Identification of a duplicated V3 domain in NS5A associated with cirrhosis and hepatocellular carcinoma in HCV-1b patients

To cite this version:

HAL Id: hal-01231431
https://hal-univ-rennes1.archives-ouvertes.fr/hal-01231431
Submitted on 25 Nov 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Title Page

Title: Identification of a duplicated V3 domain in NS5A associated with cirrhosis and hepatocellular carcinoma in HCV-1b patients

Authors: H Le Guillou-Guillemettea,b, A Ducancellea,b, S Bertraisb, C Lemairec, A Piverta,b, P Veillona,b, E Bouthrya,b, S Alaind, V Thibaulte, F Abravanelf, AR Rosenbergg, C Henquellh, E André-Garnieri, O Petsarisi, S Valletj, JB Bourk, Y Baazial, P Trimouletm, P Andrén, C Gaudy-Graffino, D Bettingerp, S Larratq, A Signori-Schmuckq, H Saoudinr, B Pozzettof, G Lagathus, S Minjolle-Chas, F Stoll-Kellerf, JM Pawlotskyu, J Izopetf, C Payanj and F Lunel-Fabiania,b.

a Laboratoire de Virologie, CHU Angers, France (heleguillou@chu-angers.fr; adpivert@chu-angers.fr; sandrine.bertrais@univ-angers.fr; paveillon@chu-angers.fr; alducancelle@chu-angers.fr; elise.bouthry@abc.aphp.fr; flrlunel-fabiani@chu-angers.fr)

b HIFIH Laboratory, UPRES 3859, SFR 4208, LUNAM University, Angers, France

c IRHS, PRES LUNAM, SFR QUASAV, Angers, France (christophe.lemaire@univ-angers.fr)

d Laboratoire de Virologie, CHU Limoges, France (sophie.alain@unilim.fr)

e Laboratoire de Virologie, CHU Pitié-Salpêtrière, Paris, France (vincent.thibault@psl.aphp.fr)

f Laboratoire de Virologie, CNR VHE, Inserm U1043, CHU Purpan, Toulouse, France (abravanel.f@chu-toulouse.fr; izopet.j@chu-toulouse.fr)

g AP-HP, GHU Cochin, Laboratoire de Virologie, Université Paris Descartes, EA 4474

"Hepatitis C Virology", Paris, France (arielle.rosenberg@parisdescartes.fr)

h Laboratoire de Virologie, CHU Clermont-Ferrand, France (chenquell@chu-clermontferrand.fr)
i Laboratoire de Virologie, CHU Hôtel Dieu, Nantes, France (elisabeth.andre@chu-nantes.fr)

j Département de Bactériologie-Virologie-Hygiène Hospitalière et Parasitologie-Mycologie, CHRU, LUBEM, EA3882, Brest, France (odilepetsaris@yahoo.fr; sophie.vallet@chu-brest.fr; christopher.payan@chu-brest.fr)

k Laboratoire de Virologie, CHU, Dijon, France (Jean-Baptiste.Bour@u-bourgogne.fr)

l Laboratoire de Virologie, CHU Avicenne, Bobigny, France (yazid.baazia@sls.aphp.fr)

m Laboratoire de Virologie, Hôpital Pellegrin Tripode, CHU Bordeaux, France (pascale.trimoulet@chu-bordeaux.fr)

n Laboratoire de Virologie, Centre de Biologie Nord, Hôpital de la Croix Rousse, Lyon, France (patrice.andre@chu-lyon.fr)

o Université François Rabelais, Inserm U966, CHU Tours, France (gaudy_c@med.univ-tours.fr)

p Laboratoire de Virologie, CHU Besançon, France (dbettinger@chu-besanccon.fr)

q Laboratoire de Virologie, UMI 3265 UJF-EMBL-CNRS, CHU, Unit of Virus Host Cell Interactions, Grenoble, France (SLarrat@chu-grenoble.fr; asignorischmuck@chu-grenoble.fr)

r Laboratoire de Bactériologie-Virologie, CHU Saint-Etienne, France (henia.saoudin@chu-st-etienne.fr; Bruno.Pozzetto@chu-st-etienne.fr)

s Laboratoire de Virologie, CHU Rennes, France (Gisele.LAGATHU@chu-rennes.fr; sophie.minjolle@chu-rennes.fr)

t Institut de Virologie, CHU Strasbourg, Inserm U748, Strasbourg, France (francoise.stoll@unistra.fr)

u Laboratoire de Virologie-Bactériologie, CHU Henri-Mondor, Créteil, France (jean-michel.pawlotsky@hmn.aphp.fr)
Corresponding author: Dr Hélène Le Guillou-Guillemette, Laboratoire de Virologie, Département des agents infectieux, IBS, CHU Angers, 4 rue Larrey 49933 Angers cedex9, France. Phone: 33-241354709. Fax: 33-241354164. E-mail: heleguillou@chu-angers.fr

Word counts: 2497 words

Abstract

Background. The NS5A protein of the hepatitis C virus has been shown to be involved in the development of hepatocellular carcinoma.

