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ABSTRACT 

Quantitative Structure Activity Relationship (QSAR) models are expected to play an 

important role in the risk assessment of chemicals on humans and the environment. In this 

study, we developed a validated QSAR model to predict acute oral toxicity of 329 pesticides to 

rats because a few QSAR models have been devoted to predict the Lethal Dose 50 (LD50) of 

pesticides on rats. This QSAR model is based on 17 molecular descriptors, and is robust, 

externally predictive and characterized by a good applicability domain. The best results were 

obtained with a 17/9/1 Artificial Neural Network model trained with the Quasi Newton back 

propagation (BFGS) algorithm. The prediction accuracy for the external validation set was 

estimated by the Q2
ext and the Root Mean Square error (RMS) which are equal to 0.948 and 

0.201, respectively. 98.6% of external validation set is correctly predicted and the present model 

proved to be superior to models previously published. Accordingly, the model developed in this 

study provides excellent predictions and can be used to predict the acute oral toxicity of 

pesticides, particularly for those that have not been tested as well as new pesticides. 

Keywords 

Acute toxicity, Pesticides, QSAR, Prediction, External validation     

 

Abbreviations : QSAR, quantitative structure-activity relationship; LD50, lethal dose 50;  ANN, 

artificial neural networks; BFGS, Quasi-Newton back propagation algorithm; RMS, root mean 

square error; REACH, registration, evaluation, authorization and restriction of chemicals; 

OECD, organization for economic cooperation and development; LOO, leave-one-out; CV, 

cross-validation; AD, applicability domain; VIF, variation inflation factors; MLP, multi-layer 

perceptron. 
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Pesticides are widely used in agriculture for plant protection and for increasing 

production yields and quality of agricultural products but also in domestic applications. They 

are also used to slow the spread of insects, to maintain lawns, recreational areas and highways. 

Pesticides have also contributed to the control of many human diseases transmitted by insects. 

The most common pesticides are herbicides, insecticides and fungicides. However, despite 

these advantages, pesticides have a major drawback such as toxicity [1]. Due to the excessive 

use of these products, they are found as well as residue in the environment (water, soil, air) than 

in terrestrial and aquatic food chains [2, 3]. In addition, they also pose a threat to the 

environment, humans, animals and other organisms [4, 5]. Many studies made internationally 

highlight the environmental pollution by pesticides. The consequences of this pollution are the 

widespread presence of residues in air, water, soil and foodstuffs [6-13].  

Long-term exposure to pesticides can cause harm to human life and can disrupt the 

functioning of various organs in the body. This significant relationship between exposure to 

pesticides and some chronic diseases has been the subject of several scientific publications. 

Exposure to these persistent pesticides has been associated with health effects including cancer, 

headache, skin and eye irritation, immune system problems, stomach, kidney, Parkinson and 

Alzheimer’s disease, reproductive difficulties, birth defects, diabetes, cataracts and anemia [14-

17].   

As seen, humans and the environment are exposed to thousands of pesticides. This 

pollution caused by pesticides has become an important issue affecting the survival and 

development of humain being. It is evident that risk assessment for pesticides can provide a 

precaution against the corresponding pollution. One of the procedures currently used for human 

and environmental risk assessment is the determination of the acute toxicity of pesticides [18]. 

Unfortunately, experimental determination of the toxicity takes time, requires a high expense 

and poses an ethical problem (demands to reduce or abolish the use of animals). Also, there is 

a very large body of research going on in many countries with the aim of replacing in vivo tests 

by in silico prediction methods according to the European Directive on the Protection of 

Laboratory Animals [19] and the Registration, Evaluation, Authorization and restriction of 

Chemicals (REACH) regulation [20]. Despite being significantly cheaper than in vivo study, in 

vitro tests are still costly compared with in silico methods [21]. The use of in silico predictive 

methods, based on computer tools, offers a rapid, cost-effective and ethical alternative to testing 

toxicity of chemical substances in animals [22]. These methods include the Quantitative 

Structure–Activity Relationship (QSARs) models. To establish a QSAR model, three elements 
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are necessary. The first relates to the biological activity (eg toxicity) measured for a set of 

molecules. The second concerns the descriptors. Finally, the third must be a statistical learning 

method that is used to connect the first two elements. 

The acute toxicity still remains the object of interest in QSAR model building. To date, 

a large number of QSARs models for predicting the acute toxicity of chemical substances have 

been developed [23, 24]. Unfortunately, few studies have been devoted to the acute toxicity of 

pesticides on rats. For example, Enslein et al. [25, 26] developed regression analysis models 

using two large data sets (425 and 1851 various chemicals, respectively). The R2 value for the 

test set is 0.33, which means that these models are characterized by low power external 

prediction. A very marked improvement in R2 coefficient was obtained following the QSAR 

models developed with 44, 54, 67, 30 and 62 pesticides by Zakaria et al. [27], Eldred and Jurs 

[28], Zahouily [29], Guo et al. [30] and Garcia et al. [31] respectively. Recent studies devoted 

to pesticides [32, 33] have proposed QSAR models with values of 0.93 (27 herbicides) and 0.96 

(62 herbicides) for the R2 coefficient. The conclusion which can be draw from these studies is 

that most QSAR models developed are distinguished by two major shortcomings: lack of 

validation test on the one hand, and a limited field of application because these studies included 

a relatively small number of pesticides on the other hand. 

Since the prediction of potential risks to human health is based on the assumption that 

test results seen in high-dose animal tests are predictive of effects that will occur in human 

populations exposed to much lower levels [34], our main goal in this work is to establish a 

robust QSAR model to predict acute toxicity (log [1/LD50]) of pesticides on rats. The database 

used consists of 329 pesticides. The QSAR model established by using artificial neural 

networks and molecular descriptors satisfies the guidelines required by the Organisation for 

Economic Cooperation and Development (OECD), namely: (1) a defined endpoint; (2) an 

unambiguous algorithm; (3) a defined domain of applicability; (4) appropriate measures of 

goodness of fit, robustness, predictability; (5) a mechanistic interpretation, if possible. 

 

2. Materials and method 

2.1 Data set 

It is well known that high-quality experimental data are essential for the development 

of high quality QSAR models [35]. If they are unreliable, the model will be unreliable. The rat 

lethal dose 50 (LD50 - rat, male via oral exposure) values were retrieved from Pesticide 

Properties Database [36]. The LD50 correspond to the concentration (mg/kg) of pesticide that 
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lead to the death of 50% of rat. All values of oral acute toxicity were first converted into 

mmol/kg and then translated to log [1/ (mmol/kg)]. 

