NAP1L1-MLLT10 is a rare recurrent translocation that is associated with HOXA activation and poor treatment response in T-cell acute lymphoblastic leukaemia

Jonathan Bond, Aurore Touzart, Agata Cieslak, Amélie Trinquand, Tony Marchand, Martine Escoffre, Audrey Contet, Marc Muller, Claudine Schmitt, Thierry Fest, et al.

To cite this version:

NAP1L1-MLLT10 is a rare recurrent translocation that is associated with HOXA activation and poor treatment response in T-cell acute lymphoblastic leukaemia.

Correspondence

Jonathan Bond1,2, Aurore Touzart1,2, Agata Cieslak1,2, Amélie Trinquand1,2, Tony Marchand3, Martine Escoffre3, Audrey Contet4, Marc Muller5, Claudine Schmitt4, Thierry Fest3, Vahid Asnafi1,2 and Elizabeth Macintyre1,2

1 - Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Institut national de recherche médicale (INSERM) U1151, Paris, France

2 - Laboratory of Onco-Haematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Paris, France

3 - Department of Haematology, University Hospital and INSERM UMR 917, Rennes 1 University, Rennes, France

4 - Department of Paediatric Haematology, University Hospital, Nancy, France

5 - Genetics Laboratory, University Hospital, Nancy, France

Email: Elizabeth Macintyre (elizabeth.macintyre@nck.aphp.fr)

Keywords: acute leukaemia; biology; leukaemia cytogenetics; clinical aspects; HOXA

MLLT10 (previously AF10) was originally described as a fusion partner of the KMT2A (previously MLL) gene in acute myeloid leukaemia (AML) (Beverloo et al, 1995), and was subsequently found to be recurrently rearranged in both AML and T-acute lymphoblastic leukaemia (T-ALL) (Dreyling et al, 1998). PICALM (previously CALM) is the most frequent MLLT10 translocation partner in T-ALL, where it is found in 6-7% of cases (Ben Abdelali et al, 2013). The list of MLLT10 partners in T-ALL now also comprises NAP1L1 (Zhang et al, 2012), HNRNPH1, DDX3X (Brandimarte et al, 2013) and XPO1 (Bond et al, 2014). While DDX3X-MLLT10 has been estimated to occur in about 3% of adult T-ALL cases (Brandimarte et al, 2014), all other fusion transcripts have to date been described in single cases only, and their precise incidence remains to be defined.

The NAP1L1-MLLT10 rearrangement was originally discovered by whole genome sequencing of leukaemic blasts from a child with early thymic precursor (ETP) ALL (Zhang et al, 2012). Diagnostic karyotypes of two T-ALL patients revealed similar t(10;12) translocations (Table 1), leading us to suspect the presence of NAP1L1-MLLT10. Expression of the transcript was confirmed by reverse transcription polymerase chain reaction (RT-PCR) (Fig 1A), and direct sequencing revealed fusion of NAP1L1 exon 14 and MLLT10 exon 4 in both cases (Fig 1B).
Table 1. Clinical details of the **NAP1L1-MLLT10** positive patients. **HOXA9** expression was calculated relative to the housekeeping gene **ABL1**, whereby a ratio of 1 indicated equivalent levels of the two transcripts.