Objectives. In a French multicenter study, we investigated the clinical and epidemiological features of a new HCV genotype 1b strain bearing a wide insertion into the V3 domain.

Study Design. We studied NS5A gene sequences in 821 French patients infected with genotype 1b HCV.

Results. We identified an uncharacterized V3 insertion without ORF disruption in 3.05% of the HCV sequences. The insertion comprised 31 amino-acids for the majority of patients; 3 patients had 27 amino-acids insertions and 1 had a 12 amino-acids insertion. Sequence identity between the 31 amino-acids insertions and the V3 domain ranged from 48 to 96% with E-values above $4e^{-5}$, thus illustrating sequence homology and a partial gene duplication event that to our knowledge has never been reported in HCV. Moreover we showed the
presence of the duplication at the time of infection and its persistence at least during 12 years in the entire quasispecies. No association was found with extrahepatic diseases. Conversely, patients with cirrhosis were two times more likely to have HCV with this genetic characteristic (p=0.04). Moreover, its prevalence increased with liver disease severity (from 3.0% in patients without cirrhosis to 9.4% in patients with both cirrhosis and HCC, p for trend=0.045).

Conclusions. We identified a duplicated V3 domain in the HCV-1b NS5A protein for the first time. The duplication may be associated with unfavorable evolution of liver disease including a possible involvement in liver carcinogenesis.

Key words: cirrhosis, hepatitis C virus, hepatocellular carcinoma, NS5A, V3 domain
Background

Infection by hepatitis C virus (HCV) becomes persistent in around 80% of cases and in turn a major cause of liver disease for the approximately 184 million HCV patients worldwide. Chronically infected patients are at risk of developing liver cirrhosis and hepatocellular carcinoma (HCC) [1].

HCV is a single-strand RNA virus belonging to the Flaviviridae family. Its genome encodes a polyprotein of about 3000 amino-acids that is then cleaved into structural and non-structural proteins such as NS5A, a pleiotropic phosphoprotein. Thus, studies strongly suggest that NS5A plays a role in resistance to interferon (IFN)-based therapy [2], in the establishment of chronic hepatitis and in liver carcinogenesis [3]. NS5A is now a target for antivirals [4].

HCV is notable for its considerable genetic diversity [5]. Indels are one feature of the genetic variability characterizing RNA virus evolution, but the physiopathological consequences of these changes in HCV have not been well explored. Thus, Gerotto et al. showed that a 1-amino-acid insertion or deletion in HVR1 was significantly associated with mixed cryoglobulinemia type 2 [6]. Other authors have correlated indels in the NS5A domain with genotype specific signatures and suggested a putative role in the resistance to antiviral therapy or host immune response evasion [7]. Conversely, gene duplications have been described as a major evolutionary tool for DNA viruses [8]. This allows for the acquisition of new biological functions or the modification of virulence. However, biological constraints make gene duplication extremely rare in RNA viruses [9].
Objectives

In previous studies [10, 11] in HCV-1b-infected patients, we discovered a NS5A polymorphism that may consist in V3 domain duplication, a variable region located in the NS5A domain III. One of those patients had extrahepatic disease. To better understand this unknown but intriguing HCV polymorphism at NS5A gene, we performed an observational cross-sectional multicenter study. Thus, using both clinical and phylogenetic data, we questioned i) the impact of the duplication of V3 domain on the probability of HCC, ii) the prevalence of V3-duplication in patients and iii) the persistence of V3-duplicated strains during the infection process.
Study design

Study Patients

All consecutive patients newly diagnosed with chronic HCV-1b infection and without HIV co-infection were selected at the routine genotyping step in 19 French academic laboratory of virology between 2006 and 2009. We initially enrolled 938 patients; 117 patients were subsequently excluded due to failed NS5A amplification (HCV viral load was weak or undetectable). Excluded patients did not significantly differ regarding disease duration, date of diagnosis and alcohol abuse (data not shown). Consequently, the present cross-sectional study was conducted in 821 patients.

Demographic and clinical data

Date of blood sample collection and biological parameters including HCV genotype, viral load and biochemical measures were obtained from the participating laboratories. Demographic (age, gender) and clinical (fibrosis evaluation and presence of cirrhosis, presence of HCC, cryoglobulinemia, lymphoma or co-infection, presumed date of infection and route of transmission if available) data at the time of inclusion were retrospectively collected from medical records. Thus, we were able to determine fibrosis stages or the presence of cirrhosis in 542 patients.

