

A Quantitative Structure Activity Relationship for acute oral toxicity of pesticides on rats: Validation, Domain of Application and Prediction

Mabrouk Hamadache, Othmane Benkortbi, Salah Hanini, Abdeltif Amrane, Latifa Khaouane, Cherif Si Moussa

▶ To cite this version:

Mabrouk Hamadache, Othmane Benkortbi, Salah Hanini, Abdeltif Amrane, Latifa Khaouane, et al.. A Quantitative Structure Activity Relationship for acute oral toxicity of pesticides on rats: Validation, Domain of Application and Prediction. Journal of Hazardous Materials, 2016, 303, pp. 28-40. 10.1016/j.jhazmat.2015.09.021. hal-01220889

HAL Id: hal-01220889 https://univ-rennes.hal.science/hal-01220889

Submitted on 15 Dec 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A Quantitative Structure Activity Relationship for acute oral toxicity of pesticides on rats: Validation, Domain of Application and Prediction

Mabrouk Hamadache^{1*}, Othmane Benkortbi¹, Salah Hanini¹, Abdeltif Amrane², Latifa Khaouane¹, Cherif Si Moussa¹

¹ Laboratoire des Biomatériaux et Phénomènes de Transport (LBMPT), Université de Médéa, Quartier Ain D'heb, 26000, MEDEA, Algérie

² Ecole Nationale Supérieure de Chimie de Rennes, Université de Rennes 1, CNRS, UMR 6226, 11 allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France

L. KHAOUANE: latifa_khaouane@yahoo.fr; O. BENKORTBI: benkortbi_oth@yahoo.fr;

C. SI MOUSSA: simoussa_cherif@yahoo.fr; S. HANINI: s_hanini2002@yahoo.fr;

A. AMRANE: abdeltif.amrane@univ-rennes1.fr

*Corresponding author: Mabrouk HAMADACHE; mhamdeche@yahoo.fr

Tel: + 213 07 78 12 37 50; Fax: +213 25 58 12 53

ABSTRACT

Quantitative Structure Activity Relationship (QSAR) models are expected to play an important role in the risk assessment of chemicals on humans and the environment. In this study, we developed a validated QSAR model to predict acute oral toxicity of 329 pesticides to rats because a few QSAR models have been devoted to predict the Lethal Dose 50 (LDs0) of pesticides on rats. This QSAR model is based on 17 molecular descriptors, and is robust, externally predictive and characterized by a good applicability domain. The best results were obtained with a 17/9/1 Artificial Neural Network model trained with the Quasi Newton back propagation (BFGS) algorithm. The prediction accuracy for the external validation set was estimated by the Q^2_{ext} and the Root Mean Square error (RMS) which are equal to 0.948 and 0.201, respectively. 98.6% of external validation set is correctly predicted and the present model proved to be superior to models previously published. Accordingly, the model developed in this study provides excellent predictions and can be used to predict the acute oral toxicity of pesticides, particularly for those that have not been tested as well as new pesticides.

Keywords

Acute toxicity, Pesticides, QSAR, Prediction, External validation

Abbreviations: QSAR, quantitative structure-activity relationship; LD₅₀, lethal dose 50; ANN, artificial neural networks; BFGS, Quasi-Newton back propagation algorithm; RMS, root mean square error; REACH, registration, evaluation, authorization and restriction of chemicals; OECD, organization for economic cooperation and development; LOO, leave-one-out; CV, cross-validation; AD, applicability domain; VIF, variation inflation factors; MLP, multi-layer perceptron.

1. Introduction

Pesticides are widely used in agriculture for plant protection and for increasing production yields and quality of agricultural products but also in domestic applications. They are also used to slow the spread of insects, to maintain lawns, recreational areas and highways. Pesticides have also contributed to the control of many human diseases transmitted by insects. The most common pesticides are herbicides, insecticides and fungicides. However, despite these advantages, pesticides have a major drawback such as toxicity [1]. Due to the excessive use of these products, they are found as well as residue in the environment (water, soil, air) than in terrestrial and aquatic food chains [2, 3]. In addition, they also pose a threat to the environment, humans, animals and other organisms [4, 5]. Many studies made internationally highlight the environmental pollution by pesticides. The consequences of this pollution are the widespread presence of residues in air, water, soil and foodstuffs [6-13].

Long-term exposure to pesticides can cause harm to human life and can disrupt the functioning of various organs in the body. This significant relationship between exposure to pesticides and some chronic diseases has been the subject of several scientific publications. Exposure to these persistent pesticides has been associated with health effects including cancer, headache, skin and eye irritation, immune system problems, stomach, kidney, Parkinson and Alzheimer's disease, reproductive difficulties, birth defects, diabetes, cataracts and anemia [14-17].

As seen, humans and the environment are exposed to thousands of pesticides. This pollution caused by pesticides has become an important issue affecting the survival and development of humain being. It is evident that risk assessment for pesticides can provide a precaution against the corresponding pollution. One of the procedures currently used for human and environmental risk assessment is the determination of the acute toxicity of pesticides [18]. Unfortunately, experimental determination of the toxicity takes time, requires a high expense and poses an ethical problem (demands to reduce or abolish the use of animals). Also, there is a very large body of research going on in many countries with the aim of replacing in vivo tests by in silico prediction methods according to the European Directive on the Protection of Laboratory Animals [19] and the Registration, Evaluation, Authorization and restriction of Chemicals (REACH) regulation [20]. Despite being significantly cheaper than in vivo study, in vitro tests are still costly compared with in silico methods [21]. The use of in silico predictive methods, based on computer tools, offers a rapid, cost-effective and ethical alternative to testing toxicity of chemical substances in animals [22]. These methods include the Quantitative Structure–Activity Relationship (QSARs) models. To establish a QSAR model, three elements

are necessary. The first relates to the biological activity (eg toxicity) measured for a set of molecules. The second concerns the descriptors. Finally, the third must be a statistical learning method that is used to connect the first two elements.

The acute toxicity still remains the object of interest in QSAR model building. To date, a large number of QSARs models for predicting the acute toxicity of chemical substances have been developed [23, 24]. Unfortunately, few studies have been devoted to the acute toxicity of pesticides on rats. For example, Enslein et al. [25, 26] developed regression analysis models using two large data sets (425 and 1851 various chemicals, respectively). The R² value for the test set is 0.33, which means that these models are characterized by low power external prediction. A very marked improvement in R² coefficient was obtained following the QSAR models developed with 44, 54, 67, 30 and 62 pesticides by Zakaria et al. [27], Eldred and Jurs [28], Zahouily [29], Guo et al. [30] and Garcia et al. [31] respectively. Recent studies devoted to pesticides [32, 33] have proposed QSAR models with values of 0.93 (27 herbicides) and 0.96 (62 herbicides) for the R² coefficient. The conclusion which can be draw from these studies is that most QSAR models developed are distinguished by two major shortcomings: lack of validation test on the one hand, and a limited field of application because these studies included a relatively small number of pesticides on the other hand.

Since the prediction of potential risks to human health is based on the assumption that test results seen in high-dose animal tests are predictive of effects that will occur in human populations exposed to much lower levels [34], our main goal in this work is to establish a robust QSAR model to predict acute toxicity (log [1/LD50]) of pesticides on rats. The database used consists of 329 pesticides. The QSAR model established by using artificial neural networks and molecular descriptors satisfies the guidelines required by the Organisation for Economic Cooperation and Development (OECD), namely: (1) a defined endpoint; (2) an unambiguous algorithm; (3) a defined domain of applicability; (4) appropriate measures of goodness of fit, robustness, predictability; (5) a mechanistic interpretation, if possible.

2. Materials and method

2.1 Data set

It is well known that high-quality experimental data are essential for the development of high quality QSAR models [35]. If they are unreliable, the model will be unreliable. The rat lethal dose 50 (LD50 - rat, male via oral exposure) values were retrieved from Pesticide Properties Database [36]. The LD50 correspond to the concentration (mg/kg) of pesticide that

lead to the death of 50% of rat. All values of oral acute toxicity were first converted into mmol/kg and then translated to log [1/ (mmol/kg)].

The initial database that included 907 pesticides was rigorously reviewed and "cleaned" by removing pesticides whose LD₅₀ was not experimentally determined or whose LD₅₀ was not determined in the same experimental conditions. A total of 329 pesticides with experimental data were selected to form the final database (**Table 1**). The basis of 329 pesticides was divided into 2 lots. The first with 258 pesticides was dedicated to develop the QSAR model. The second which included 71 pesticides that had not been used for the development of the QSAR model, was left for the external validation.