The initial database that included 907 pesticides was rigorously reviewed and “cleaned” 

by removing pesticides whose LD50 was not experimentally determined or whose LD50 was not 

determined in the same experimental conditions. A total of 329 pesticides with experimental 

data were selected to form the final database (Table 1). The basis of 329 pesticides was divided 

into 2 lots. The first with 258 pesticides was dedicated to develop the QSAR model. The second 

which included 71 pesticides that had not been used for the development of the QSAR model, 

was left for the external validation. 

2.2 Molecular descriptors 

One important step in obtaining a QSAR model is the numerical representation of the 

structural features of molecules, which were named molecular descriptors. Nowadays, there are 

more than 4000 of molecular descriptors which can be used to solve different problems in 

Chemistry, Biology and related sciences [1]. In the specific case of this study, for each 

molecule, 1664 molecular descriptors were calculated, which belong to many classes. All 

descriptors were obtained through the online program E-Dragon 1.0 (http: //www.vcclab. 

org/lab/edragon). 

To avoid the phenomenon of overfitting, the number of descriptors must be reduced. 

Several methods to simplify a database are used. The method used to select the most significant 

descriptors was described previously [32]. In the first step, invariant descriptors, namely those 

with absent values (represented by the code ‘‘999’’), were manually removed. Next, any 

descriptor that had identical values for 75% of the samples and any descriptors with a relative 

standard deviation < 0.05 were removed. Finally, half of the descriptors showing an absolute 

value of the Pearson correlation coefficient > 0.95 were also removed. The number of 

descriptors obtained after the selection was 95. For relevant descriptors selection, stepwise 

regression was then used [37]. Twenty nine descriptors were selected. 

2.3 Model development  

In this work, all calculations were run on a Sony personal computer with a Core (TM) 

i3 and windows XP as operating system. The Artificial Neural Networks (ANN) which has 

extensive applicability in solving non-linear systems was employed to build the QSAR model 

between the molecular relevant descriptors and the toxicity of pesticides. A three-layer feed-
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forward neural network utilizing back-propagation algorithm was employed. The typical back-

propagation network consists of an input layer, an output layer and at least one hidden layer. 

Each layer contains neurons and each neuron is a simple micro-processing unit which receives 

and combines signals from many neurons. 

The use of a neuronal regression goes through the choice of the input parameters but 

also by optimizing the architecture of the neural network itself. The optimization of both the 

distribution of the database, the number of hidden layers, the number of neurons per hidden 

layer, the transfer functions as well as algorithms was carried after extensive testing. The design 

of the neural model is to evaluate the components of the network according to the desired 

performance modeling. Model performance is evaluated in terms of root mean square error 

(RMS) [38] and was calculated with the following equation: 

𝑅𝑀𝑆 = √∑ (𝑦
𝑖
𝑒𝑥𝑝

−𝑦
𝑖
𝑝𝑟𝑒𝑑

)2𝑛
𝑖=1

𝑛
                                                                                                      (1) 

where n is the number of compounds in the dataset, and 𝑦𝑖
𝑝𝑟𝑒𝑑, 𝑦𝑖

𝑒𝑥𝑝
 are the predicted and the 

experimental values, respectively. 

 

2.4 Model validation 

 

For the validation of the predictive power of a QSAR model, two basic principles 

(internal validation and external validation) are available. The quality is always judged by the 

statistical parameters, for instance, the squared R (R2) and root mean square error (RMS). These 

parameters mainly reflect the goodness of fit of the models. However, recent studies [38] have 

indicated that the internal validation is considered to be necessary for model validation. In the 

present study, we took the leave-one-out (LOO) cross-validation (CV) for the internal 

validation to evaluate the internal predictive ability of the developed model, and its result was 

defined as Q2
LOO, which could be calculated according to the following equation [38]: 

𝑄𝐿𝑂𝑂
2 = 1 −  

∑ (𝑦𝑖
𝑒𝑥𝑝

−𝑦𝑖
𝑝𝑟𝑒𝑑

)2𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
𝑖=1

∑ (𝑦
𝑖
𝑒𝑥𝑝

−�̅�)2𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
𝑖=1

                                                                                            (2) 

where 𝑦𝑖
𝑒𝑥𝑝

, 𝑦𝑖
𝑝𝑟𝑒𝑑

 and �̅�  are the experimental, predicted, and average log (1/LD50) values of 

the samples for the training set, respectively. A value of Q2
LOO > 0.5 is considered satisfactory, 

and a Q2
LOO value > 0.9 is excellent [39]. 

Furthermore, the external validation is a significant and necessary validation method 

used to determine both the generalizability and the true predictive ability of the QSAR models 
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for new chemicals, by splitting the available dataset into a training set and an external prediction 

set. As mentioned above, the whole dataset in this work has been randomly divided into a 

training set with 258 compounds for model development, and a prediction set with 71 

compounds for model external validation. The external predictive ability of the developed 

models on the external prediction set was evaluated by Q2
ext, which could be calculated as 

follows [38]: 

𝑄𝑒𝑥𝑡
2 = 1 −  

∑ (𝑦𝑖
𝑒𝑥𝑝

−𝑦𝑖
𝑝𝑟𝑒𝑑

)2𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
𝑖=1

∑   (𝑦
𝑖
𝑒𝑥𝑝

−𝑦𝑡𝑟̅̅ ̅̅ ̅)2𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
𝑖=1

                                                                                          (3) 

where 𝑦𝑖
𝑒𝑥𝑝

, 𝑦𝑖
𝑝𝑟𝑒𝑑

 are the experimental and predicted log(1/LD50) values of the samples for the 

prediction set, and 𝑦𝑡𝑟̅̅ ̅̅  is the mean experimental log(1/LD50) values of the samples for the 

training set. 

2.5 Applicability domain 

Even the most comprehensive and validated models cannot predict reliably properties 

for all existing compounds. The QSAR model is not intended to be used outside its domain of 

applicability, that is to say, outside of the chemical space covered by the training set. Also, the 

applicability domain (AD) of models must be defined and the predictions of the molecules in 

this area can be considered admissible. The determination of AD is therefore of great 

importance [40]. 

 The AD is a theoretical region in the space defined by the descriptors of the model and 

the modeled response, for which a given QSAR should make reliable predictions. This region 

is defined by the nature of the compounds in the training set, and can be characterized in various 

ways. In our work, the AD was verified by the leverage approach. The leverage hi is defined as 

follows [41]: 

h𝑖 =  
1

𝑛
+

(𝑥𝑖−�̅�)2

∑ (𝑥𝑖−�̅�)2𝑛
𝑖=1

                                                                                                                 (4) 

Where xi is the descriptor value of the ith object, and �̅� is the average value of the descriptor in 

the training set, and n is the number of substances in the training set. The warning leverage h* 

is, generally, fixed at 3(p + 1)/n, where n is the total number of samples in the training set and 

p is the number of descriptors involved in the correlation.  