NS5A amplification and nucleotide sequencing

HCV RNA was extracted from 200 µL of each serum sample using the EasyMag automated extraction system (BioMérieux, Craponne, France). As previously described [12], the full length NS5A gene was amplified by nested RT-PCR. Each PCR product that showed a larger
fragment than expected was sequenced in two directions using the Big Dye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems) on the automated ABI3130xl [12]. We also always used the Superscript III reverse transcriptase/platinum Taq polymerase (Invitrogen) to rule out PCR artifacts.

PCR products from consecutive serums with V3-insertion were also submitted to a clonal quasispecies analysis using the protocol that we previously described [10]. A mean of 30 clones per sample was analyzed. The amino-acids residues were numbered according to the sequence of the HCV-1b HCV-J prototype (Genbank Accession number: D90208).

Sequence analysis of the NS5A gene

When both were present, the amino-acids sequences of the inserted domain and the V3 domain were compared pairwise using BLASTP [13]. Sequences were considered homologous when the expected (E)-value was above 10^{-5}. This cut-off has already been used to assess duplication events in RNA viruses and was considered relatively stringent [14].

The sequence data were deposited in the DDBJ/EMBL/GenBank nucleotide sequence databases: accession numbers KF420489-KF420513.

Evolution of the V3-duplicated strains in one patient

In order to test for the functionality of strains carrying the duplication of V3 domain during infection, we performed the detection of the V3-insertion in 5 consecutive serums covering a twelve years follow-up of one patient. We had the serum before the contamination, at the time of the transmission in 1988 (by a kidney graft) and during the HCV chronic disease (1996, 1998 and 2000). In order to trace the evolutionary relationships of strains during time, we used the phylogenetic method implemented in the software BEAST v.1.8 [15]. Prior to any
The more likely substitution model was tested using jModelTest 2 [45]. The best model was found to be the HKY substitution model [46] with gamma heterogeneity and a proportion of invariant sites. This substitution model was used when useful in analyses using BEAST. Coalescent simulations assuming a strict clock model of substitution rate were run under the Bayesian Skyline model [16] that assumes demographic variations. Three independent runs were performed to assess convergence of the Monte Carlo Markov Chain process.

Statistical analyses

Statistical analyses were performed using SAS version 9.3 (SAS Institute, Inc., USA). The distribution of categorical variables was expressed as frequencies and percentages. Quantitative variables were described in mean values +/- standard deviation (SD) and median. Differences between patient groups were analyzed using the Fisher’s exact test for nominal variables and the non-parametric Mann-Whitney-Wilcoxon test for continuous variables, unless otherwise indicated.

To assess the clinical relevance of the NS5A V3 insertion, we firstly compared the proportion of patients having this genetic characteristic as a function of several diseases. For this, 95% confidence intervals (CI) were calculated by the exact method assuming binomial distribution. We additionally performed an exact Cochran-Armitage trend test to assess whether the proportion of patients having the NS5A V3 insertion increased with liver disease severity (no cirrhosis, cirrhosis without HCC, cirrhosis with HCC). We also fitted multivariate ordinal logistic regression model to assess the relationship of the NS5A insertion with the 3 categories of liver disease severity. The proportional odds assumption underlying ordinal logistic regression was checked and was not rejected (p>0.15). Other factors which were
significantly related to liver disease severity in univariate analysis, were also tested in the multivariate logistic regression model.
Results

Identification of a duplicated V3 domain in the NS5A gene

Twenty-five of the 821 test subjects were infected by an HCV-1b strain bearing a NS5A gene longer than expected. Direct NS5A sequencing of these samples revealed V3 domain duplication. Insertion lengths were 31 amino-acids for 21 patients, 27 amino-acids for three, and 12 amino-acids for one. The two V3 domains appeared in tandem without ORF disruption (Figure 2). The duplicated domains presented strong sequence similarities with a level of sequence identity ranging from 50 to 91%, and E-values ranged from $4e^{-5}$ to $2e^{-13}$.

The prevalence of this novel duplication in our cohort was 3.05% (95% CI: 1.98-4.46) without particular geographical localization.

