S. Wunder, F. Polzer, Y. Lu, Y. Mei, and M. Ballauff, Kinetic Analysis of Catalytic Reduction of 4-Nitrophenol by Metallic Nanoparticles Immobilized in Spherical Polyelectrolyte Brushes, The Journal of Physical Chemistry C, vol.114, issue.19, pp.8814-8820, 2010.
DOI : 10.1021/jp101125j

F. Lin and R. Doong, Highly efficient reduction of 4-nitrophenol by heterostructured gold-magnetite nanocatalysts, Applied Catalysis A: General, vol.486, pp.32-41, 2014.
DOI : 10.1016/j.apcata.2014.08.013

]. T. Aditya, A. Pal, and T. , Nitroarene reduction: a trusted model reaction to test nanoparticle catalysts, Chem. Commun., vol.52, issue.440, pp.9410-9431, 2015.
DOI : 10.1002/smll.201402837

]. S. Gu, S. Wunder, Y. Lu, and M. Ballauff, Kinetic Analysis of the Catalytic Reduction of 4-Nitrophenol by Metallic Nanoparticles, The Journal of Physical Chemistry C, vol.118, issue.32, pp.18618-18625, 2014.
DOI : 10.1021/jp5060606

R. Fenger, E. Fertitta, H. Kirmse, A. F. Thunemann, and K. Rademann, Size dependent catalysis with CTAB-stabilized gold nanoparticles, Physical Chemistry Chemical Physics, vol.59, issue.158, pp.9343-9349, 2012.
DOI : 10.1039/c2cp40792b

X. Kong, Z. Sun, M. Chen, C. Chen, and Q. Chen, Metal-free catalytic reduction of 4-nitrophenol to 4-aminophenol by N-doped graphene, Energy & Environmental Science, vol.9, issue.440, pp.3260-3266, 2013.
DOI : 10.1039/c3ee40918j

N. Pradhan, A. Pal, and T. , Silver nanoparticle catalyzed reduction of aromatic nitro compounds, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.196, issue.2-3, pp.247-257, 2002.
DOI : 10.1016/S0927-7757(01)01040-8

A. L. Roberts, L. A. Totten, W. A. Arnold, D. R. Burris, and T. J. Campbell, Reductive Elimination of Chlorinated Ethylenes by Zero-Valent Metals, Environmental Science & Technology, vol.30, issue.8, pp.2654-2659, 1996.
DOI : 10.1021/es9509644

M. J. Alowitz and M. M. Scherer, Kinetics of Nitrate, Nitrite, and Cr(VI) Reduction by Iron Metal, Environmental Science & Technology, vol.36, issue.3, pp.299-306, 2002.
DOI : 10.1021/es011000h

S. Bae and W. Lee, Inhibition of nZVI reactivity by magnetite during the reductive degradation of 1,1,1-TCA in nZVI/magnetite suspension, Applied Catalysis B: Environmental, vol.96, issue.1-2, pp.10-17, 2010.
DOI : 10.1016/j.apcatb.2010.01.028

Y. Xie and D. M. Cwiertny, Influence of Anionic Cosolutes and pH on Nanoscale Zerovalent Iron Longevity: Time Scales and Mechanisms of Reactivity Loss toward 1,1,1,2-Tetrachloroethane and Cr(VI), Environmental Science & Technology, vol.46, issue.15, pp.8365-8373, 2012.
DOI : 10.1021/es301753u

Y. Shin, S. Bae, and W. Lee, Formation of surface mediated iron colloids during U(VI) and nZVI interaction, Advances in environmental research, vol.2, issue.3, pp.167-177, 2013.
DOI : 10.12989/aer.2013.2.3.167

M. Usman, M. Abdelmoula, K. Hanna, B. Grégoire, P. Faure et al., FeII induced mineralogical transformations of ferric oxyhydroxides into magnetite of variable stoichiometry and morphology, Journal of Solid State Chemistry, vol.194, pp.328-335, 2012.
DOI : 10.1016/j.jssc.2012.05.022

URL : https://hal.archives-ouvertes.fr/hal-00845705

L. L. Stookey, Ferrozine---a new spectrophotometric reagent for iron, Analytical Chemistry, vol.42, issue.7, pp.779-781, 1970.
DOI : 10.1021/ac60289a016

G. Kresse and J. Furthmuller, total-energy calculations using a plane-wave basis set, Physical Review B, vol.54, issue.16, pp.11169-11186, 1996.
DOI : 10.1103/PhysRevB.54.11169

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters, vol.77, issue.18, pp.3865-3868, 1996.
DOI : 10.1103/PhysRevLett.77.3865

F. Sun, K. A. Osseo-asare, Y. Chen, and B. A. Dempsey, Reduction of As(V) to As(III) by commercial ZVI or As(0) with acid-treated ZVI, Journal of Hazardous Materials, vol.196, pp.311-317, 2011.
DOI : 10.1016/j.jhazmat.2011.09.029

Q. Hua and W. Huang, Chemical etching induced shape change of magnetite microcrystals, Journal of Materials Chemistry, vol.16, issue.36, pp.4286-4290, 2008.
DOI : 10.1039/b807212d

A. Perry, H. J. Son, J. S. Cordova, L. G. Smith, and A. S. Biris, Adsorption analysis of nitrophenol isomers on silver nanostructures by surface-enhanced spectroscopy, Journal of Colloid and Interface Science, vol.342, issue.2, pp.311-319, 2010.
DOI : 10.1016/j.jcis.2009.10.053

B. Rajesh, N. Sasirekha, Y. W. Chen, and S. P. Lee, Effect of Synthesis Parameters on the Characteristics of Fe???B Nanoalloys for Dehydrogenation of Ethanol, Industrial & Engineering Chemistry Research, vol.46, issue.7, pp.2034-2041, 2007.
DOI : 10.1021/ie061552e

C. Lemire, R. Meyer, V. E. Henrich, . Sh, H. Shaikhutdinov et al., The surface structure of Fe3O4(111) films as studied by CO adsorption, Surface Science, vol.572, issue.1, pp.103-114, 2004.
DOI : 10.1016/j.susc.2004.08.033

A. Barbieri, W. Weiss, M. A. Hove, and G. A. Somorjai, Magnetite Fe3O4(111): surface structure by LEED crystallography and energetics, Surface Science, vol.302, issue.3, pp.259-279, 1994.
DOI : 10.1016/0039-6028(94)90832-X

M. Ritter and W. Weiss, Fe3O4(111) surface structure determined by LEED crystallography, Surface Science, vol.432, issue.1-2, pp.81-94, 1999.
DOI : 10.1016/S0039-6028(99)00518-X

S. Pandey and S. B. Mishra, Catalytic reduction of p-nitrophenol by using platinum nanoparticles stabilised by guar gum, Carbohydrate Polymers, vol.113, pp.525-531, 2014.
DOI : 10.1016/j.carbpol.2014.07.047

R. Konig, M. Schwarze, R. Schomacker, and C. , Catalytic Activity of Mono- and Bi-Metallic Nanoparticles Synthesized via Microemulsions, Catalysts, vol.4, issue.3, pp.256-275, 2014.
DOI : 10.3390/catal4030256