2.2 Molecular descriptors

One important step in obtaining a QSAR model is the numerical representation of the structural features of molecules, which were named molecular descriptors. Nowadays, there are more than 4000 of molecular descriptors which can be used to solve different problems in Chemistry, Biology and related sciences [1]. In the specific case of this study, for each molecule, 1664 molecular descriptors were calculated, which belong to many classes. All descriptors were obtained through the online program E-Dragon 1.0 (http://www.vcclab.org/lab/edragon).

To avoid the phenomenon of overfitting, the number of descriptors must be reduced. Several methods to simplify a database are used. The method used to select the most significant descriptors was described previously [32]. In the first step, invariant descriptors, namely those with absent values (represented by the code "999"), were manually removed. Next, any descriptor that had identical values for 75% of the samples and any descriptors with a relative standard deviation < 0.05 were removed. Finally, half of the descriptors showing an absolute value of the Pearson correlation coefficient > 0.95 were also removed. The number of descriptors obtained after the selection was 95. For relevant descriptors selection, stepwise regression was then used [37]. Twenty nine descriptors were selected.

2.3 Model development

In this work, all calculations were run on a Sony personal computer with a Core (TM) i3 and windows XP as operating system. The Artificial Neural Networks (ANN) which has extensive applicability in solving non-linear systems was employed to build the QSAR model between the molecular relevant descriptors and the toxicity of pesticides. A three-layer feed-

forward neural network utilizing back-propagation algorithm was employed. The typical back-propagation network consists of an input layer, an output layer and at least one hidden layer. Each layer contains neurons and each neuron is a simple micro-processing unit which receives and combines signals from many neurons.

The use of a neuronal regression goes through the choice of the input parameters but also by optimizing the architecture of the neural network itself. The optimization of both the distribution of the database, the number of hidden layers, the number of neurons per hidden layer, the transfer functions as well as algorithms was carried after extensive testing. The design of the neural model is to evaluate the components of the network according to the desired performance modeling. Model performance is evaluated in terms of root mean square error (RMS) [38] and was calculated with the following equation:

$$RMS = \sqrt{\frac{\sum_{i=1}^{n} (y_i^{exp} - y_i^{pred})^2}{n}} \tag{1}$$

where n is the number of compounds in the dataset, and y_i^{pred} , y_i^{exp} are the predicted and the experimental values, respectively.

2.4 Model validation

For the validation of the predictive power of a QSAR model, two basic principles (internal validation and external validation) are available. The quality is always judged by the statistical parameters, for instance, the squared R (R²) and root mean square error (RMS). These parameters mainly reflect the goodness of fit of the models. However, recent studies [38] have indicated that the internal validation is considered to be necessary for model validation. In the present study, we took the leave-one-out (LOO) cross-validation (CV) for the internal validation to evaluate the internal predictive ability of the developed model, and its result was defined as Q²Loo, which could be calculated according to the following equation [38]:

$$Q_{LOO}^{2} = 1 - \frac{\sum_{i=1}^{training} (y_{i}^{exp} - y_{i}^{pred})^{2}}{\sum_{i=1}^{training} (y_{i}^{exp} - \bar{y})^{2}}$$
(2)

where y_i^{exp} , y_i^{pred} and \bar{y} are the experimental, predicted, and average log (1/LD50) values of the samples for the training set, respectively. A value of $Q^2_{LOO} > 0.5$ is considered satisfactory, and a Q^2_{LOO} value > 0.9 is excellent [39].

Furthermore, the external validation is a significant and necessary validation method used to determine both the generalizability and the true predictive ability of the QSAR models

for new chemicals, by splitting the available dataset into a training set and an external prediction set. As mentioned above, the whole dataset in this work has been randomly divided into a training set with 258 compounds for model development, and a prediction set with 71 compounds for model external validation. The external predictive ability of the developed models on the external prediction set was evaluated by Q^2_{ext} , which could be calculated as follows [38]:

$$Q_{ext}^2 = 1 - \frac{\sum_{i=1}^{prediction} (y_i^{exp} - y_i^{pred})^2}{\sum_{i=1}^{prediction} (y_i^{exp} - \overline{y_{tr}})^2}$$
(3)

where y_i^{exp} , y_i^{pred} are the experimental and predicted $\log(1/\text{LD}_{50})$ values of the samples for the prediction set, and $\overline{y_{tr}}$ is the mean experimental $\log(1/\text{LD}_{50})$ values of the samples for the training set.

2.5 Applicability domain

Even the most comprehensive and validated models cannot predict reliably properties for all existing compounds. The QSAR model is not intended to be used outside its domain of applicability, that is to say, outside of the chemical space covered by the training set. Also, the applicability domain (AD) of models must be defined and the predictions of the molecules in this area can be considered admissible. The determination of AD is therefore of great importance [40].

The AD is a theoretical region in the space defined by the descriptors of the model and the modeled response, for which a given QSAR should make reliable predictions. This region is defined by the nature of the compounds in the training set, and can be characterized in various ways. In our work, the AD was verified by the leverage approach. The leverage h_i is defined as follows [41]:

$$h_i = \frac{1}{n} + \frac{(x_i - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}$$
 (4)

Where x_i is the descriptor value of the ith object, and \bar{x} is the average value of the descriptor in the training set, and n is the number of substances in the training set. The warning leverage h* is, generally, fixed at 3(p + 1)/n, where n is the total number of samples in the training set and p is the number of descriptors involved in the correlation.

The applicability domain (AD) of QSAR model is defined from the Williams plot. The plot of leverage values versus standardized residuals (Williams plot) was used to give a

graphical detection of both the response outliers (Y outliers) and the structurally influential compounds (X outliers). In this plot, the two horizontal lines indicate the limit of normal values for Y outliers (i.e. samples with standardized residuals greater than 3.0 standard deviation units, ± 3.0 s); the vertical straight lines indicate the limits of normal values for X outliers (i.e. samples with leverage values greater than the threshold value, $h > h^*$). For a sample in the external test set whose leverage value is greater than h^* , its prediction is considered unreliable, because the prediction is the result of a substantial extrapolation of the model. Conversely, when the leverage value of a compound is lower than the critical value, the probability of accordance between predicted and experimental values is as high as that for the compounds in the training set [42].

3. Results and discussion

3.1 Selection of relevant descriptors

To select the most important descriptors and the optimal number, the influences of the number of descriptors on the correlation coefficients [R^2 and adjusted $R^2(R^2_{adj})$] and the RMSE were investigated for 1–29 descriptors. R^2 and R^2_{adj} increased with increasing number of descriptors. However, the values of RMSE decreased with increasing number of descriptors. Models with 18–29 descriptors did not significantly improve the statistics of the model. For these reasons, the number of descriptors used to develop the model was 17. Let us note that n / k is greater than 5 [43] where n (258) and k (17) are respectively the number of compounds and the number of descriptors used in the QSAR model.

Multi-collinearity between the 17 descriptors was detected by calculating their variation inflation factors (VIF). If VIF falls into the range of 1–5, the related model is acceptable. All the descriptors have VIF values < 2.873, indicating that the obtained model has statistical significance, and the descriptors were found to be reasonably orthogonal. Order to study the correlation between the selected descriptors, the correlation matrix has been established using the XLSTAT software. The results show that these descriptors are not correlated owing to the fact that the greatest value of the correlation coefficient is 0.512. The list of descriptors used in the development of QSAR model is given in **Table 2**.

3.2 QSAR modeling

The main objective of this phase of the study is to find the optimal architecture of the neural network to predict the acute oral toxicity of pesticides on rats. A typical multilayer

perceptron (MLP) three-layered network with an input layer, a hidden layer and an output layer is adopted in this work. Increasing the number of the hidden layers decreases the learning accuracy. Theoretical works have shown that a single hidden layer is sufficient for the ANN to approximate to any complex nonlinear function and many experimental results seem to confirm that one hidden layer may be enough for most forecasting problems [44]. The use of a neuronal regression requires the selection of input parameters, but also the optimization of the neural network architecture. Before training the network, the database distribution, the activation functions (for hidden neurons and output neurons), the number of neurons in the hidden layer and the learning algorithms were optimized after many trials. The optimal model performance is evaluated in terms of root mean square error (RMS) [45, 46]. The results of this study and the ANN network optimal adopted are given in **Table 3**.

The selected parameters (Table 3) were used to develop nonlinear model. The seventeen relevant descriptors were used as inputs to the network. Before training the network, the number of nodes in the hidden layer was optimized, because it is an important parameter influencing the performances of the ANN. Thus, a 17-9-1 network architecture was obtained after trial and error procedure. The main performance parameters of MLP-ANN model are shown in **Table 4**. The predictive results from the MLP-ANN model for the entire dataset (329 compounds) are obtained and presented in Table 1. Figure 1 and 2 shows the regression line of the model equation, i.e. predicted *vs* experimental results for the training and validation set highlighted by different symbols.