The applicability domain (AD) of QSAR model is defined from the Williams plot. The 

plot of leverage values versus standardized residuals (Williams plot) was used to give a 



 

 
Page 8 

 
  

graphical detection of both the response outliers (Y outliers) and the structurally influential 

compounds (X outliers). In this plot, the two horizontal lines indicate the limit of normal values 

for Y outliers (i.e. samples with standardized residuals greater than 3.0 standard deviation units, 

±3.0s); the vertical straight lines indicate the limits of normal values for X outliers (i.e. samples 

with leverage values greater than the threshold value, h > h*). For a sample in the external test 

set whose leverage value is greater than h*, its prediction is considered unreliable, because the 

prediction is the result of a substantial extrapolation of the model. Conversely, when the 

leverage value of a compound is lower than the critical value, the probability of accordance 

between predicted and experimental values is as high as that for the compounds in the training 

set [42]. 

3. Results and discussion 

3.1 Selection of relevant descriptors 

To select the most important descriptors and the optimal number, the influences of the 

number of descriptors on the correlation coefficients [R2 and adjusted R2 (R2
adj)] and the RMSE 

were investigated for 1–29 descriptors. R2 and R2
adj increased with increasing number of 

descriptors. However, the values of RMSE decreased with increasing number of descriptors. 

Models with 18–29 descriptors did not significantly improve the statistics of the model. For 

these reasons, the number of descriptors used to develop the model was 17. Let us note that n / 

k is greater than 5 [43] where n (258) and k (17) are respectively the number of compounds and 

the number of descriptors used in the QSAR model. 

Multi-collinearity between the 17 descriptors was detected by calculating their variation 

inflation factors (VIF). If VIF falls into the range of 1–5, the related model is acceptable. All 

the descriptors have VIF values < 2.873, indicating that the obtained model has statistical 

significance, and the descriptors were found to be reasonably orthogonal. Order to study the 

correlation between the selected descriptors, the correlation matrix has been established using 

the XLSTAT software. The results show that these descriptors are not correlated owing to the 

fact that the greatest value of the correlation coefficient is 0.512. The list of descriptors used in 

the development of QSAR model is given in Table 2. 

 

3.2 QSAR modeling 

The main objective of this phase of the study is to find the optimal architecture of the 

neural network to predict the acute oral toxicity of pesticides on rats. A typical multilayer 
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perceptron (MLP) three-layered network with an input layer, a hidden layer and an output layer 

is adopted in this work. Increasing the number of the hidden layers decreases the learning 

accuracy. Theoretical works have shown that a single hidden layer is sufficient for the ANN to 

approximate to any complex nonlinear function and many experimental results seem to confirm 

that one hidden layer may be enough for most forecasting problems [44]. The use of a neuronal 

regression requires the selection of input parameters, but also the optimization of the neural 

network architecture. Before training the network, the database distribution, the activation 

functions (for hidden neurons and output neurons), the number of neurons in the hidden layer 

and the learning algorithms were optimized after many trials. The optimal model performance 

is evaluated in terms of root mean square error (RMS) [45, 46]. The results of this study and 

the ANN network optimal adopted are given in Table 3. 

The selected parameters (Table 3) were used to develop nonlinear model. The seventeen 

relevant descriptors were used as inputs to the network. Before training the network, the number 

of nodes in the hidden layer was optimized, because it is an important parameter influencing 

the performances of the ANN. Thus, a 17-9-1 network architecture was obtained after trial and 

error procedure. The main performance parameters of MLP-ANN model are shown in Table 4. 

The predictive results from the MLP-ANN model for the entire dataset (329 compounds) are 

obtained and presented in Table 1. Figure 1 and 2 shows the regression line of the model 

equation, i.e. predicted vs experimental results for the training and validation set highlighted by 

different symbols. 

  Fig.1 and Fig.2 indicates that there is a significant correlation between experimental 

values and predicted values of log (1/ LD50). As can be seen from Table 4, the non-linear MLP-

ANN model give good results with higher correlation coefficients (R2 and R2
ext ), lower RMS, 

as well as better robustness (Q2) in both training set and validation set, which indicated that the 

MLP-ANN not only performed well in model development, but also had excellent prediction. 

This fact suggested a non-linear correlation between the acute toxicity and the relevant 

descriptors. In addition, the residual of the predicted values of the toxicity data against the 

experimental values for the present model is shown in Fig. 3. As most of the calculated residuals 

are distributed on two sides of the zero line, a conclusion may be drawn that there is no 

systematic error in the development of the present model. 

To see the importance of each descriptor for the prediction of LD50 oral toxicity of 

pesticides towards rats, the relative contributions [47] of the seventeen descriptors to the MLP-

ANN model were determined and are plotted in Fig.4. The contribution of the descriptors 
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decreased in the order: HATS0m (12.81%) > E1u (7.98%) > MATS2p (7.74%) > HATSe 

(7.63%) > Mor15m (7.14%  > RDF030e (6.48%) > H6m (6.27%) > Mor23u (6.12%) > Du 

(5.88%) > nS (5.58%) > PJI3 (5.10%) > N-072 (4.68%) > RDF020e (4.29%) > MATS1m 

(3.47%) ≈ nArX (3.45%) > Mor26u (2.93%) > H-046 (2.45%). The most significant descriptor 

in the model was therefore HATS0m. It should be noted that for the majority of the descriptors, 

the difference between two descriptors contribution was not significant, indicating that all 

selected descriptors were needed in the development of QSAR predictive model. 

 Generally, QSAR models are functions of a molecule’s structure, electronic properties 

and hydrophobicity [48]. In the present model, HATS0m, E1u, Mor15m, H6m, Mor23u, Du, 

nS, PJI3, N-072, MATS1m, nArX, Mor26u and H-046 involve the structure while MATS2p, 

HATSe, RDF030e and RDF020e represent the electronic properties. 

Descriptors used in our model have been used in previous QSAR models in the 

literature. Hamadache et al. [32] have used MATS2p, HATSe, HATS0m, nS, E1u and N-072 

in their MLR and ANN models to predict rat oral acute toxicity of 62 herbicides. In a study by 

Habibi-Yangjeh and Danandeh-Jenagharad [49], the MATS1m, H-046, Mor23u and PJI3 

descriptors were used for global prediction of the toxicity of 250 phenols to Tetrahymena 

pyriformis in a linear and nonlinear model. In a QSAR model of acute toxicity LD50 for rats 

caused by aromatic compounds, Bakhtiyor et al. [50] found that the descriptor MATS2p 

significantly contributes to the toxicity of these compounds. In a study on the penetration of the 

blood–brain barrier, the human intestinal absorption and the hydrophobicity, Soto et al. [51] 

proposed linear and nonlinear QSAR/QSPR models that include the descriptor MATS2p. A 

QSA(P)R model with high internal and external statistical quality for predicting toxicity was 

developed by Borges [52] with MATS2p for a set of 28 alkyl (1-phenylsulphonyl)-cycloalkane-

carboxilates. A QSAR model on rat oral LD50 data of 58 per- and polyfluorinated chemicals 

developed by Bhhatarai and Gramatica [53] employed E1u; the authors concluded that E1u is 

one of the most important descriptors.  

