS Ceramics, International Journal of Applied Ceramic Technology, vol.103, issue.2, p.330, 2013.
DOI : 10.1111/j.1744-7402.2011.02744.x

F. Li, L. Jin, Z. Xu, and S. Zhang, Electrostrictive effect in ferroelectrics: An alternative approach to improve piezoelectricity, Applied Physics Reviews, vol.1, issue.1, p.11103, 2014.
DOI : 10.1063/1.4861260

K. Uchino, S. Nomura, L. E. Cross, S. J. Jang, and R. E. Newnham, Electrostrictive effect in lead magnesium niobate single crystals, Journal of Applied Physics, vol.51, issue.2, p.1142, 1980.
DOI : 10.1063/1.327724

S. J. Jang, K. Uchino, S. Nomura, and L. E. Cross, Electrostrictive behavior of lead magnesium niobate based ceramic dielectrics, Ferroelectrics, vol.14, issue.1, p.31, 1980.
DOI : 10.1080/00150198008226059

K. Uchino, S. Nomura, L. E. Cross, R. E. Newnham, and S. J. Jang, Electrostrictive effect in perovskites and its transducer applications, Journal of Materials Science, vol.49, issue.3, p.569, 1981.
DOI : 10.1007/BF02402772

E. Aksel, P. Jakes, E. Erdem, D. M. Smyth, A. Ozarowski et al., Processing of Manganese-Doped [Bi0.5Na0.5]TiO3 Ferroelectrics: Reduction and Oxidation Reactions During Calcination and Sintering, Journal of the American Ceramic Society, vol.3, issue.155, p.1363, 2011.
DOI : 10.1111/j.1551-2916.2010.04249.x

J. Glaum, H. Simons, M. Acosta, and M. Hoffman, via Zirconium Doping, Journal of the American Ceramic Society, vol.94, issue.11, p.2881, 2013.
DOI : 10.1111/jace.12405

N. Kumar, T. Y. Ansell, and D. P. Cann, relaxor ceramics, Journal of Applied Physics, vol.115, issue.15, p.154104, 2014.
DOI : 10.1063/1.4871671

N. Kumar and D. P. Cann, ceramics, Journal of Applied Physics, vol.114, issue.5, p.54102, 2013.
DOI : 10.1063/1.4817524

URL : https://hal.archives-ouvertes.fr/hal-00188625

P. K. Davies, J. Tong, and T. Negas, Effect of Ordering-Induced Domain Boundaries on Low-Loss Ba(Zn1/3Ta2/3)O3-BaZrO3 Perovskite Microwave Dielectrics, Journal of the American Ceramic Society, vol.73, issue.5, p.1727, 1997.
DOI : 10.1111/j.1151-2916.1997.tb03046.x

C. Diao, C. Wang, N. Luo, Z. Qi, T. Shao et al., Microwave Dielectric Ceramic, Journal of the American Ceramic Society, vol.59, issue.2, p.2898, 2013.
DOI : 10.1111/jace.12429

P. P. Ma, L. Yi, X. Q. Liu, L. Li, and X. M. Chen, Complex Perovskite Ceramics, Journal of the American Ceramic Society, vol.91, issue.24, p.1795, 2013.
DOI : 10.1111/jace.12240

S. Nomura, Ceramics for microwave dielectric resonator, Ferroelectrics, vol.21, issue.1, p.61, 1983.
DOI : 10.1080/00150198308244666

M. S. Fu, X. Q. Liu, X. M. Chen, and Y. W. Zeng, Perovskite Ceramics, Journal of the American Ceramic Society, vol.93, issue.3, p.787, 2010.
DOI : 10.1111/j.1551-2916.2009.03459.x

J. Dai, Y. Song, and H. Zhang, Materials, Ferroelectrics, vol.67, issue.1, p.22, 2014.
DOI : 10.1103/PhysRevB.57.R13973

M. G. Brik, First-principles calculations of electronic, optical and elastic properties of Ba2MgWO6 double perovskite, Journal of Physics and Chemistry of Solids, vol.73, issue.2, p.252, 2012.
DOI : 10.1016/j.jpcs.2011.10.034

D. H. Kuo, C. Y. Chou, and Y. K. Kuo, Phase Stabilization of a LaNiO3 Perovskite and the Electric Resistivity of its A/B-Site Substituted, Ni-Deficient La(Ni0.6Fe0.3)O3 Modifiers, International Journal of Applied Ceramic Technology, vol.25, issue.2, p.217, 2010.
DOI : 10.1111/j.1744-7402.2008.02340.x

C. W. Chu, P. H. Hor, R. L. Meng, L. Gao, and Z. J. Huang, Superconductivity at 52.5 K in the Lanthanum-Barium-Copper-Oxide System, Science, vol.235, issue.4788, p.567, 1987.
DOI : 10.1126/science.235.4788.567

S. Larsson, Lattice Enthalpy Drives Hubbard U to Zero, Journal of Modern Physics, vol.04, issue.06, p.29, 2013.
DOI : 10.4236/jmp.2013.46A007

A. M. Stoneham and L. W. Smith, Defect phenomena in superconducting oxides and analogous ceramic oxides, Journal of Physics: Condensed Matter, vol.3, issue.3, p.225, 1991.
DOI : 10.1088/0953-8984/3/3/001

K. F. Wang, J. Liu, and Z. F. Ren, Multiferroicity: the coupling between magnetic and polarization orders, Advances in Physics, vol.27, issue.4, p.321, 2009.
DOI : 10.1126/science.1058847

M. Fiebig, Revival of the magnetoelectric effect, Journal of Physics D: Applied Physics, vol.38, issue.8, p.123, 2005.
DOI : 10.1088/0022-3727/38/8/R01