Fig.1 and **Fig.2** indicates that there is a significant correlation between experimental values and predicted values of $\log (1/LD_{50})$. As can be seen from Table 4, the non-linear MLP-ANN model give good results with higher correlation coefficients (R^2 and R^2_{ext}), lower RMS, as well as better robustness (Q^2) in both training set and validation set, which indicated that the MLP-ANN not only performed well in model development, but also had excellent prediction. This fact suggested a non-linear correlation between the acute toxicity and the relevant descriptors. In addition, the residual of the predicted values of the toxicity data against the experimental values for the present model is shown in **Fig. 3**. As most of the calculated residuals are distributed on two sides of the zero line, a conclusion may be drawn that there is no systematic error in the development of the present model.

To see the importance of each descriptor for the prediction of LD₅₀ oral toxicity of pesticides towards rats, the relative contributions [47] of the seventeen descriptors to the MLP-ANN model were determined and are plotted in Fig.4. The contribution of the descriptors

decreased in the order: HATS0m (12.81%) > E1u (7.98%) > MATS2p (7.74%) > HATSe (7.63%) > Mor15m (7.14%) > RDF030e (6.48%) > H6m (6.27%) > Mor23u (6.12%) > Du (5.88%) > nS (5.58%) > PJI3 (5.10%) > N-072 (4.68%) > RDF020e (4.29%) > MATS1m (3.47%) \approx nArX (3.45%) > Mor26u (2.93%) > H-046 (2.45%). The most significant descriptor in the model was therefore HATS0m. It should be noted that for the majority of the descriptors, the difference between two descriptors contribution was not significant, indicating that all selected descriptors were needed in the development of QSAR predictive model.

Generally, QSAR models are functions of a molecule's structure, electronic properties and hydrophobicity [48]. In the present model, HATS0m, E1u, Mor15m, H6m, Mor23u, Du, nS, PJI3, N-072, MATS1m, nArX, Mor26u and H-046 involve the structure while MATS2p, HATSe, RDF030e and RDF020e represent the electronic properties.

Descriptors used in our model have been used in previous QSAR models in the literature. Hamadache et al. [32] have used MATS2p, HATSe, HATS0m, nS, E1u and N-072 in their MLR and ANN models to predict rat oral acute toxicity of 62 herbicides. In a study by Habibi-Yangjeh and Danandeh-Jenagharad [49], the MATS1m, H-046, Mor23u and PJI3 descriptors were used for global prediction of the toxicity of 250 phenols to *Tetrahymena pyriformis* in a linear and nonlinear model. In a QSAR model of acute toxicity LDso for rats caused by aromatic compounds, Bakhtiyor et al. [50] found that the descriptor MATS2p significantly contributes to the toxicity of these compounds. In a study on the penetration of the blood–brain barrier, the human intestinal absorption and the hydrophobicity, Soto et al. [51] proposed linear and nonlinear QSAR/QSPR models that include the descriptor MATS2p. A QSA(P)R model with high internal and external statistical quality for predicting toxicity was developed by Borges [52] with MATS2p for a set of 28 alkyl (1-phenylsulphonyl)-cycloalkane-carboxilates. A QSAR model on rat oral LDso data of 58 per- and polyfluorinated chemicals developed by Bhhatarai and Gramatica [53] employed E1u; the authors concluded that E1u is one of the most important descriptors.

Moreover, some authors [48, 54-57] found that among the descriptors that affect the toxicity of the compounds studied, a substantial number belong to the categories of WHIM descriptors, GETAWAY descriptors, 2D autocorrelations, and Atom-centered fragments. In our study, a large number of descriptors involved in the present model also belong to this category. It is obvious that the descriptors in this category have major significance in the toxicity of pesticides

3.3 Applicability domain

The applicability domain of the model was analysed using a Williams plot (**Fig.5**), where the vertical line is the critical leverage value (h*), and the horizontal lines are 3s the cut off value for Y space. As seen in **Fig.5**, one can observe that none of the pesticides compounds in the training set and validation set have a leverage higher than the warning h* value of 0.16. In the Williams plot, three pesticides can be considered as response outlier (in the Y-response space). In the training set, one pesticide (Pyrazophos: 225) was overestimated, while another pesticide was underestimated (Oxycarboxine: 201). However, in the region of underestimated pesticides, Pyrazophos (329) was from the validation set. These three response outlier (in the Y-response space) could be associated with errors in the experimental values.

It should be noted that 98.6% of the domain was covered by the model when it was applied to predict the acute oral toxicity of the 71 pesticides in the validation set. Thus, these results show that MLP-ANN model complies with the third principle of the OECD. Accordingly, the model developed in this study provides excellent predictions for 329 pesticides. It can be used to predict the acute oral toxicity of pesticides, particularly for those that have not been tested as well as new pesticides.

3.4 Comparison with different models

As indicated in the introduction, there are a limited number of QSAR models available in the literature for predicting the oral acute toxicity of pesticides to rats. The evaluation of their advantages and disadvantages is quite difficult, because each published study used different data sets and a different modeling approach (chemical descriptors, algorithms, etc.). However, it would be worthwhile to evaluate the performance of our model (present work) in light of the few QSAR models published in the literature over the last few years. Our main aim is to compare the predictive power of each model, which gives an estimation of the fitting of the model and its robustness.

It should be noted that the most of these QSAR models were obtained using small databases [33] and generally with structurally similar chemicals such as amide herbicides [27, 58], benzimidazoles herbicides [59] or phenylurea herbicides [60]. Also, the number of statistical parameters used for validation of this QSAR models is limited, especially in old publications. Devillers [61] developed a QSAR model for acute oral toxicity in rodents (rats). He used artificial neural networks (ANN) to predict the LD50 values of organophosphate

pesticide. The 51 chemicals of the training set and the nine compounds of the external testing set were described by a set of descriptors. The acute toxicities (1/log LD₅₀) were converted to mmol/kg and a series of 8 descriptors has been used. The best results were obtained with an 8/4/1 ANN model. The root mean square error (RMS) values for the training set and the external testing set equaled 0.29 and 0.26, respectively. This study demonstrated the usefulness of descriptors such as lipophilicity and molar refractivity.

Structure-toxicity relationships were studied for a set of 47 insecticides with three-layer perceptron and use of a backpropagation algorithm [29]. A model with three descriptors showed good statistics in the artificial neural network model with a configuration of 3/5/1 (r = 0.966, RMS = 0.200 and $Q^2 = 0.647$). The statistics for the prediction on toxicity [log LD50, oral, rat)] in the test set of 20 organophosphorus insecticides derivatives was r = 0.748, RMS = 0.576). The model descriptors indicate the importance of molar refraction toward toxicity of organophosphorus insecticides derivatives used in this study. Otherwise, different topological descriptors were used by Garcia-Domenech et al. [31] in the prediction of the oral acute toxicity (LD50) of 62 organophosphorus pesticides on rats. The LD50 values were expressed in mmol/kg with a logarithmic transformation before use. A model with eight variables (r = 0.906, $Q^2 = 0.701$) was generated. Zhu et al. [62] have developed a number of QSAR models for acute oral toxicity in rats using large datasets (7385 compounds). Several sets of descriptors and different modeling methods were used. It should be noted an improvement of the prediction compared to other works. However, the complexity of the modeling approach, while being interesting and promising, renders these models little useful in practice.

The statistical parameters of the results obtained from the present study and studies published in the literature are shown in **Table 5**. It is possible to observe that all of those models could give high prediction ability (correlation coefficient R^2 , Q^2). However, our model exceeds the previously published models in all statistical indices available for comparison. Indeed, it gives the higher correlation coefficient and the lower RSM error if compared to the other models. It can be seen that the database for this study (training set and validation set) was wider than that of previous models with the exception of the base used by Zhu et al. [62]. According to these results, the present model can be promisingly used for predicting the toxicity of new chemicals, thus contributing to the risk assessment, saving substantial amounts of money and time.

4. Conclusion

The aim of the present work was to develop a QSAR study and to predict the oral acute toxicity of pesticides to rats. This study involved 258 pesticides with an additional external set of 71 pesticides modelled for their oral acute toxicity on rat based on the artificial neural network (multi-layer perceptron: MLP-ANN) with descriptors calculated by Dragon software and selected by a stepwise MLR method. The seventeen selected descriptors showed that the electronic properties and the structure of the molecule play a main role in the toxicity activity of the pesticides. The built MLP-ANN model was assessed comprehensively (internal and external validations). It showed good values of $R^2 = 0.963$ and $Q^2_{LOO} = 0.962$ for the training set and high predictive R^2_{ext} and Q^2_{ext} values (0.950 and 0.948) for the validation set. All the validations indicate that the built QSAR model was robust and satisfactory. Based on the comparison with models previously published, the proposed QSAR model achieved good results and provided 98.6% predictions that belong to the applicability domain. In conclusion, the model developed in this study meets all of the OECD principles for QSAR validation and can be used to predict the acute oral toxicity of pesticides, particularly for those that have not been tested as well as new pesticides and thus help reduce the number of animals used for experimental purposes.