Moreover, some authors [48, 54-57] found that among the descriptors that affect the 

toxicity of the compounds studied, a substantial number belong to the categories of WHIM 

descriptors, GETAWAY descriptors, 2D autocorrelations, and Atom-centered fragments. In our 

study, a large number of descriptors involved in the present model also belong to this category. 

It is obvious that the descriptors in this category have major significance in the toxicity of 

pesticides 
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3.3 Applicability domain 

The applicability domain of the model was analysed using a Williams plot (Fig.5), 

where the vertical line is the critical leverage value (h*), and the horizontal lines are 3s the cut 

off value for Y space. As seen in Fig.5, one can observe that none of the pesticides compounds 

in the training set and validation set have a leverage higher than the warning h* value of 0.16. 

In the Williams plot, three pesticides can be considered as response outlier (in the Y-response 

space). In the training set, one pesticide (Pyrazophos: 225) was overestimated, while another 

pesticide was underestimated (Oxycarboxine: 201). However, in the region of underestimated 

pesticides, Pyrazophos (329) was from the validation set. These three response outlier (in the 

Y-response space) could be associated with errors in the experimental values.  

It should be noted that 98.6% of the domain was covered by the model when it was 

applied to predict the acute oral toxicity of the 71 pesticides in the validation set. Thus, these 

results show that MLP-ANN model complies with the third principle of the OECD. 

Accordingly, the model developed in this study provides excellent predictions for 329 

pesticides. It can be used to predict the acute oral toxicity of pesticides, particularly for those 

that have not been tested as well as new pesticides. 

3.4 Comparison with different models 

As indicated in the introduction, there are a limited number of QSAR models available 

in the literature for predicting the oral acute toxicity of pesticides to rats. The evaluation of their 

advantages and disadvantages is quite difficult, because each published study used different 

data sets and a different modeling approach (chemical descriptors, algorithms, etc.). However, 

it would be worthwhile to evaluate the performance of our model (present work) in light of the 

few QSAR models published in the literature over the last few years. Our main aim is to 

compare the predictive power of each model, which gives an estimation of the fitting of the 

model and its robustness. 

 It should be noted that the most of these QSAR models were obtained using small 

databases [33] and generally with structurally similar chemicals such as amide herbicides [27, 

58], benzimidazoles herbicides [59] or phenylurea herbicides [60]. Also, the number of 

statistical parameters used for validation of this QSAR models is limited, especially in old 

publications. Devillers [61] developed a QSAR model for acute oral toxicity in rodents (rats). 

He used artificial neural networks (ANN) to predict the LD50 values of organophosphate 
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pesticide. The 51 chemicals of the training set and the nine compounds of the external testing 

set were described by a set of descriptors. The acute toxicities (1/log LD50) were converted to 

mmol/kg and a series of 8 descriptors has been used. The best results were obtained with an 

8/4/1 ANN model. The root mean square error (RMS) values for the training set and the external 

testing set equaled 0.29 and 0.26, respectively. This study demonstrated the usefulness of 

descriptors such as lipophilicity and molar refractivity. 

 Structure-toxicity relationships were studied for a set of 47 insecticides with three-layer 

perceptron and use of a backpropagation algorithm [29]. A model with three descriptors showed 

good statistics in the artificial neural network model with a configuration of 3/5/1 (r = 0.966, 

RMS = 0.200 and Q2 = 0.647). The statistics for the prediction on toxicity [log LD50, oral, rat)] 

in the test set of 20 organophosphorus insecticides derivatives was r = 0.748, RMS = 0.576). 

The model descriptors indicate the importance of molar refraction toward toxicity of 

organophosphorus insecticides derivatives used in this study. Otherwise, different topological 

descriptors were used by Garcia-Domenech et al. [31] in the prediction of the oral acute toxicity 

(LD50) of 62 organophosphorus pesticides on rats. The LD50 values were expressed in mmol/kg 

with a logarithmic transformation before use. A model with eight variables (r = 0.906, Q2 = 

0.701) was generated. Zhu et al. [62] have developed a number of QSAR models for acute oral 

toxicity in rats using large datasets (7385 compounds). Several sets of descriptors and different 

modeling methods were used. It should be noted an improvement of the prediction compared 

to other works. However, the complexity of the modeling approach, while being interesting and 

promising, renders these models little useful in practice. 

 The statistical parameters of the results obtained from the present study and studies 

published in the literature are shown in Table 5. It is possible to observe that all of those models 

could give high prediction ability (correlation coefficient R2, Q2). However, our model exceeds 

the previously published models in all statistical indices available for comparison. Indeed, it 

gives the higher correlation coefficient and the lower RSM error if compared to the other 

models. It can be seen that the database for this study (training set and validation set) was wider 

than that of previous models with the exception of the base used by Zhu et al. [62]. According 

to these results, the present model can be promisingly used for predicting the toxicity of new 

chemicals, thus contributing to the risk assessment, saving substantial amounts of money and 

time.  

 

4. Conclusion 
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The aim of the present work was to develop a QSAR study and to predict the oral acute 

toxicity of pesticides to rats. This study involved 258 pesticides with an additional external set 

of 71 pesticides modelled for their oral acute toxicity on rat based on the artificial neural 

network (multi-layer perceptron: MLP-ANN) with descriptors calculated by Dragon software 

and selected by a stepwise MLR method. The seventeen selected descriptors showed that the 

electronic properties and the structure of the molecule play a main role in the toxicity activity 

of the pesticides. The built MLP-ANN model was assessed comprehensively (internal and 

external validations). It showed good values of R2 = 0.963 and Q2
LOO = 0.962 for the training 

set and high predictive R2
ext and Q2

ext values (0.950 and 0.948) for the validation set. All the 

validations indicate that the built QSAR model was robust and satisfactory. Based on the 

comparison with models previously published, the proposed QSAR model achieved good 

results and provided 98.6% predictions that belong to the applicability domain. In conclusion, 

the model developed in this study meets all of the OECD principles for QSAR validation and 

can be used to predict the acute oral toxicity of pesticides, particularly for those that have not 

been tested as well as new pesticides and thus help reduce the number of animals used for 

experimental purposes. 
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Table 1.  

Observed (experimental) log (1/LD50). predicted log (1/LD50) and leverage of 

pesticide compounds. 