<table>
<thead>
<tr>
<th></th>
<th>Patient A</th>
<th>Patient B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>16</td>
<td>22</td>
</tr>
<tr>
<td>Sex</td>
<td>Male</td>
<td>Male</td>
</tr>
<tr>
<td>WBC count (×10⁹/l)</td>
<td>25·6</td>
<td>297·9</td>
</tr>
<tr>
<td>Immunophenotype</td>
<td>CD34⁻ CD1a⁻ CD3⁻ eCD3⁺ CD5⁺ CD7⁺ CD4weak</td>
<td>CD34⁻ CD1aweak CD2⁻ CD3⁺ CD5⁺ CD7⁺ CD4⁺</td>
</tr>
<tr>
<td></td>
<td>CD8⁻ CD10⁻ TCRAB⁻ TCRGD⁻ MPO⁻</td>
<td>CD8⁻ CD10⁺ TCRGD⁺ CD13⁻ CD33⁻ CD117⁻</td>
</tr>
<tr>
<td>CNS Infiltration</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Karyotype</td>
<td>46,XY,t(10;12)(p11;q14)</td>
<td>46,XY,t(10;12)(p1?2;q14)</td>
</tr>
<tr>
<td>HOXA9/ABL1</td>
<td>3</td>
<td>1·7</td>
</tr>
<tr>
<td>TCR status</td>
<td>Immature, TRG rearranged</td>
<td>TCRγδ Positive</td>
</tr>
<tr>
<td>NOTCH1</td>
<td>Wild-type</td>
<td>Mutated</td>
</tr>
<tr>
<td>FBXW7</td>
<td>Mutated</td>
<td>Wild-type</td>
</tr>
<tr>
<td>PTEN/NRAS/KRAS</td>
<td>Wild-type</td>
<td>Not performed</td>
</tr>
<tr>
<td>MRD</td>
<td>Positive</td>
<td>Positive</td>
</tr>
<tr>
<td>Clinical course</td>
<td>Persistent MRD positivity (3%) post-induction and consolidation phases of treatment.</td>
<td>Remained in remission from leukaemia but died 2 years post-SCT due to chronic GVHD.</td>
</tr>
</tbody>
</table>
Figure 1. Characterization of the \textit{NAP1L1-MLLT10} translocation in T-ALL. (A) RT-PCR using primers specific for \textit{NAP1L1-MLLT10}. The expected product size of 454 bp is observed for Patient A (Lane 2) and Patient B (Lane 1). Two other patients (Lanes 3 and 4) are negative. NTC, no template control. (B) Confirmation of expression of an in-frame \textit{NAP1L1-MLLT10} fusion transcript by direct (Sanger) sequencing. Exon numbers are indicated. (C) Screening of 565 T-ALL patients for \textit{NAP1L1-MLLT10}. PCR testing was targeted to cases with elevated \textit{HOXA9}. The screening cut-off was based on the lowest \textit{HOXA9/ABL1} associated with a known \textit{HOXA}-activating genetic abnormality (0·5 in a \textit{PICALM-MLLT10} patient). In order not to exclude \textit{NAP1L1-MLLT10} cases that might have lower \textit{HOXA}
expression, the testing threshold was extended to patients with \textit{HOXA9}/\textit{ABL1} \(\geq 0.4 \). Numbers in the relevant groups are indicated. Of the 173 HOXA High cases, 91 had known \textit{HOXA}-activating translocations, and 63 of the remaining 82 had material available for analysis. (D) Taqman Low-Density Array (TLDA) analysis of \textit{HOX} gene transcription in \textit{NAPI1L1-MLLT10} cases. Patient (Pt) samples show specific increases in \textit{HOXA} gene expression relative to three normal thymic (Thy) controls, while other \textit{HOX} loci were not activated.

Clinical details of the \textit{NAPI1L1-MLLT10} patients are shown in Table 1. Strikingly, both were found to have high expression of \textit{HOXA9} by quantitative real time RT-PCR (QRT-PCR). Similar to the index case, Patient A had an ETP-ALL-like immunophenotype, with absence of CD1a, and expression of HLA-DR and the CD13 and CD33 myeloid markers (Table 1). Detailed characterization of T-cell receptor gene configuration revealed biallelic rearrangement of \textit{TRD} and \textit{TRG} and incomplete rearrangement of the \textit{TRB} locus, conforming to an immature pre-\(\beta\)-selection immunogenenotype (Asnafi \textit{et al.}, 2003). In contrast, Patient B exhibited a mature TCR\(\gamma\delta\)+ phenotype and absence of expression of myeloid markers. In common with the reported cases of \textit{DDX3X-MLLT10} T-ALL (Brandimarte \textit{et al.}, 2014), both cases had NOTCH1-activating mutations.