References

- [1] A. Speck-Planche, V.V. Kleandrova, F. Luan, M.N.D.S. Cordeiro, Predicting multiple ecotoxicological profiles in agrochemical fungicides: A multi-species chemoinformatic approach, Ecotoxicol. Environ. Saf. 80 (2012) 308–313.
- [2] M.L. Gómez-Pérez, R. Romero-González, J.L. Martínez Vidal, A. Garrido Frenich, Analysis of pesticide and veterinary drug residues in baby food by liquid chromatography coupled to Orbitrap high resolution mass spectrometry, Talanta, 131 (2015) 1–7.
- [3] K. Müller, A. Tiktak, T.J. Dijkman, S. Green, B. Clothier, Advances in Pesticide Risk Reduction. Encyclopedia of Agriculture and Food Systems, (2014) 17-34.
- [4] J. Regueiro, O. López-Fernández, R. Rial-Otero, B. Cancho-Grande, J. Simal-Gándara, A Review on the Fermentation of Foods and the Residues of Pesticides-Biotransformation of Pesticides and Effects on Fermentation and Food Quality, Crit. Rev. Food Sci. 55:6 (2015), 839-863.
- [5] M. T. Wan, Ecological risk of pesticide residues in the British Columbia environment: 1973–2012, J. Environ. Sci. Heal. B 48:5 (2013) 344-363.
- [6] Y. Moussaoui, L. Tuduri, Y. Kerchich, B.Y. Meklati, G. Eppe, Atmospheric concentrations of PCDD/Fs, dl-PCBs and some pesticides in northern Algeria using passive air sampling, Chemosphere 88 (2012) 270–277.
- [7] C.B. Choung, R.V. Hyne, M.M. Stevens, G.C. Hose, The ecological effects of a herbicide-insecticide mixture on an experimental freshwater ecosystem, Environ. Pollut. 172 (2013) 264-274.
- [8] E.T. Rodrigues, I. Lopes, M.Â. Pardal, Occurrence, fate and effects of azoxystrobin in aquatic ecosystems: A review, Environ. Int. 53 (2013) 18–28.

- [9] E. Herrero-Hernandez, M.S. Andrades, A. Alvarez-Martin, E. Pose-Juan, M.S. Rodriguez-Cruz, M.J. Sanchez-Martin, Occurrence of pesticides and some of their degradation products in waters in a spanish wine region, J. Hydrol 486 (2013) 234–45.
- [10] O. Oukali-Haouchine, E. Barriuso, Y. Mayata, K.M. Moussaoui, Factors affecting Métribuzine retention in Algerian soils and assessment of the risks of contamination, Environ. Monit. Assess. 185 (2013) 4107–4115.
- [11] A. Moretto, Pesticide Residues: Organophosphates and Carbamates. Encyclopedia of Food Safety, 3 (2014) 19-22.
- [12] A. Nougadère, V. Sirot, A. Kadar, A. Fastier, E. Truchot, C. Vergnet, F. Hommet, J. Baylé, P. Gros, J. C. Leblanc, Total diet study on pesticide residues in France: Levels in food as consumed and chronic dietary risk to consumers, Environ. Int. 45 (2012) 135–150.
- [13] J. Stanley, K. Sah, S.K. Jain, J.C. Bhatt, S.N. Sushil, Evaluation of pesticide toxicity at their field recommended doses to honeybees, Apis cerana and A. mellifera through laboratory, semi-field and field studies, Chemosphere 119 (2015) 668–674.
- [14] S. H. Shojaei, M. Abdollahi, Is there a link between human infertilities and exposure to pesticides, Int. J. Pharmacol. 8 (2012) 708–710.
- [15] S. Mostafalou, M. Abdollahi, Pesticides and human chronic diseases: evidences, mechanisms, and perspectives, Toxicol. Appl. Pharmacol. 268 (2013) 157-77.
- [16] E.J. Mremaa, F.M. Rubino, G. Brambilla, A. Morettoc, A.M. Tsatsakis, C. Colosio, Persistent organochlorinated pesticides and mechanisms of their toxicity, Toxicology 307 (2013) 74–88.
- [17] G. Van Maele-Fabry, P. Hoet, F. Vilain, D. Lison, Occupational exposure to pesticides and Parkinson's disease: a systematic review and meta-analysis of cohort studies, Environ. Int. 46 (2012) 30–43.
- [18] A. A. Lagunin, A. V. Zakharov, D. A. Filimonov, V. V. Poroikov, A new approach to QSAR modelling of acute toxicity, SAR QSAR Environ. Res. 18 (2007) 285-298.
- [19] A. Golbamaki, A. Cassano, A. Lombardo, Y. Moggio, M. Colafranceschi, E. Benfenati, Comparison of in silico models for prediction of Daphnia magna acute toxicity, SAR QSAR Environ. Res. 25 (2014) 673-694.
- [20] M. Cassotti, V. Consonni, A. Mauri, D. Ballabio, Validation and extension of a similarity-based approach for prediction of acute aquatic toxicity towards Daphnia magna, SAR 2 QSAR Environ. Res. 25 (2014) 1013-1036.
- [21] A. Sazonovas, P. Japertas, R. Didziapetris, Estimation of reliability of predictions and model applicability domain evaluation in the analysis of acute toxicity (LD50), SAR QSAR Environ. Res. 21(2010) 127-148.
- [22] K.M. Sullivan, J.R. Manuppello, C.E. Willett, Building on a solid foundation: SAR and QSAR as a fundamental strategy to reduce animal testing, SAR QSAR Environ. Res. 25 (2014) 357-365.
- [23] F. Cheng, W. Li, G. Liu, Y. Tang, In silico ADMET prediction: recent advances, current challenges and future trends, Curr. Top. Med. Chem. 13 (2013) 1273-89.
- [24] F. Dulin, M. P. Halm-Lemeille, S. Lozano, A. Lepailleur, J. Sopkova-de Oliveira Santos, S. Rault, R. Bureau, Interpretation of honeybees contact toxicity associated to acetylcholinesterase inhibitors, Ecotox. Environ. Safe. 79 (2012) 13–21.
- [25] K. Enslein, P. N. Craig, A toxicity estimation model, J. Environ. Pathol. Toxicol. 2 (1978) 115–121.
- [26] K. Enslein, T. R. Lander, M. E. Tomb, P. N. Craig, A Predictive Model for Estimating Rat Oral LD₅₀ Values, Princeton Scientific Publishers, Princeton (1983).