No. Compound Type 
log [1/LD50] (mmol/kg)−1 

 
Leverage (hi) 

   Observed Predicted  

Training set 

1 1,2-Dichloropropane Insecticide −1.24 −1.26 0.010 

2 2,4,5-Trichlorophenol Herbicide −0.62 −0.30 0.005 

3 2,4-DB Herbicide −0.55 −0.53 0.005 

4 2,4-Dimethylphenol Fongicide −0.30 −0.28 0.004 

5 2-Amino butane Fongicide −0.68 −0.59 0.005 

6 Acephate Insecticide −0.71 −0.73 0.006 

7 Acetamiprid Insecticide 0.02 −0.08 0.003 

8 Acetochlor Herbicide −0.85 −0.84 0.007 

9 4-CPA Herbicide −0.66 −0.63 0.005 

10 Acrolein Herbicide 0.29 0.32 0.003 

11 Alachlor Herbicide −0.54 −0.71 0.005 

12 Alanycarb Insecticide 0.08 0.12 0.003 

13 Aldicarb Insecticide 2.31 2.41 0.024 

14 Aldrin Insecticide 0.97 0.94 0.006 

15 Allyxycarb Insecticide 0.49 0.27 0.004 

16 Alpha-endosulfan Insecticide 1.03 0.90 0.007 

17 Amicarbazone Herbicide −0.62 −0.75 0.005 

18 Amidithion Insecticide −0.34 −0.08 0.004 

19 Aminocarb Insecticide 0.84 0.82 0.006 

20 Amiprofos-methyl Herbicide −0.01 −0.04 0.003 

21 Amitraz Insecticide −0.44 −0.37 0.004 

22 Ancymidol Herbicide −0.83 −0.77 0.006 

23 Anilazine Fongicide −1.22 −1.41 0.010 

24 Anilofos Herbicide −0.11 0.13 0.003 

25 Asomate Fongicide 0.11 0.21 0.003 

26 Azaconazole Fongicide −0.01 0.02 0.003 

27 Azametiphos Insecticide −0.56 −0.59 0.005 

28 Azinphos-methyl Insecticide 1.55 1.48 0.012 

29 Benalaxil Fongicide −0.32 −0.65 0.004 

30 Bendiocarb Insecticide 0.82 0.83 0.005 

31 Benfuracarb Insecticide 0.30 0.00 0.003 

32 Benquinox Fongicide 0.38 0.36 0.003 

33 Bentazone Herbicide −0.32 −0.27 0.004 
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No. Compound Type 
log [1/LD50] (mmol/kg)−1 

 
Leverage (hi) 

   Observed Predicted  

34 Benzthiazuron Herbicide −0.79 −0.48 0.006 

35 Binapacryl Fongicide 0.75 0.45 0.005 

36 Brodifacoum Rodonticide 3.12 3.16 0.042 

37 Bromacil Herbicide −0.70 −0.60 0.005 

38 Bromocyclen Insecticide −1.50 −1.43 0.013 

39 Bromophos Insecticide −0.64 −0.73 0.005 

40 Bromophos-ethyl Insecticide 0.88 0.91 0.006 

41 Bromoxynil Herbicide 0.53 0.86 0.004 

42 Bromoxynil heptanoate Herbicide 0.13 0.09 0.003 

43 Bromoxynil octanoate Herbicide 0.23 0.17 0.003 

44 Bromuconazole Fongicide 0.06 0.25 0.003 

45 Bronopol Fongicide −0.10 −0.04 0.003 

46 Bupirimate Fongicide −1.10 −0.96 0.009 

47 Butachlor Herbicide −0.81 −0.97 0.006 

48 Butamifos Herbicide −0.28 −0.07 0.003 

49 Butylate Herbicide −1.21 −1.29 0.010 

50 Butocarboxim Insecticide 0.16 0.01 0.003 

51 Butonate Insecticide −0.53 −0.48 0.004 

52 Butoxycarboxim Insecticide −0.31 −0.10 0.004 

53 Butralin Herbicide −0.55 −0.66 0.005 

54 Cadusafos Insecticide 0.95 1.05 0.006 

55 Camphechlor Insecticide 0.92 0.41 0.006 

56 Carbanolate Insecticide 0.85 0.82 0.006 

57 Carbaryl Insecticide −0.48 −0.39 0.004 

58 Carbetamide Herbicide −0.86 −1.01 0.007 

59 Carbofuran Insecticide 1.50 1.38 0.012 

60 Carbophenothion Insecticide 1.54 1.44 0.012 

61 Carbosulfan Insecticide 0.58 0.82 0.004 

62 Carboxin Fongicide −1.04 −0.85 0.008 

63 Chlordane Insecticide −0.05 0.06 0.003 

64 Chlordecone Insecticide 0.73 0.77 0.005 

65 Chlorethoxyfos Insecticide 2.27 2.28 0.023 

66 Chlorfenac Herbicide −0.87 −0.72 0.007 

67 Chlorfenethol Insecticide −0.27 −0.53 0.003 

68 Chloridazon Herbicide −0.98 −1.01 0.008 

69 Chlorobenzilate Insecticide −0.93 −0.95 0.007 

70 Chloromethiuron Insecticide −2.04 −2.10 0.021 

71 Chlorophacinone Rodonticide 2.08 1.98 0.020 
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No. Compound Type 
log [1/LD50] (mmol/kg)−1 

 
Leverage (hi) 