Notably, both patients had poor initial treatment responses, with positive minimal residual disease (MRD). Patient B had persistent MRD positivity throughout induction and consolidation therapy, which necessitated allogeneic stem cell transplantation (allo-SCT) 7 months after diagnosis. Although this resulted in molecular remission, the patient ultimately died of SCT-related complications 2 years later while in remission from leukaemia. The follow-up of Patient A is at an early stage, and latest assessment revealed significant persistent MRD positivity following the consolidation phase.

We sought to determine the incidence of the \textit{NAPI1L1-MLLT10} translocation in T-ALL by screening 565 cases, comprising 141 patients under 16 years of age and 424 adults, using a specific and sensitive (<1%, data not shown) QRT-PCR assay (Fig 1C). As \textit{MLLT10} translocations are normally associated with \textit{HOXA} locus activation (Brandimarte \textit{et al.}, 2013; Bond \textit{et al.}, 2014), we targeted the screening to 173 patients with elevated \textit{HOXA9} at diagnosis (‘HOXA High’ in Fig 1C). We detected no further cases of \textit{NAPI1L1-MLLT10} in patients for whom leukaemic material was available for testing. We therefore estimate the incidence of the translocation in T-ALL to be 0.35% (2/565 patients), and 1.2% of patients with \textit{HOXA9}/\textit{ABL1} \(>0.4 \) (2/173 patients).

\textit{HOXA} overexpression has not previously been described to be associated with \textit{NAPI1L1-MLLT10}. In order to fully characterize \textit{HOX} transcription in these cases, we performed Taqman Low-Density Array (TLDA) analysis of diagnostic RNA. This revealed specific deregulation of \textit{HOXA} gene expression in both samples (Fig 1D). These results, along with the predicted retention of the MLLT10 octapeptide-motif leucine zipper (OM-LZ) domain in the fusion protein, suggest that \textit{NAPI1L1-MLLT10} is likely to recruit the DOT1 Ligand histone methyltransferase and to activate the \textit{HOXA} locus by a similar mechanism as \textit{PICALM-MLLT10} (Okada \textit{et al.}, 2005).

It remains unclear how the activities of \textit{MLLT10} fusion partners might contribute to T-ALL biology. Prediction of \textit{NAPI1L1} (Nucleosome assembly protein 1-like1) function is based on its structural resemblance to \textit{NAP1}, which is thought to be involved primarily in chromatin modulation. \textit{NAP1} has been shown to interact directly with histone H2A-H2B dimers \textit{in vitro} (Okuwaki \textit{et al.}, 2010), suggesting that \textit{NAPI1L1} might alter the regulation of histone
dynamics. It remains to be determined whether the epigenetic effects of NAP1L1 haploinsufficiency and/or activity of a NAP1L1 fusion protein might contribute to a leukaemic phenotype.

In summary, NAP1L1-MLLT10 is a rare recurrent translocation in T-ALL and we report an overall incidence of 0.35%. This may be an underestimation, as our QRT-PCR screening method may not have identified patients with novel breakpoints, and lack of diagnostic material precluded screening in 11% of HOXA-overexpressing patients. Reassuringly, all three cases of NAP1L1-MLLT10 described to date exhibited the t(10;12) translocation by conventional karyotyping, and none of our patient cohort had evidence of chromosome 10 or 12 rearrangement. As with other MLLT10 fusions, NAP1L1-MLLT10 is associated with HOXA deregulation and poor early treatment response. Although one of our patients died of transplant-related complications, the prolonged leukaemia-free survival in this case suggests that these patients should be considered for allo-SCT in first remission, particularly in the event of persistent treatment resistance and/or MRD positivity.

Acknowledgements

JB, AT, AC, AT, MM and TF performed and interpreted diagnostic investigations. TM, ME, AC and CS provided clinical care and interpreted clinical data. JB, VA and EAM analysed and collated data and wrote the manuscript. JB is supported by a Kay Kendall Leukaemia Fund Intermediate Research Fellowship. The Macintyre laboratory is supported by the Association Laurette Fugain and the INCa CARAMELE Translational Research and PhD Programmes.

Conflicts of interest

The authors report no conflicts of interest.

References