- [27] D. Zakarya, E.M. Larfaoui, A. Boulaamail, T. Lakhlifi, Analysis of structure–toxicity relationships for a series of amide herbicides using statistical methods and neural network, SAR QSAR Environ. Res. 5 (1996) 269–279.
- [28] D.V. Eldred, P.C. Jurs, Prediction of acute mammalian toxicity of organophosphorus pesticide compounds from molecular structure, SAR QSAR Environ. Res. 10 (1999) 75–99.
- [29] M. Zahouily, A. Rhihil, H. Bazoui, S. Sebti, D. Zakarya, Structure–toxicity relationships study of a series of organophosphorus insecticides, J. Mol. Model. 8 (2002) 168–172.
- [30] J. X. Guo, J. J. Wu, J. B. Wright, G. H. Lushington, Mechanistic insight into acetylcholinesterase inhibition and acute toxicity of organophosphorus compounds: A molecular modeling study, Chem. Res. Toxicol. 19 (2006) 209–216.
- [31] R. Garcia-Domenech, P. Alarcon-Elbal, G. Bolas, R. Bueno-Mari, F.A. Chorda-Olmos, S.A. Delcour, M.C. Mourino, A. Vidal, J. Galvez, Prediction of acute toxicity of organophosphorus pesticides using topological indices, SAR QSAR Environ. Res. 18 (2007) 745–755.
- [32] M. Hamadache, L. Khaouane, O. Benkortbi, C. Si Moussa, S. Hanini, A. Amrane, Prediction of Acute Herbicide Toxicity in Rats from Quantitative Structure—Activity Relationship Modeling, Environ. Eng. Sci. 31(2014) 243-252.
- [33] A. Can, I. Yildiz, G. Guvendik, The determination of toxicities of sulphonylurea and phenylurea herbicides with quantitative structure-toxicity relationship (QSTR) studies, Environ. Toxicol. Pharmacol. 35 (2013) 369-79.
- [34] M.E. Andersen, M. Al-Zoughool, M. Croteau, M. Westphal, D. Krewski, The Future of Toxicity Testing, J. Toxicol. Env. Heal. B,13 (2010) 163-196.
- [35] M.T.D. Cronin, T.W. Schultz, Pitfalls in QSAR, J. Mol. Struct. 622 (2003) 39–51.
- PPDB (Pesticide Properties DataBase), http://sitem.herts.ac.uk/aeru/footprint/(accessed 14/05/2014).
- [37] L. Xu, W. J. Zhang, Comparison of different methods for variable selection, Anal. Chim. Acta 446 (2001) 477-483.
- [38] R. Wang, J. Jiang, Y. Pan, H. Cao, Yi. Cui, Prediction of impact sensitivity of nitro energetic compounds by neural network based on electrotopological-state indices, J. Hazard. Mater. 166 (2009) 155–186.
- [39] L. Eriksson, J. Jaworska, AP. Worth, MT. Cronin, R. M. McDowell, P. Gramatica, Methods for reliability and uncertainty assessment and for applicability evaluations of classification and regression-based QSARs, Environ. Health Perspect. 111 (2003) 1361– 1375.
- [40] OECD principles for the Validation, for Regulatory Purposes, of (Quantitative) Structure-Activity Relationship Models, (2009).
- [41] E.M. De Haas, T. Eikelboom, T. Bouwman, Internal and external validation of the long-term QSARs for neutral organics to fish from ECOSAR, SAR QSAR Environ. Res. 22 (2011) 545–559.
- [42] T.I. Netzeva, A.P. Worth, T. Aldenberg, R. Benigni, M.T.D. Cronin, P. Gramatica, J.S. Jaworska, S. Kahn, G. Klopman, C.A. Marchant, G. Myatt, N. Nikolova-Jeliazkova, G.Y. Patlewicz, R. Perkins, D.W. Roberts, T.W. Schultz, D.T. Stanton, J.J.M. Van De Sandt, W. Tong, G. Veith, C. Yang, Current status of methods for defining the applicability domain of (quantitative) structure–activity relationships, Altern. Lab. Anim. 33 (2005) 155–173.
- [43] A. Tropsha, P. Gramatica, V. K. Gombar, The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models, QSAR Comb. Sci. 22 (2003) 69–77.

- [44] F. Othman, M. Naseri, Reservoir inflow forecasting using artificial neural network, Int. J. Phys. Sci. 6 (2011) 434-440.
- [45] T.L. Lee, Back-propagation neural network for the prediction of the short-term storm surge in Taichung harbor, Taiwan. Eng. Appl. Artif. Intell. 21 (2008) 63-72.
- [46] A. Sedki, D. Ouazar, E EI Mazoudi, Evolving neural network using real coded genetic algorithm for daily rainfall-runoff forecasting, Expert Syst. Appl. 36 (2009) 4523-4527.
- [47] F. Zheng, E. Bayram, S.P. Sumithran, J.T. Ayers, C. G. Zhan, J.D. Schmitt, L.P. Dwoskin, P.A. Crooks, QSAR modeling of mono- and bis-quaternary ammonium salts that act as antagonists at neuronal nicotinic acetylcholine receptors mediating dopamine release, Bioorg. Med. Chem. 14 (2006) 3017–3037.
- [48] G. Tugcu, M. Türker Saçan, M. Vracko, M. Novic, N. Minovski, QSTR modelling of the acute toxicity of pharmaceuticals to fish, SAR QSAR Environ. Res. 23 (2012) 297-310
- [49] A. Habibi-Yangjeh, M. Danandeh-Jenagharad, Application of a genetic algorithm and an artificial neural network for global prediction of the toxicity of phenols to Tetrahymena pyriformis, Monatsh Chem. 140 (2009) 1279-1288.
- [50] R. Bakhtiyor, H. Kusic, D. Leszczynska, J. Leszczynski, N. Koprivanac, QSAR modeling of acute toxicity on mammals caused by aromatic compounds: the case study using oral LD50 for rats, J. Environ. Monit. 12 (2010) 1037-1044.
- [51] A. J. Soto, R. L. Cecchini, G. E. Vazquez, I. Ponzoni, Multi-Objective Feature Selection in QSAR Using a Machine Learning Approach, QSAR Comb. Sci. 28 (2009) 1509-1523.
- [52] Eduardo Borges de Melo, Modeling physical and toxicity endpoints of alkyl (1-phenylsulfonyl) cycloalkane carboxylates using the Ordered Predictors Selection (OPS) for variable selection and descriptors derived with SMILES, Chemometr. Intell. Lab. 118 (2012) 79-87.
- [53] B. Bhhatarai, P. Gramatica, Oral LD50 toxicity modeling and prediction of per- and polyfluorinated chemicals on rat and mouse, Mol. Divers. 15 (2011) 467-476.
- [54] J. Xu, L. Zhu, D. Fang, L. Wang, S. Xiao, Li. Liu, W. Xu, QSPR studies of impact sensitivity of nitro energetic compounds using three-dimensional descriptors, J. Mol. Graph. Model. 36 (2012) 10–19.
- [55] Ning-Xin Tan, Ping Li, Han-Bing Rao, Ze-Rong Li, Xiang-Yuan Li, Prediction of the acute toxicity of chemical compounds to the fathead minnow by machine learning approaches, Chemom. Intell. Lab. Syst. 100 (2010) 66-73.
- [56] P. R. Duchowicz, J. Marrugo, J. H. Erlinda, V. Ortiz, E. A. Castro, R. Vivas-Reyes, QSAR study for the fish toxicity of benzene derivatives, J. Argentine Chem. Soc. 97 (2009) 116-127.
- [57] H. Du, J. Wang, Z. Hu, X. Yao, X. Zhang, Prediction of fungicidal activities of rice blast disease based on least-squares support vector machines and project pursuit regression, J. Agric. Food Chem. 56 (2008) 10785-10792.
- [58] J. D. Gough, L. H. Hall, Modeling the toxicity of amide herbicides using the electrotopological state, Environ. Toxicol. Chem. 18 (1999) 1069–1075.
- [59] G.W. Adamson, D. Bawden, D.T. Saggers, Quantitative structure–activity relationship studies of acute toxicity (LD50) in a large series of herbicidal benzimidazoles, Pestic. Sci. 15 (1984) 31–39.
- [60] M. Nendza, B. Dittrich, A. Wenzel, W. Klein, Predictive QSAR models estimating ecotoxic hazard of plant protecting agents: target and non-target toxicity, Sci. Tot. Environ. 109/110 (1991) 527-535.
- [61] J. Devillers, Prediction of mammalian toxicity of organophosphorus pesticides from QSTR modeling, SAR QSAR Environ. Res. 15 (2004) 501–510.

[62]	H. Zhu, L. Ye, A. Richard, A. Golbraikh, F.A. Wright, I. Rusyn, A. Tropsha, A novel two-step hierarchical quantitative structure-activity relationship modeling work flow for predicting acute toxicity of chemicals in rodents, Environ. Health Persp. 117 (2009) 1257-1264.

Table 1. Observed (experimental) log (1/LD $_{50}$). predicted log (1/LD $_{50}$) and leverage of pesticide compounds.

No.	Compound	Type	log [1/LD ₅₀]	(mmol/kg) ⁻¹	Leverage (h_i)
			Observed	Predicted	
		Trainir	ıg set		
1	1,2-Dichloropropane	Insecticide	-1.24	-1.26	0.010
2	2,4,5-Trichlorophenol	Herbicide	-0.62	-0.30	0.005
3	2,4-DB	Herbicide	-0.55	-0.53	0.005
4	2,4-Dimethylphenol	Fongicide	-0.30	-0.28	0.004
5	2-Amino butane	Fongicide	-0.68	-0.59	0.005
6	Acephate	Insecticide	-0.71	-0.73	0.006
7	Acetamiprid	Insecticide	0.02	-0.08	0.003
8	Acetochlor	Herbicide	-0.85	-0.84	0.007
9	4-CPA	Herbicide	-0.66	-0.63	0.005
10	Acrolein	Herbicide	0.29	0.32	0.003
11	Alachlor	Herbicide	-0.54	-0.71	0.005
12	Alanycarb	Insecticide	0.08	0.12	0.003
13	Aldicarb	Insecticide	2.31	2.41	0.024
14	Aldrin	Insecticide	0.97	0.94	0.006
15	Allyxycarb	Insecticide	0.49	0.27	0.004
16	Alpha-endosulfan	Insecticide	1.03	0.90	0.007
17	Amicarbazone	Herbicide	-0.62	-0.75	0.005
18	Amidithion	Insecticide	-0.34	-0.08	0.004
	Aminocarb	Insecticide	0.84	0.82	0.006
	Amiprofos-methyl	Herbicide	-0.01	-0.04	0.003
	Amitraz	Insecticide	-0.44	-0.37	0.004
	Ancymidol	Herbicide	-0.83	-0.77	0.006
	Anilazine	Fongicide	-1.22	-1.41	0.010
	Anilofos	Herbicide	-0.11	0.13	0.003
	Asomate	Fongicide	0.11	0.21	0.003
	Azaconazole	Fongicide	-0.01	0.02	0.003
	Azametiphos	Insecticide	-0.56	-0.59	0.005
	Azinphos-methyl	Insecticide	1.55	1.48	0.012
	Benalaxil	Fongicide	-0.32	-0.65	0.004
	Bendiocarb	Insecticide	0.82	0.83	0.005
	Benfuracarb	Insecticide	0.30	0.00	0.003
	Benquinox	Fongicide	0.38	0.36	0.003
33	Bentazone	Herbicide	-0.32	-0.27	0.004