   Observed Predicted  

72 Chloropicrin Insecticide −0.18 −0.22 0.003 

73 Chlorpyrifos Insecticide 0.74 0.52 0.005 

74 Chlorpyrifos-methyl Insecticide −0.94 −1.07 0.007 

75 Chlorthiamid Herbicide −0.56 −0.54 0.005 

76 Chlorthion Insecticide −0.47 −0.68 0.004 

77 Clethodim Herbicide −0.50 −0.38 0.004 

78 Clodinafop-propargyl Herbicide −0.60 −0.65 0.005 

79 Cloethocarb Insecticide 0.86 1.08 0.006 

80 Clomazone Herbicide -0.76 -0.55 0.006 

81 Coumachlor Rodonticide 1.33 1.13 0.010 

82 Crotoxyphos Insecticide 0.68 0.85 0.005 

83 Cyanazine Herbicide −0.08 −0.23 0.003 

84 Cyanophos Insecticide −0.40 −0.30 0.004 

85 Cycloxydim Herbicide −1.08 −1.15 0.008 

86 Cyhexatin Insecticide 0.16 0.41 0.003 

87 Cymoxanil Fongicide −0.58 −0.79 0.005 

88 Cypermethrin Insecticide 0.16 0.11 0.003 

89 Cyphenothrin Insecticide 0.07 −0.05 0.003 

90 Cyprofuram Fongicide 0.21 0.39 0.003 

91 Cyromazine Insecticide −1.31 −1.40 0.011 

92 Dalapon Herbicide −1.81 −1.72 0.018 

93 Dazomet Insecticide −0.41 −0.05 0.004 

94 Deltamethrin Insecticide 0.76 1.01 0.005 

95 Demeton-S-methyl sulfone Insecticide 0.91 1.08 0.006 

96 Desmetryn Herbicide −0.81 −0.88 0.006 

97 Diafenthiuron Insecticide −0.73 −0.65 0.006 

98 Di-allate Herbicide −0.16 −0.44 0.003 

99 Dibromochloropropane Insecticide 0.14 −0.14 0.003 

100 Dichlone Fongicide 0.15 0.21 0.003 

101 Dichlorprop Herbicide −0.55 −0.65 0.005 

102 Dichlorvos Insecticide 0.44 0.56 0.004 

103 Dicofane Insecticide 0.50 0.35 0.004 

104 Dicofol Insecticide −0.19 0.02 0.003 

105 Dicrotophos Insecticide 1.14 1.25 0.008 

106 Dienochlor Insecticide −0.82 −0.93 0.006 

107 Diethatyl ethyl Herbicide −0.87 −0.74 0.007 

108 Difenamide Herbicide −0.61 −0.68 0.005 

109 Diflovidazin Insecticide −0.29 −0.20 0.004 
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No. Compound Type 
log [1/LD50] (mmol/kg)−1 

 
Leverage (hi) 

   Observed Predicted  

110 Diflumetorim Fongicide −0.14 −0.33 0.003 

111 Dimetachlor Herbicide −0.80 −0.68 0.006 

112 Dimethenamid Herbicide −0.16 −0.22 0.003 

113 Dimethenamid-P Herbicide −0.19 −0.31 0.003 

114 Dimethomorph Fongicide −1.00 −0.99 0.008 

115 Dimethylvinphos Insecticide 0.53 0.71 0.004 

116 Dimexano Herbicide −0.05 −0.09 0.003 

117 Dinobuton Fongicide 0.37 0.27 0.003 

118 Dinoseb Herbicide 0.98 1.11 0.007 

119 Dinoterb Insecticide 0.98 0.99 0.007 

120 Dioxathion Insecticide 1.30 1.09 0.009 

121 Diphacinone Rodonticide 2.17 2.18 0.021 

122 Diquat Herbicide −0.06 −0.11 0.003 

123 Dithianon Fongicide −0.01 −0.07 0.003 

124 Diuron Herbicide −0.27 −0.47 0.003 

125 Edifenphos Fongicide 0.32 0.17 0.003 

126 Endothal Herbicide 0.56 0.35 0.004 

127 EPN Insecticide 1.36 1.26 0.010 

128 EPTC Herbicide −0.68 −0.86 0.005 

129 Ethanedial Herbicide −0.31 −0.24 0.004 

130 Ethoate-methyle Insecticide −0.15 0.14 0.003 

131 Ethoxysulfuron Herbicide −0.91 −0.94 0.007 

132 Fenamidone Fongicide −0.81 −0.77 0.006 

133 Fenchlorphos Insecticide −0.19 −0.17 0.003 

134 Fenobucarb Insecticide −0.48 −0.22 0.004 

135 Fenoprop Herbicide −0.38 −0.63 0.004 

136 Fenpropathrin Insecticide −0.40 −0.38 0.004 

137 Fenpropidin Fongicide −0.73 −0.71 0.006 

138 Fenpropimorph Fongicide −0.74 −0.53 0.006 

139 Fensulfothion Insecticide 2.15 2.18 0.021 

140 Fentin acetate Fongicide 0.47 0.62 0.004 

141 Fenvalerate Insecticide −0.03 −0.12 0.003 

142 Fipronil Insecticide 0.68 0.85 0.005 

143 Florasulam Herbicide −1.14 −1.17 0.009 

144 Fluazifop-butyl Herbicide −0.90 −1.11 0.007 

145 Fluchloralin Herbicide −0.64 −0.59 0.005 

146 Flucythrinate Insecticide 0.83 0.84 0.005 

147 Flufenacet Herbicide −0.22 −0.21 0.003 
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No. Compound Type 
log [1/LD50] (mmol/kg)−1 

 
Leverage (hi) 

   Observed Predicted  

148 Flumorph Fongicide −0.86 −1.01 0.007 

149 Fluoroacetamide Insecticide 0.77 0.66 0.005 

150 Fluquinconazole Fongicide 0.53 0.41 0.004 

151 Flusilazole Fongicide −0.33 −0.27 0.004 

152 Fluvalinate Insecticide 0.28 0.18 0.003 

153 Fomesafen Herbicide −0.45 −0.38 0.004 

154 Fonofos Insecticide 1.56 1.55 0.012 

155 Formetanate Insecticide 1.17 1.21 0.008 

156 Formothion Insecticide −0.15 −0.25 0.003 

157 Fospirate Insecticide −0.45 −0.34 0.004 

158 Fosthiazate Insecticide 0.70 0.90 0.005 

159 Furathiocarb Insecticide 0.86 0.65 0.006 

160 Furfural Fongicide 0.17 −0.06 0.003 

161 Gamma-cyhalothrine Insecticide 0.91 0.76 0.006 

162 Halfenprox Insecticide 0.56 0.61 0.004 

163 Halosulfuron-methyl Herbicide −1.25 −1.11 0.010 

164 Heptenophos Insecticide 0.42 0.39 0.004 

165 Hexaconazole Fongicide −0.84 −0.88 0.006 

166 Hexazinone Herbicide -0.83 -0.81 0.006 

167 Hymexazol Fongicide −1.21 −1.43 0.010 

168 Icaridin Insecticide −0.99 −1.07 0.008 

169 Imiprothrin Insecticide −0.45 −0.29 0.004 

170 Ioxynil Herbicide 0.46 0.62 0.004 

171 Iprobenfos Fongicide −0.37 −0.59 0.004 

172 Isocarbophos Insecticide 0.76 0.58 0.005 

173 Isoprocarb Insecticide −0.32 −0.41 0.004 

174 Isoprothiolane Fongicide −0.61 −1.11 0.005 

175 Isoproturon Herbicide −0.95 −0.73 0.007 

176 Isoxathion Insecticide 0.45 0.56 0.004 

177 Kelevan Insecticide 0.42 0.40 0.004 

178 Lambda-cyhalothrin Insecticide 0.91 1.03 0.006 

179 Lindane Insecticide 0.25 0.14 0.003 

180 Linuron Herbicide −0.66 −0.79 0.005 

181 Malathion Insecticide −0.73 −0.44 0.006 

182 MCPA-thioethyl Herbicide −0.26 −0.33 0.003 

183 MCPB Herbicide −1.27 −1.31 0.010 

184 Mecarbam Insecticide 0.96 0.96 0.006 

185 Mepiquat Herbicide −1.12 −1.23 0.009 
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No. Compound Type 
log [1/LD50] (mmol/kg)−1 

 
Leverage (hi) 