J. R. Sahu, C. R. Serrao, N. Ray, U. V. Waghmare, and C. Rao, Rare earth chromites: a new family of multiferroics, J. Mater. Chem., vol.47, issue.291, p.42, 2007.
DOI : 10.1039/B612093H

S. Ju, T. Cai, and G. Guo, Electronic structure, linear, and nonlinear optical responses in magnetoelectric multiferroic material BiFeO3, The Journal of Chemical Physics, vol.130, issue.21, p.214708, 2009.
DOI : 10.1063/1.3146796

Z. V. Gareeva, A. F. Popkov, S. V. Soloviov, and A. K. Zvezdin, -like multiferroics, Physical Review B, vol.87, issue.21, p.214413, 2013.
DOI : 10.1103/PhysRevB.87.214413

H. Kawano, R. Kajimoto, M. Kubota, and H. Yoshizawa, ???0.17, Physical Review B, vol.53, issue.5, p.2202, 1996.
DOI : 10.1103/PhysRevB.53.2202

Y. Tokura, Critical features of colossal magnetoresistive manganites, Reports on Progress in Physics, vol.69, issue.3, p.797, 2006.
DOI : 10.1088/0034-4885/69/3/R06

S. Jin, T. H. Tiefel, M. Mccormack, R. A. Fastnacht, R. Ramesh et al., Thousandfold Change in Resistivity in Magnetoresistive La-Ca-Mn-O Films, Science, vol.264, issue.5157, p.413, 1994.
DOI : 10.1126/science.264.5157.413

C. W. Searle and S. T. Wang, III. Ferromagnetic resonance studies, Canadian Journal of Physics, vol.47, issue.23, p.2703, 1969.
DOI : 10.1139/p69-329

R. V. Demin, L. I. Koroleva, and A. Muminov, Giant volume magnetostriction and colossal magnetoresistance in La0.7Ba0.3MnO3 at room temperature, Physics of the Solid State, vol.48, issue.2, p.322, 2006.
DOI : 10.1134/S1063783406020211

Z. Jirak, J. Hejtmanek, E. Pollert, C. Martin, A. Maignan et al., Magnetic ground states in Pr1???xSrxMnO3 (x=0.48???0.75), Journal of Applied Physics, vol.89, issue.11, p.7404, 2001.
DOI : 10.1063/1.1358342

O. Peña, M. Bahout, Y. Ma, T. Guizouarn, D. Gutiérrez et al., Effects of substitution at the manganese site in RE(Ni,Mn)O3 perovskites (RE=Y, Eu), Materials Science and Engineering: B, vol.104, issue.3, p.126, 2003.
DOI : 10.1016/S0921-5107(03)00184-3

A. B. Antunes, V. Gil, C. Moure, and O. Peña, Magnetic properties of Er(Co, Mn)O3 perovskites, Journal of the European Ceramic Society, vol.27, issue.13-15, p.3927, 2007.
DOI : 10.1016/j.jeurceramsoc.2007.02.064

URL : https://hal.archives-ouvertes.fr/hal-00411293

O. Peña, P. Barahona, V. Gil, J. Tartaj, and C. Moure, Comportamiento magn??tico de las soluciones s??lidas TRMe<sub>0.50</sub>Mn<sub>0.50</sub>O<sub>3</sub> (TR = Y, La, Pr, Nd, Eu, Gd, Er ; Me = Ni,Co), Bolet??n de la Sociedad Espa??ola de Cer??mica y Vidrio, vol.47, issue.3, p.138, 2008.
DOI : 10.3989/cyv.2008.v47.i3.190

K. Vijayanandhini, S. Ch, V. Pralong, Y. Bréard, V. Caignaert et al., uncompensated weak ferromagnet, Journal of Physics: Condensed Matter, vol.21, issue.48, p.486002, 2009.
DOI : 10.1088/0953-8984/21/48/486002

O. Peña, A. A. Baibich, M. N. Lisboa-filho, P. N. Gil, V. Moure et al., Spin reversal and magnetization jumps in ErMexMn1???xO3 perovskites (Me=Ni, Co), Journal of Magnetism and Magnetic Materials, vol.312, issue.1, p.78, 2007.
DOI : 10.1016/j.jmmm.2006.09.012

A. B. Antunes, M. N. Baibich, V. Gil, C. Moure, V. Allegret-maret et al., Ferro???ferrimagnetic transitions in rare-earth perovskites, Journal of Magnetism and Magnetic Materials, vol.320, issue.14, p.464, 2008.
DOI : 10.1016/j.jmmm.2008.02.085

URL : https://hal.archives-ouvertes.fr/hal-00411364

A. B. Antunes, C. Moure, A. Moure, and O. Peña, Field-Induced Transitions in RECo0.50Mn0.50O3 (RE = Dy, Eu), Journal of Low Temperature Physics, vol.321, issue.1-2, p.114, 2010.
DOI : 10.1007/s10909-009-0086-6

URL : https://hal.archives-ouvertes.fr/hal-00832644

V. Hardy, S. Majumdar, S. J. Crowe, M. R. Lees, D. Paul et al., Field-induced magnetization steps in intermetallic compounds and manganese oxides: The martensitic scenario, Physical Review B, vol.69, issue.2, p.20407, 2004.
DOI : 10.1103/PhysRevB.69.020407

T. Tang, C. Tien, R. S. Huang, and B. Y. Hou, Steplike magnetization and resistivity transition in the half-doped manganite compound Pr0.75Na0.25MnO3, Solid State Communications, vol.146, issue.3-4, p.133, 2008.
DOI : 10.1016/j.ssc.2008.02.008

W. H. Meiklejohn and C. P. Bean, New Magnetic Anisotropy, Physical Review, vol.102, issue.5, p.1413, 1956.
DOI : 10.1103/PhysRev.102.1413