No.	Compound	Type	$log [1/LD_{50}] (mmol/kg)^{-1}$		Leverage (h_i)
			Observed	Predicted	
34	Benzthiazuron	Herbicide	-0.79	-0.48	0.006
35	Binapacryl	Fongicide	0.75	0.45	0.005
36	Brodifacoum	Rodonticide	3.12	3.16	0.042
37	Bromacil	Herbicide	-0.70	-0.60	0.005
38	Bromocyclen	Insecticide	-1.50	-1.43	0.013
39	Bromophos	Insecticide	-0.64	-0.73	0.005
40	Bromophos-ethyl	Insecticide	0.88	0.91	0.006
41	Bromoxynil	Herbicide	0.53	0.86	0.004
42	Bromoxynil heptanoate	Herbicide	0.13	0.09	0.003
43	Bromoxynil octanoate	Herbicide	0.23	0.17	0.003
44	Bromuconazole	Fongicide	0.06	0.25	0.003
45	Bronopol	Fongicide	-0.10	-0.04	0.003
	Bupirimate	Fongicide	-1.10	-0.96	0.009
47	Butachlor	Herbicide	-0.81	-0.97	0.006
48	Butamifos	Herbicide	-0.28	-0.07	0.003
	Butylate	Herbicide	-1.21	-1.29	0.010
50	Butocarboxim	Insecticide	0.16	0.01	0.003
	Butonate	Insecticide	-0.53	-0.48	0.004
	Butoxycarboxim	Insecticide	-0.31	-0.10	0.004
	Butralin	Herbicide	-0.55	-0.66	0.005
	Cadusafos	Insecticide	0.95	1.05	0.006
	Camphechlor	Insecticide	0.92	0.41	0.006
	Carbanolate	Insecticide	0.85	0.82	0.006
	Carbaryl			-0.39	0.004
	Carbetamide		-0.86	-1.01	0.007
	Carbofuran	Insecticide		1.38	0.012
	Carbophenothion	Insecticide		1.44	0.012
	Carbosulfan	Insecticide		0.82	0.004
	Carboxin	· ·	-1.04	-0.85	0.008
	Chlordane	Insecticide	-0.05	0.06	0.003
	Chlordecone	Insecticide		0.77	0.005
	Chlorethoxyfos	Insecticide		2.28	0.023
	Chlorfenac	Herbicide	-0.87	-0.72	0.007
	Chloridana	Insecticide		-0.53	0.003
	Chloridazon	Herbicide Inserticide	-0.98	-1.01	0.008
	Chlorobenzilate	Insecticide Insecticide		-0.95 -2.10	0.007
	Chloromethiuron	Insecticide Rodontioida		-2.10	0.021
/1	Chlorophacinone	Rodonticide	2.08	1.98	0.020

No.	Compound	Type	log [1/LD ₅₀] (mmol/kg) ⁻¹		Leverage (h_i)
			Observed	Predicted	
72	Chloropicrin	Insecticide	-0.18	-0.22	0.003
73	Chlorpyrifos	Insecticide	0.74	0.52	0.005
74	Chlorpyrifos-methyl	Insecticide	-0.94	-1.07	0.007
75	Chlorthiamid	Herbicide	-0.56	-0.54	0.005
76	Chlorthion	Insecticide	-0.47	-0.68	0.004
77	Clethodim	Herbicide	-0.50	-0.38	0.004
78	Clodinafop-propargyl	Herbicide	-0.60	-0.65	0.005
79	Cloethocarb	Insecticide	0.86	1.08	0.006
80	Clomazone	Herbicide	-0.76	-0.55	0.006
81	Coumachlor	Rodonticide	1.33	1.13	0.010
82	Crotoxyphos	Insecticide	0.68	0.85	0.005
83	Cyanazine	Herbicide	-0.08	-0.23	0.003
84	Cyanophos	Insecticide	-0.40	-0.30	0.004
85	Cycloxydim	Herbicide	-1.08	-1.15	0.008
86	Cyhexatin	Insecticide	0.16	0.41	0.003
	Cymoxanil	Fongicide	-0.58	-0.79	0.005
88	Cypermethrin	Insecticide	0.16	0.11	0.003
89	Cyphenothrin	Insecticide	0.07	-0.05	0.003
	Cyprofuram	Fongicide	0.21	0.39	0.003
	Cyromazine	Insecticide	-1.31	-1.40	0.011
	Dalapon	Herbicide	-1.81	-1.72	0.018
	Dazomet		-0.41	-0.05	0.004
	Deltamethrin	Insecticide	0.76	1.01	0.005
	Demeton-S-methyl sulfone		0.91	1.08	0.006
	•		-0.81	-0.88	0.006
	Diafenthiuron	Insecticide		-0.65	0.006
	Di-allate		-0.16	-0.44	0.003
	Dibromochloropropane	Insecticide		-0.14	0.003
	Dichlone	Fongicide	0.15	0.21	0.003
	Dichlorprop	Herbicide	-0.55	-0.65	0.005
	Dichlorvos	Insecticide		0.56	0.004
	Dicofane	Insecticide		0.35	0.004
	Dicofol	Insecticide		0.02	0.003
	Dicrotophos	Insecticide	1.14	1.25	0.008
	Dienochlor		-0.82	-0.93	0.006
	Diethatyl ethyl	Herbicide	-0.87	-0.74	0.007
	Difenamide	Herbicide	-0.61	-0.68	0.005
109	Diflovidazin	Insecticide	-0.29	-0.20	0.004

No.	Compound	Туре	log [1/LD ₅₀] (mmol/kg) ⁻		Leverage (h_i)
			Observed	Predicted	
110 Diflu	umetorim	Fongicide	-0.14	-0.33	0.003
111 Dim	etachlor	Herbicide	-0.80	-0.68	0.006
112 Dim	ethenamid	Herbicide	-0.16	-0.22	0.003
113 Dim	ethenamid-P	Herbicide	-0.19	-0.31	0.003
114 Dim	ethomorph	Fongicide	-1.00	-0.99	0.008
115 Dim	ethylvinphos	Insecticide	0.53	0.71	0.004
116 Dim	exano	Herbicide	-0.05	-0.09	0.003
117 Dino	buton	Fongicide	0.37	0.27	0.003
118 Dino	oseb	Herbicide	0.98	1.11	0.007
119 Dino	oterb	Insecticide	0.98	0.99	0.007
120 Diox	athion	Insecticide	1.30	1.09	0.009
121 Diph	nacinone	Rodonticide	2.17	2.18	0.021
122 Diqu	ıat	Herbicide	-0.06	-0.11	0.003
123 Dith	ianon	Fongicide	-0.01	-0.07	0.003
124 Diur	on	Herbicide	-0.27	-0.47	0.003
125 Edif	enphos	Fongicide	0.32	0.17	0.003
126 Endo	othal	Herbicide	0.56	0.35	0.004
127 EPN		Insecticide	1.36	1.26	0.010
128 EPT	C	Herbicide	-0.68	-0.86	0.005
129 Etha	nedial	Herbicide	-0.31	-0.24	0.004
130 Etho	ate-methyle	Insecticide	-0.15	0.14	0.003
	xysulfuron	Herbicide	-0.91	-0.94	0.007
132 Fena	midone	Fongicide	-0.81	-0.77	0.006
	chlorphos	Insecticide	-0.19	-0.17	0.003
134 Fend	bucarb	Insecticide	-0.48	-0.22	0.004
135 Fend		Herbicide	-0.38	-0.63	0.004
-	propathrin	Insecticide		-0.38	0.004
137 Fenp		Fongicide	-0.73	-0.71	0.006
-	propimorph	Fongicide	-0.74	-0.53	0.006
	ulfothion	Insecticide	2.15	2.18	0.021
	in acetate	Fongicide	0.47	0.62	0.004
141 Fenv		Insecticide	-0.03	-0.12	0.003
142 Fipro		Insecticide	0.68	0.85	0.005
143 Flora		Herbicide	-1.14	-1.17	0.009
	zifop-butyl	Herbicide	-0.90	-1.11	0.007
145 Fluc		Herbicide	-0.64	-0.59	0.005
146 Fluc	=	Insecticide	0.83	0.84	0.005
147 Flufe	enacet	Herbicide	-0.22	-0.21	0.003