   Observed Predicted  

186 Metalaxyl Fongicide −0.36 −0.29 0.004 

187 Metamitron Herbicide −0.77 −0.59 0.006 

188 Methomyl Insecticide 0.73 0.98 0.005 

189 Metominostrobin Fongicide −0.40 −0.24 0.004 

190 Metsulfovax Fongicide −1.23 −1.43 0.010 

191 Mevinphos Insecticide 1.81 1.88 0.016 

192 Monocrotophos Insecticide 1.20 1.26 0.008 

193 Morphothion Insecticide 0.18 0.33 0.003 

194 Naled Insecticide 0.66 0.78 0.004 

195 Naptalam Herbicide −0.78 −0.87 0.006 

196 Nithiazine Insecticide −0.15 0.07 0.003 

197 Nitrapyrin Bactéricide −0.49 −0.19 0.004 

198 Nitrofen Herbicide −0.97 −1.13 0.007 

199 Octhilinone Fongicide −0.41 −0.35 0.004 

200 Ofurace Fongicide −0.97 −1.06 0.007 

201 Oxycarboxin Fongicide −0.79 −0.09 0.006 

202 Oxydemeton-methyl Insecticide 0.71 0.61 0.005 

203 Paraquat Herbicide 0.23 0.32 0.003 

204 Parathion Insecticide 2.16 2.28 0.021 

205 Parathion methyl Insecticide 1.94 1.84 0.018 

206 Pebulate Herbicide −0.74 −0.88 0.006 

207 Pethoxamid Herbicide −0.52 −0.22 0.004 

208 Phenkapton Insecticide 0.93 0.45 0.006 

209 Phenthoate Insecticide 0.11 0.08 0.003 

210 Phosalone Insecticide 0.49 0.53 0.004 

211 Picloram Herbicide −1.22 −1.18 0.010 

212 Piperophos Herbicide 0.04 −0.08 0.003 

213 Pirimicarb Insecticide 0.22 0.46 0.003 

214 Plifenate Insecticide −1.47 −1.41 0.013 

215 Prallethrin Insecticide −0.18 −0.06 0.003 

216 Pretilachlor Herbicide −1.29 −1.27 0.011 

217 Prometon Herbicide −0.83 −0.77 0.006 

218 Propanil Herbicide −0.64 v0.68 0.005 

219 Propargite Insecticide −0.88 −0.81 0.007 

220 Propiconazole Fongicide −0.45 −0.25 0.004 

221 Propoxur Insecticide 0.62 0.36 0.004 

222 Prosulfuron Herbicide −0.11 −0.26 0.003 

223 Prothiofos Insecticide −0.43 −0.66 0.004 
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No. Compound Type 
log [1/LD50] (mmol/kg)−1 

 
Leverage (hi) 

   Observed Predicted  

224 Pymetrozine Insecticide −1.43 −1.46 0.012 

225 Pyrazophos Fongicide 0.39 −0.18 0.003 

226 Pyrazoxyfen Herbicide −0.61 −0.77 0.005 

227 Pyridaben Insecticide 0.36 0.37 0.003 

228 Pyridafenthion Insecticide -0.35 -0.34 0.004 

229 Pyrifenox Fongicide −0.99 −1.07 0.008 

230 Pyrimethanil Fongicide −1.32 −1.34 0.011 

231 Pyroquilone Fongicide −0.27 −0.52 0.003 

232 Quinalphos Insecticide 0.62 0.41 0.004 

233 Quinclorac Herbicide −1.04 −1.01 0.008 

234 Sethoxydim Herbicide −1.06 −1.08 0.008 

235 Simetryn Herbicide −0.38 −0.58 0.004 

236 Sulfotep Insecticide 1.74 1.71 0.015 

237 Sulfoxaflor Insecticide −0.49 −0.27 0.004 

238 Sulprofos Insecticide 0.24 0.32 0.003 

239 Tebuconazole Fongicide −0.68 −0.83 0.005 

240 Tecloftalam Fongicide −0.95 −1.02 0.007 

241 Tecnazene Fongicide −0.52 −0.47 0.004 

242 Tefluthrin Insecticide 1.31 1.27 0.009 

243 Thiocarboxime Insecticide 1.16 0.90 0.008 

244 Thiodicarb Insecticide 0.64 0.77 0.004 

245 Thiofanox Insecticide 1.46 1.38 0.011 

246 Thiometon Insecticide 0.79 0.73 0.005 

247 Tolfenpyrad Insecticide −0.05 −0.12 0.003 

248 Tralkoxydim Herbicide −0.15 −0.11 0.003 

249 Tri-allate Herbicide −0.44 −0.34 0.004 

250 Tribufos Herbicide 0.04 −0.15 0.003 

251 Trichlorfon Insecticide 0.20 0.13 0.003 

252 Trichloronate Insecticide 1.03 0.89 0.007 

253 Tricyclazole Fongicide 0.01 −0.14 0.003 

254 Tridiphane Herbicide −0.88 −0.91 0.007 

255 Trietazine Herbicide −0.08 −0.18 0.003 

256 Triflumizole Fongicide −0.47 −0.68 0.004 

257 Trimethacarb Insecticide −0.25 −0.23 0.003 

258 Vamidothion Insecticide 0.65 1.02 0.004 

 

Validation set 

259 2,4-D Herbicide −0.33 −0.39 0.004 
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No. Compound Type 
log [1/LD50] (mmol/kg)−1 

 
Leverage (hi) 

