N. A. Ameen and P. J. Salas, Microvillus Inclusion Disease: A Genetic Defect Affecting Apical Membrane Protein Traffic in Intestinal Epithelium, Traffic, vol.9, issue.4, pp.76-83, 2000.
DOI : 10.1034/j.1600-0854.2000.010111.x

G. Apodaca, L. I. Gallo, and D. M. Bryant, Role of membrane traffic in the generation of epithelial cell asymmetry, Nature Cell Biology, vol.12, issue.12, pp.1235-1243, 2012.
DOI : 10.1038/ncb2635

I. Chantret, A. Rodolosse, A. Barbat, E. Dussaulx, E. Brot-laroche et al., Differential expression of sucrase-isomaltase in clones isolated from early and late passages of the cell line Caco-2: evidence for glucose-dependent negative regulation, J Cell Sci, vol.107, pp.213-225, 1994.

S. W. Crawley, M. S. Mooseker, and M. J. Tyska, Shaping the intestinal brush border The Journal, pp.441-451, 2014.

E. M. Danielsen and G. H. Hansen, Lipid raft organization and function in brush borders of epithelial cells Molecular membrane biology 23, pp.71-79, 2006.

H. S. Dhekne, N. H. Hsiao, P. Roelofs, M. Kumari, C. L. Slim et al., Myosin Vb and Rab11a regulate phosphorylation of ezrin in enterocytes, Journal of Cell Science, vol.127, issue.5, pp.1007-1017, 2014.
DOI : 10.1242/jcs.137273

S. Etienne-manneville, Cdc42 - the centre of polarity, Journal of Cell Science, vol.117, issue.8, pp.1291-1300, 2004.
DOI : 10.1242/jcs.01115

A. Fabre, C. Martinez-vinson, O. Goulet, and C. Badens, Syndromic diarrhea/Trichohepato-enteric syndrome Orphanet journal of rare diseases 8, 2013.

G. Gillard, M. Shafaq-zadah, O. Nicolle, R. Damaj, J. Pecreaux et al., Control of E-cadherin apical localisation and morphogenesis by a SOAP-1/AP-1, C. elegans epidermal cells Development, pp.1672-1683, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01141743

J. P. Gorvel, A. Ferrero, L. Chambraud, A. Rigal, J. Bonicel et al., Expression of sucrase-isomaltase and dipeptidylpeptidase IV in human small intestine and colon, Gastroenterology, vol.101, issue.3, pp.618-625, 1991.
DOI : 10.1016/0016-5085(91)90517-O

G. M. Groisman, M. Amar, and E. Livne, CD10, The American Journal of Surgical Pathology, vol.26, issue.7, pp.902-907, 2002.
DOI : 10.1097/00000478-200207000-00008

J. L. Hartley, N. C. Zachos, B. Dawood, M. Donowitz, J. Forman et al., Mutations in TTC37 Cause Trichohepatoenteric Syndrome (Phenotypic Diarrhea of Infancy), Gastroenterology, vol.138, issue.7, pp.2388-2398, 2010.
DOI : 10.1053/j.gastro.2010.02.010

A. B. Jaffe, N. Kaji, J. Durgan, and A. Hall, Cdc42 controls spindle orientation to position the apical surface during epithelial morphogenesis, The Journal of Cell Biology, vol.3, issue.4, pp.625-633, 2008.
DOI : 10.1067/msy.2003.107

B. C. Knowles, J. T. Roland, M. Krishnan, M. J. Tyska, L. A. Lapierre et al., Myosin Vb uncoupling from RAB8A and RAB11A elicits microvillus inclusion disease, Journal of Clinical Investigation, vol.124, issue.7, pp.2947-2962, 2014.
DOI : 10.1172/JCI71651DS1

D. Kravtsov, A. Mashukova, R. Forteza, M. M. Rodriguez, N. A. Ameen et al., Myosin 5b loss of function leads to defects in polarized signaling: implication for microvillus inclusion disease pathogenesis and treatment, AJP: Gastrointestinal and Liver Physiology, vol.307, issue.10, pp.992-1001, 2014.
DOI : 10.1152/ajpgi.00180.2014

C. Lemmers, E. Medina, M. H. Delgrossi, D. Michel, J. P. Arsanto et al., hINADl/PATJ, a Homolog of Discs Lost, Interacts with Crumbs and Localizes to Tight Junctions in Human Epithelial Cells, Journal of Biological Chemistry, vol.277, issue.28, pp.25408-25415, 2002.
DOI : 10.1074/jbc.M202196200

URL : https://hal.archives-ouvertes.fr/hal-00306522

J. Melendez, M. Liu, L. Sampson, S. Akunuru, X. Han et al., Cdc42 Coordinates Proliferation, Polarity, Migration, and Differentiation of Small Intestinal Epithelial Cells in Mice, Gastroenterology, vol.145, issue.4, pp.808-819, 2013.
DOI : 10.1053/j.gastro.2013.06.021

A. W. Overeem, D. M. Bryant, and I. S. Van, Mechanisms of apical???basal axis orientation and epithelial lumen positioning, Trends in Cell Biology, vol.25, issue.8, pp.476-485, 2015.
DOI : 10.1016/j.tcb.2015.04.002

A. D. Phillips, M. Szafranski, L. Y. Man, and W. J. Wall, Periodic acid-Schiff staining abnormality in microvillous atrophy: photometric and ultrastructural studies Journal of pediatric gastroenterology and nutrition 30, pp.34-42, 2000.