No.	Compound	Type	log [1/LD ₅₀] (mmol/kg) ⁻¹		Leverage (h _i)
			Observed	Predicted	-
148 Flui	morph	Fongicide	-0.86	-1.01	0.007
	oroacetamide	Insecticide	0.77	0.66	0.005
150 Fluo	quinconazole	Fongicide	0.53	0.41	0.004
151 Flus		Fongicide	-0.33	-0.27	0.004
152 Fluv	valinate	Insecticide	0.28	0.18	0.003
153 Fon	nesafen	Herbicide	-0.45	-0.38	0.004
154 Fon	ofos	Insecticide	1.56	1.55	0.012
155 For	metanate	Insecticide	1.17	1.21	0.008
156 For	mothion	Insecticide	-0.15	-0.25	0.003
157 Fos	pirate	Insecticide	-0.45	-0.34	0.004
158 Fos	thiazate	Insecticide	0.70	0.90	0.005
159 Fura	athiocarb	Insecticide	0.86	0.65	0.006
160 Fur	fural	Fongicide	0.17	-0.06	0.003
161 Gar	nma-cyhalothrine	Insecticide	0.91	0.76	0.006
162 Hal	fenprox	Insecticide	0.56	0.61	0.004
163 Hal	osulfuron-methyl	Herbicide	-1.25	-1.11	0.010
164 Hep	otenophos	Insecticide	0.42	0.39	0.004
165 Hex	aconazole	Fongicide	-0.84	-0.88	0.006
166 Hex	azinone	Herbicide	-0.83	-0.81	0.006
167 Hyr	nexazol	Fongicide	-1.21	-1.43	0.010
168 Icar	idin	Insecticide	-0.99	-1.07	0.008
169 Imi		Insecticide	-0.45	-0.29	0.004
170 Iox	ynil	Herbicide	0.46	0.62	0.004
171 Ipro	benfos	Fongicide	-0.37	-0.59	0.004
172 Isoc	carbophos	Insecticide	0.76	0.58	0.005
173 Isop		Insecticide		-0.41	0.004
	prothiolane	Fongicide		-1.11	0.005
175 Isop		Herbicide	-0.95	-0.73	0.007
176 Isox		Insecticide		0.56	0.004
177 Kel		Insecticide	0.42	0.40	0.004
	nbda-cyhalothrin	Insecticide	0.91	1.03	0.006
179 Line		Insecticide	0.25	0.14	0.003
180 Lin		Herbicide	-0.66	-0.79	0.005
181 Mal		Insecticide		-0.44	0.006
	PA-thioethyl	Herbicide	-0.26	-0.33	0.003
183 MC		Herbicide	-1.27	-1.31	0.010
184 Med		Insecticide		0.96	0.006
185 Me _l	piquat	Herbicide	-1.12	-1.23	0.009

No.	Compound	Type	log [1/LD ₅₀] (mmol/kg) ⁻¹		Leverage (h_i)
			Observed	Predicted	
186 Met	alaxyl	Fongicide	-0.36	-0.29	0.004
187 Met	amitron	Herbicide	-0.77	-0.59	0.006
188 Met	homyl	Insecticide	0.73	0.98	0.005
189 Met	ominostrobin	Fongicide	-0.40	-0.24	0.004
190 Met	sulfovax	Fongicide	-1.23	-1.43	0.010
191 Mev	rinphos	Insecticide	1.81	1.88	0.016
192 Mor	nocrotophos	Insecticide	1.20	1.26	0.008
193 Mor	phothion	Insecticide	0.18	0.33	0.003
194 Nale	ed	Insecticide	0.66	0.78	0.004
195 Nap	talam	Herbicide	-0.78	-0.87	0.006
196 Nith	niazine	Insecticide	-0.15	0.07	0.003
197 Nitr	apyrin	Bactéricide	-0.49	-0.19	0.004
198 Nitr	ofen	Herbicide	-0.97	-1.13	0.007
199 Octl	nilinone	Fongicide	-0.41	-0.35	0.004
200 Ofu	race	Fongicide	-0.97	-1.06	0.007
201 Oxy	carboxin	Fongicide	-0.79	-0.09	0.006
202 Oxy	demeton-methyl	Insecticide	0.71	0.61	0.005
203 Para	quat	Herbicide	0.23	0.32	0.003
204 Para	thion	Insecticide	2.16	2.28	0.021
205 Para	thion methyl	Insecticide	1.94	1.84	0.018
206 Peb	ulate	Herbicide	-0.74	-0.88	0.006
207 Peth		Herbicide	-0.52	-0.22	0.004
208 Phen	•	Insecticide	0.93	0.45	0.006
209 Phen		Insecticide	0.11	0.08	0.003
210 Pho		Insecticide	0.49	0.53	0.004
211 Picl		Herbicide	-1.22	-1.18	0.010
212 Pipe	-	Herbicide	0.04	-0.08	0.003
213 Pirii		Insecticide	0.22	0.46	0.003
214 Plife		Insecticide	-1.47	-1.41	0.013
215 Pral		Insecticide	-0.18	-0.06	0.003
216 Pret		Herbicide	-1.29	-1.27	0.011
217 Pro		Herbicide	-0.83	-0.77	0.006
218 Prop		Herbicide	-0.64	v0.68	0.005
219 Prop	_	Insecticide	-0.88	-0.81	0.007
-	piconazole	Fongicide	-0.45	-0.25	0.004
221 Prop		Insecticide		0.36	0.004
222 Pros		Herbicide	-0.11	-0.26	0.003
223 Prot	hiofos	Insecticide	-0.43	-0.66	0.004

No.	Compound	Type	log [1/LD ₅₀] (mmol/kg)		Leverage (h_i)
			Observed	Predicted	-
224 Pym	etrozine	Insecticide	-1.43	-1.46	0.012
225 Pyra		Fongicide	0.39	-0.18	0.003
226 Pyra	zoxyfen	Herbicide	-0.61	-0.77	0.005
227 Pyri	daben	Insecticide	0.36	0.37	0.003
228 Pyri	dafenthion	Insecticide	-0.35	-0.34	0.004
229 Pyri	fenox	Fongicide	-0.99	-1.07	0.008
230 Pyri	methanil	Fongicide	-1.32	-1.34	0.011
231 Pyro	oquilone	Fongicide	-0.27	-0.52	0.003
232 Quii	nalphos	Insecticide	0.62	0.41	0.004
233 Quii	nclorac	Herbicide	-1.04	-1.01	0.008
234 Seth	oxydim	Herbicide	-1.06	-1.08	0.008
235 Sime	etryn	Herbicide	-0.38	-0.58	0.004
236 Sulf	otep	Insecticide	1.74	1.71	0.015
237 Sulf	oxaflor	Insecticide	-0.49	-0.27	0.004
238 Sulp	profos	Insecticide	0.24	0.32	0.003
239 Tebi	aconazole	Fongicide	-0.68	-0.83	0.005
240 Tecl	oftalam	Fongicide	-0.95	-1.02	0.007
241 Teci	nazene	Fongicide	-0.52	-0.47	0.004
242 Tefl	uthrin	Insecticide	1.31	1.27	0.009
243 Thio	ocarboxime	Insecticide	1.16	0.90	0.008
244 Thio		Insecticide	0.64	0.77	0.004
245 Thio		Insecticide	1.46	1.38	0.011
246 Thio	ometon	Insecticide	0.79	0.73	0.005
247 Tolf	- ·	Insecticide	-0.05	-0.12	0.003
	koxydim	Herbicide	-0.15	-0.11	0.003
249 Tri-a		Herbicide	-0.44	-0.34	0.004
250 Trib		Herbicide	0.04	-0.15	0.003
251 Tric		Insecticide	0.20	0.13	0.003
	hloronate	Insecticide	1.03	0.89	0.007
253 Tric	-	Fongicide	0.01	-0.14	0.003
254 Trid	•	Herbicide	-0.88	-0.91	0.007
255 Trie		Herbicide	-0.08	-0.18	0.003
256 Trif		Fongicide	-0.47	-0.68	0.004
	nethacarb	Insecticide	-0.25	-0.23	0.003
258 Van	nidothion	Insecticide	0.65	1.02	0.004
		Validati	ion set		
259 2,4-]	D	Herbicide	-0.33	-0.39	0.004