   Observed Predicted  

260 Aldoxycarb Insecticide 0.92 0.87 0.006 

261 Allethrin Insecticide v0.35 −0.14 0.004 

262 Alpha-cypermethrin Insecticide 0.86 0.86 0.006 

263 Azinphos-ethyl Insecticide 1.46 1.42 0.011 

264 Barban Herbicide −0.31 −0.31 0.004 

265 Bensulide Herbicide 0.17 0.21 0.003 

266 Bensultap Insecticide −0.41 −0.16 0.004 

267 Beta-cypermethrin Insecticide 0.65 0.52 0.004 

268 Chlorbromuron Herbicide −0.86 −0.85 0.007 

269 Chlorbufam Herbicide −1.03 −0.88 0.008 

270 Chlorpropham Herbicide −1.29 −1.58 0.011 

271 Closantel Insecticide 0.40 0.12 0.003 

272 Crimidine Rodonticide 2.14 2.18 0.021 

273 Demeton-S-methyl Insecticide 0.76 1.05 0.005 

274 Dichlorprop-P Herbicide −0.38 −0.76 0.004 

275 Dimethoate Insecticide −0.03 −0.03 0.003 

276 Dinocap Fongicide −0.52 −0.54 0.004 

277 Dioxabenzophos Insecticide 0.24 0.26 0.003 

278 Ditalimfos Fongicide −1.22 −1.15 0.010 

279 DNOC Herbicide 0.90 0.87 0.006 

280 Endosulfan Insecticide 1.03 0.71 0.007 

281 Etaconazole Fongicide −0.61 −0.52 0.005 

282 Ethiofencarb Insecticide 0.05 −0.05 0.003 

283 Ethiprole Insecticide −1.25 −1.25 0.010 

284 Fenarimol Fongicide −0.88 −1.11 0.007 

285 Fenazaquin Acaricide 0.36 0.38 0.003 

286 Fenitrothion Insecticide −0.08 −0.08 0.003 

287 Flonicamid Insecticide −0.59 −0.47 0.005 

288 Fluazifop-P-butyl Herbicide −0.81 −0.51 0.006 

289 Fluoroglycofen Herbicide −0.55 −0.43 0.005 

290 Furalaxyl Fongicide −0.50 −0.75 0.004 

291 Furmecyclox Fongicide −1.18 −1.36 0.009 

292 Glufosinate Herbicide −0.95 −0.91 0.007 

293 Glutaraldehyde Fongicide −0.13 0.05 0.003 

294 Halofenozide Insecticide −0.94 −1.08 0.007 

295 Imazalil Fongicide 0.12 0.35 0.003 

296 Indoxacarb Insecticide 0.29 0.19 0.003 

297 Isofenphos-methyl Insecticide 1.19 1.37 0.008 
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No. Compound Type 
log [1/LD50] (mmol/kg)−1 

 
Leverage (hi) 

   Observed Predicted  

298 Leptophos Insecticide 0.98 0.76 0.007 

299 MCPA Herbicide −0.68 −0.79 0.005 

300 Mecoprop Herbicide −0.73 −1.09 0.006 

301 Metazachlor Herbicide −1.10 −0.95 0.009 

302 Metconazole Fongicide −0.27 −0.06 0.003 

303 Methazole Herbicide −0.47 −0.61 0.004 

304 Methidathion Insecticide 1.08 1.03 0.007 

305 Metolachlor Herbicide −0.63 −0.63 0.005 

306 Metribuzin Herbicide 0.83 0.52 0.005 

307 Molinate Herbicide −0.41 −0.18 0.004 

308 Monolinuron Herbicide −0.99 −0.63 0.008 

309 Nitenpyram Insecticide −0.76 −0.85 0.006 

310 Oxadixyl Fongicide −0.82 −1.12 0.006 

311 Oxamyl Insecticide 1.94 2.04 0.018 

312 Pendimethalin Herbicide −1.05 −1.27 0.008 

313 Phosmet Insecticide 0.45 0.04 0.004 

314 Profenofos Insecticide 0.02 −0.01 0.003 

315 Promecarb Insecticide 0.77 0.58 0.005 

316 Propazine Herbicide −1.22 −1.49 0.010 

317 Prosulfocarb Herbicide -0.86 -0.80 0.007 

318 Prothoate Insecticide 1.55 1.14 0.012 

319 Tebutam Herbicide −1.43 −1.51 0.012 

320 Tebuthiuron Herbicide −0.16 −0.07 0.003 

321 Tepraloxydim Herbicide −1.36 −1.48 0.011 

322 Terbufos Insecticide 2.25 2.14 0.023 

323 Tetraconazole Fongicide −0.46 −0.79 0.004 

324 Thiacloprid Insecticide −0.18 −0.24 0.003 

325 Thiobencarb Herbicide −0.44 −0.66 0.004 

326 Tralomethrin Insecticide 0.57 0.65 0.004 

327 Triazamate Insecticide 0.71 0.49 0.005 

328 Tridemorph Fongicide −0.19 −0.31 0.003 

329 Vernolate Herbicide −0.72 −0.12 0.006 
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Table 2.  

List of descriptors used in the development of QSAR model. 

Category Descriptor Description 

2D Autocorrelations 

indices 

MATS2p 
Moran autocorrelation of lag 2 weighted by 

polarizability 

MATS1m 
Moran autocorrelation of lag 1 weighted by 

mass 

Atom-centred 

fragments 

N-072 RCO-N</>N − X = X 

H-046 H attached to C0(sp3) no X attached to next C 

Geometrical 

descriptors 
PJI3 3D Petitjean shape index 

Getaway descriptors 

H6m H autocorrelation of lag 6/weighted by mass 

HATSe 
Leverage-weighted total index/weighted by 

Sanderson electronegativity 

HATS0m 
Leverage-weighted autocorrelation of lag 

0/weighted by mass 

RDF descriptor 

RDF020e 
Radial distribution function—020/weighted by 

Sanderson electronegativity 

RDF030e 
Radial distribution function—030/weighted by 

Sanderson electronegativity 

3D-Morse descriptor 

Mor15m Signal 15/weighted by mass 

Mor23u Signal 23/unweighted 

Mor26u Signal 26/unweighted 

Whim descriptors 

Du D total accessibility index/unweighted 

E1u 
1st component accessibility directional WHIM 

index/unweighted 

Functional group 

counts 
nArX Number of X on aromatic ring 

Constitutional indices nS Number of sulfur atoms 
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Table 3.  

Selected parameters of the optimal multi-layer perceptron. 

Parameters studied 
MSE (minimum 

value) 
Selected parameters 

The database distribution 

Training (80%) and validation 

(20%) 
0.0311 

Training (78.5%) and 

validation (21.5%) 

Training (79%) and validation 

(21%) 
0.0317 

Training (78.5%) and 

validation (21.5%) 
0.0295 

Training (78%) and validation 

(22%) 
0.0345 

Training (77%) and validation 

(23%) 
0.0382 

 

Activation functions (hidden neurons/output neurons) 

Sigmoid–sigmoid 0.0291 

Tangent hyperbolic–linear 

Sigmoid–linear 0.0293 

Sigmoid–tangent hyperbolic 0.1054 

Tangent hyperbolic–sigmoid 0.1719 

Tangent hyperbolic–linear 0.0290 

Tangent hyperbolic–tangent 

hyperbolic 
0.0293 

Linear–sigmoid 0.1563 

Linear–tangent hyperbolic 0.0306 

Linear–linear 0.0299 

 

Number of neurons in the hidden layer 

1–16 0.0290 9 Neurons 

 

Learning algorithms 

Quasi–Newton back 

propagation (BFGS) 
0.0290 

Quasi–Newton back 

propagation (BFGS) 

Levenberg–Marquardt (LM) 0.0293 

Scaled conjugate gradient 

(SCG) 
0.0395 

Conjugate gradient descent 

(CGP) 
0.0346 
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Table 4.  

Performance of MLP-ANN model for pesticides. 

Training set (n = 258) 

R2 0.963 

Q2
LOO 0.962 

RMS 0.164 

Validation set (n = 71) 

R2
ext 0.95 

Q2
ext 0.948 

RMS 0.201 

 