F. M. Ruemmele, T. Muller, N. Schiefermeier, H. L. Ebner, S. Lechner et al., Loss-of-function of MYO5B is the main cause of microvillus inclusion disease: 15 novel mutations and a CaCo-2 RNAi cell model, Human Mutation, vol.135, issue.5, pp.544-551, 2010.
DOI : 10.1002/humu.21224

R. Sakamori, S. Das, S. Yu, S. Feng, E. Stypulkowski et al., Cdc42 and Rab8a are critical for intestinal stem cell division, survival, and differentiation in mice, Journal of Clinical Investigation, vol.122, issue.3, pp.1052-1065, 2012.
DOI : 10.1172/JCI60282DS1

J. Salomon, O. Goulet, D. Canioni, N. Brousse, J. Lemale et al., Genetic characterization of congenital tufting enteropathy: epcam associated phenotype and involvement of SPINT2 in the syndromic form, Human Genetics, vol.163, issue.3, pp.299-310, 2014.
DOI : 10.1007/s00439-013-1380-6

URL : https://hal.archives-ouvertes.fr/hal-00880136

K. Schneeberger, G. F. Vogel, H. Teunissen, D. D. Van-ommen, H. Begthel et al., An inducible mouse model for microvillus inclusion disease reveals a role for myosin Vb, apical and basolateral trafficking Proceedings of the National Academy of Sciences of the United States of America, 2015.

M. Shafaq-zadah, L. Brocard, F. Solari, and G. Michaux, AP-1 is required for the maintenance of apico-basal polarity in the C. elegans intestine Development, pp.2061-2070, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00694038

N. M. Shillingford, M. L. Calicchio, L. A. Teot, T. Boyd, K. C. Kurek et al., Villin immunohistochemistry is a reliable method for diagnosing microvillus inclusion disease The American journal of surgical pathology, pp.245-250, 2015.

L. M. Sollid, Coeliac disease: dissecting a complex inflammatory disorder Nature reviews, Immunology, vol.2, pp.647-655, 2002.

P. Stepensky, J. Bartram, T. F. Barth, K. Lehmberg, P. Walther et al., Persistent defective membrane trafficking in epithelial cells of patients with familial hemophagocytic lymphohistiocytosis type 5 due to STXBP2, MUNC18-2 mutations Pediatric blood & cancer, pp.1215-1222, 2013.

A. Suzuki and S. Ohno, The PAR-aPKC system: lessons in polarity, Journal of Cell Science, vol.119, issue.6, pp.979-987, 2006.
DOI : 10.1242/jcs.02898

C. E. Thoeni, G. F. Vogel, I. Tancevski, S. Geley, S. Lechner et al., Microvillus Inclusion Disease: Loss of Myosin Vb Disrupts Intracellular Traffic and Cell Polarity, Traffic, vol.283, issue.1, pp.22-42, 2014.
DOI : 10.1111/tra.12131

B. Vacca, E. Bazellieres, R. Nouar, A. Harada, D. Massey-harroche et al., Drebrin E depletion in human intestinal epithelial cells mimics Rab8a loss of function Human molecular genetics 23, pp.2834-2846, 2014.

K. M. Yamada and E. Cukierman, Modeling Tissue Morphogenesis and Cancer in 3D, Cell, vol.130, issue.4, pp.601-610, 2007.
DOI : 10.1016/j.cell.2007.08.006

H. Zhang, N. Abraham, L. A. Khan, D. H. Hall, J. T. Fleming et al., Apicobasal domain identities of expanding tubular membranes depend on glycosphingolipid biosynthesis, Nature Cell Biology, vol.49, issue.10, pp.1189-1201, 2011.
DOI : 10.1371/journal.pgen.0030056

H. Zhang, A. Kim, N. Abraham, L. A. Khan, D. H. Hall et al., Clathrin and AP-1 regulate apical polarity and lumen formation during C. elegans tubulogenesis Development, pp.2071-2083, 2012.
DOI : 10.1242/dev.077347

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3347694

D. and D. Iv, F actin (cyan; A-D), Dapi (blue in merged) All revealed markers

P. Ezrin and /. Pkc?, DPPIV) were concentrated at the apical surface (lumen indicated by an arrow) in control cysts while in MYO5B knock-down cysts, Ezrin (A) Par6B (C) and PKC?/? (D) were accumulated in basal localisation (cyst limits indicated by an arrowhead). F actin and DPPIV were less frequently visible at the basal membrane (C) See also Fig S1 for shMyo5B76, P-Ezrin (B)