No.	Compound	Type	log [1/LD ₅₀] (mmol/kg) ⁻¹		Leverage (h_i)
			Observed	Predicted	
260 Aldo	oxycarb	Insecticide	0.92	0.87	0.006
261 Alle	•	Insecticide	v0.35	-0.14	0.004
262 Alph	na-cypermethrin	Insecticide	0.86	0.86	0.006
263 Azir	phos-ethyl	Insecticide	1.46	1.42	0.011
264 Barb	oan	Herbicide	-0.31	-0.31	0.004
265 Bens	sulide	Herbicide	0.17	0.21	0.003
266 Bens	sultap	Insecticide	-0.41	-0.16	0.004
267 Beta	-cypermethrin	Insecticide	0.65	0.52	0.004
268 Chlo	orbromuron	Herbicide	-0.86	-0.85	0.007
269 Chlo	orbufam	Herbicide	-1.03	-0.88	0.008
270 Chlo	orpropham	Herbicide	-1.29	-1.58	0.011
271 Clos	antel	Insecticide	0.40	0.12	0.003
272 Crin	nidine	Rodonticide	2.14	2.18	0.021
273 Dem	neton-S-methyl	Insecticide	0.76	1.05	0.005
274 Dich	nlorprop-P	Herbicide	-0.38	-0.76	0.004
275 Dim	ethoate	Insecticide	-0.03	-0.03	0.003
276 Dino	ocap	Fongicide	-0.52	-0.54	0.004
277 Diox	kabenzophos	Insecticide	0.24	0.26	0.003
278 Dita	limfos	Fongicide	-1.22	-1.15	0.010
279 DNO	OC	Herbicide	0.90	0.87	0.006
280 Endo	osulfan	Insecticide	1.03	0.71	0.007
281 Etac	onazole	Fongicide	-0.61	-0.52	0.005
282 Ethi	ofencarb	Insecticide	0.05	-0.05	0.003
283 Ethi	prole	Insecticide	-1.25	-1.25	0.010
284 Fena	nrimol	Fongicide	-0.88	-1.11	0.007
285 Fena	nzaquin	Acaricide	0.36	0.38	0.003
286 Feni	trothion	Insecticide	-0.08	-0.08	0.003
287 Flon	icamid	Insecticide	-0.59	-0.47	0.005
288 Flua	zifop-P-butyl	Herbicide	-0.81	-0.51	0.006
289 Fluo	roglycofen	Herbicide	-0.55	-0.43	0.005
290 Fura	laxyl	Fongicide	-0.50	-0.75	0.004
291 Furn	necyclox	Fongicide	-1.18	-1.36	0.009
292 Gluf	Cosinate	Herbicide	-0.95	-0.91	0.007
293 Glut	araldehyde	Fongicide	-0.13	0.05	0.003
294 Halo	ofenozide	Insecticide	-0.94	-1.08	0.007
295 Imaz	zalil	Fongicide	0.12	0.35	0.003
296 Indo	xacarb	Insecticide	0.29	0.19	0.003
297 Isofe	enphos-methyl	Insecticide	1.19	1.37	0.008

No.	Compound	Type	log [1/LD ₅₀] (mmol/kg) ⁻¹		Leverage (h_i)
			Observed	Predicted	
298 Lept	tophos	Insecticide	0.98	0.76	0.007
299 MC	PA	Herbicide	-0.68	-0.79	0.005
300 Mec	oprop	Herbicide	-0.73	-1.09	0.006
301 Met	azachlor	Herbicide	-1.10	-0.95	0.009
302 Met	conazole	Fongicide	-0.27	-0.06	0.003
303 Met	hazole	Herbicide	-0.47	-0.61	0.004
304 Met	hidathion	Insecticide	1.08	1.03	0.007
305 Met	olachlor	Herbicide	-0.63	-0.63	0.005
306 Met	ribuzin	Herbicide	0.83	0.52	0.005
307 Mol	inate	Herbicide	-0.41	-0.18	0.004
308 Mor	olinuron	Herbicide	-0.99	-0.63	0.008
309 Nite	npyram	Insecticide	-0.76	-0.85	0.006
310 Oxa	dixyl	Fongicide	-0.82	-1.12	0.006
311 Oxa	myl	Insecticide	1.94	2.04	0.018
312 Pend	dimethalin	Herbicide	-1.05	-1.27	0.008
313 Phos	smet	Insecticide	0.45	0.04	0.004
314 Prof	enofos	Insecticide	0.02	-0.01	0.003
315 Pror	necarb	Insecticide	0.77	0.58	0.005
316 Prop	pazine	Herbicide	-1.22	-1.49	0.010
317 Pros	ulfocarb	Herbicide	-0.86	-0.80	0.007
318 Prot	hoate	Insecticide	1.55	1.14	0.012
319 Tebi	utam	Herbicide	-1.43	-1.51	0.012
320 Tebi	uthiuron	Herbicide	-0.16	-0.07	0.003
321 Tepi	raloxydim	Herbicide	-1.36	-1.48	0.011
322 Terb	oufos	Insecticide	2.25	2.14	0.023
323 Tetr	aconazole	Fongicide	-0.46	-0.79	0.004
324 Thia	cloprid	Insecticide	-0.18	-0.24	0.003
325 Thio	bencarb	Herbicide	-0.44	-0.66	0.004
326 Tral	omethrin	Insecticide	0.57	0.65	0.004
327 Tria	zamate	Insecticide	0.71	0.49	0.005
328 Trid	-	Fongicide	-0.19	-0.31	0.003
329 Veri	nolate	Herbicide	-0.72	-0.12	0.006

Table 2.

List of descriptors used in the development of QSAR model.

Category	Descriptor	Description
2D Autocorrelations	MATS2p	Moran autocorrelation of lag 2 weighted by polarizability
indices	MATS1m	Moran autocorrelation of lag 1 weighted by mass
Atom-centred	N-072	RCO-N < />N - X = X
fragments	H-046	H attached to C0(sp3) no X attached to next C
Geometrical descriptors	PJI3	3D Petitjean shape index
	H6m	H autocorrelation of lag 6/weighted by mass
Getaway descriptors	HATSe	Leverage-weighted total index/weighted by Sanderson electronegativity
	HATS0m	Leverage-weighted autocorrelation of lag 0/weighted by mass
DDE degerinten	RDF020e	Radial distribution function—020/weighted by Sanderson electronegativity
RDF descriptor	RDF030e	Radial distribution function—030/weighted by Sanderson electronegativity
	Mor15m	Signal 15/weighted by mass
3D-Morse descriptor	Mor23u	Signal 23/unweighted
	Mor26u	Signal 26/unweighted
	Du	D total accessibility index/unweighted
Whim descriptors	E1u	1st component accessibility directional WHIM index/unweighted
Functional group counts	nArX	Number of <i>X</i> on aromatic ring
Constitutional indices	nS	Number of sulfur atoms

Table 3. Selected parameters of the optimal multi-layer perceptron.

Parameters studied	MSE (minimum value)	Selected parameters			
	database distributi	ion			
Training (80%) and validation (20%)	0.0311				
Training (79%) and validation (21%)	0.0317				
Training (78.5%) and validation (21.5%)	0.0295	Training (78.5%) and validation (21.5%)			
Training (78%) and validation (22%)	0.0343				
Training (77%) and validation (23%)	0.0382				
Activation functions (hidden neurons/output neurons)					
Sigmoid-sigmoid	0.0291				
Sigmoid-linear	0.0293				
Sigmoid-tangent hyperbolic	0.1054				
Tangent hyperbolic-sigmoid	0.1719				
Tangent hyperbolic-linear	0.0290	Tangent hyperbolic–linear			
Tangent hyperbolic-tangent hyperbolic	0.0293	rangem hyperbone intear			
Linear-sigmoid	0.1563				
Linear-tangent hyperbolic	0.0306				
Linear-linear	0.0299				
Number o	f neurons in the hid	den layer			
1–16	0.0290	9 Neurons			
I	earning algorithms	1			
Quasi–Newton back propagation (BFGS)	0.0290				
Levenberg-Marquardt (LM)	0.0293	Quasi Navytan haal			
Scaled conjugate gradient (SCG)	0.0395	Quasi–Newton back propagation (BFGS)			
Conjugate gradient descent (CGP)	0.0346				

Table 4.

Performance of MLP-ANN model for pesticides.

 $\begin{array}{ll} R^2 & 0.963 \\ \textbf{Training set (n = 258)} & Q^2_{LOO} & 0.962 \\ RMS & 0.164 \\ R^2_{ext} & 0.95 \\ \textbf{Validation set (n = 71)} & Q^2_{ext} & 0.948 \\ RMS & 0.201 \\ \end{array}$