Longitudinal analysis of the presence of the V3-insertion

A total of 112 different sequences of the NS5A gene were obtained across the four sampling times. All NS5A haplotypes carried the V3-insertion. The V3-insertion was then present since the infection and persisted for the 12 years. We did not observe any co-occurrence of haplotype of both haplotype with and without insertion within the same serum. The evolutionary relationship between haplotypes represented in Figure 2A showed the evolution of NS5A within the patient during the 12 years. Haplotype occurring at time $t+1$ derived from a small number of haplotypes present a time t. The bayesian skyline plot in Figure 2B indicates a quasi-constant population size during the 12 years. In addition, we also analysed consecutive serum available for two others patients covering a period of 5 and 6 years respectively. The V3-insertion was present in all the samples by direct and clonal sequencing.
Comparison between patients infected by the mutant HCV strain and those infected by wild-type HCV

Patient characteristics according to V3 status are shown in Table 1. The only difference between the two groups was that patients infected by an HCV virus bearing a V3 duplicated domain were older (p=0.035). No differences were found in terms of sex ratio, disease duration or HCV viral load.

In the subsample of patients for whom infection information was available, time since infection was highly related to age (Spearman rank correlation coefficient r=0.47, p<0.0001) but did not significantly differ according to V3 duplication status (p=0.91).

Clinical relevance of the V3 duplication

To assess possible relationships between the V3 duplication and extrahepatic disease, we classified patients according to the presence of cryoglobulinemia or lymphoma. No significant difference in the prevalence of V3 duplication was observed between patients having cryoglobulinemia or lymphoma as compared to those free of these extrahepatic diseases (Figure 3A).

In contrast, a significant relationship was found between V3 duplication and liver disease. The proportion of patients having the mutant strain was two times higher in patients with hepatocellular carcinoma compared to those without. We also found a significant association between the presence of the V3 duplication and cirrhosis (Figure 3B). Furthermore, the prevalence of the mutant strain increased with liver disease severity (p for trend=0.0449) (Table 2). Results from ordinal logistic regression analysis confirmed that there was a borderline significant relationship between V3 duplication and liver disease severity: the
unadjusted odds of having cirrhosis without or with HCC versus being non-cirrhotic was 2.4
times greater in patients with V3 duplication (OR [95% CI]: 2.41 [1.00-5.81], p=0.0502). Age
and sex were also associated with liver disease severity (p=<0.0001 and p=0.016
respectively), no significant relationship was found with alcohol consumption (p=0.60) and
HCV viral load (p=0.35). After adjustment for age and sex, the odds-ratio remained higher
than 2.0, although it was non-significant (OR [95% CI]: 2.06 [0.84-5.02], p=0.1123). Due to
the proportional odds assumption of the ordinal logistic regression model, the presence of V3
duplication was associated with the same two-fold increase in odds for having HCC versus
the combined category “cirrhotic but no HCC” or “non-cirrhotic”, after controlling for age
and sex.
Discussion

In our multicenter study, we found 25 cases with a high sequence identity between both V3 domains, illustrating partial gene duplication in NS5A. In our test population, the prevalence of the strain was 3.05% (95% CI: 1.98-4.46). Authors recently reported that gene duplication is infrequent in RNA viruses: they identified only nine cases of gene duplication among 1198 RNA virus species analyzed using a BLAST approach [14]. Specifically in HCV, insertion or deletion is quite rare. A large quasispecies study identified only infrequent, very small (from 1 to 4 amino-acids) insertions in the E1-E2 or NS5A regions of HCV-1. This work demonstrated that insertions were detected in all the specimens comprising sequential samples but not always in all the clones [17]. Here we detect an insertion that was not only large but also a tandemly repeated domain. Moreover, an analysis performed at the quasispecies level showed that the V3 duplication was present in 100% of the clones of the 25 mutant HCVs (n=870 clones, with a mean of 30 clones per sample). We also identified the V3 duplication following HCV infection and its persistence in three patients. This temporal analysis permitted to conclude that the clones with V3-insertions had the ability to infect patients and persist during several years like clones without insertion. Others studies have described small indels in the 5'UTR [18] or in the E1-E2 region, especially in the HVR1 subdomain [19]. In our work, the insertion contained 31 amino-acids for almost all of the mutant HCVs (21/25). Furthermore, Moradpour et al. demonstrated that domain III of NS5A tolerates wide heterologous insertion [20]. Our findings demonstrate that insertions are also naturally tolerated as suggested in vitro. In contrast, past reports of genomic HCV polymorphisms have mainly described recombinant strains; none described duplicated domains [21]. Gene duplication in RNA viruses is possible, but it is a contradictory evolutionary pathway. Duplication leads to increased genome size, which may lead to new evolutionary
opportunities, or conversely the enhancement of defects in production or replication [22]. The few cases of partial gene duplication reported in RNA viruses were located in untranslated regions of Flaviviridae [23, 24]. Thus, a high mutation rate offers a better evolutionary path for RNA viruses. Therefore, a prevalence of 3.05% for our mutated strain exhibiting duplication in the ORF should be considered as high.

HCV infection severity has been linked to host parameters and virological characteristics. A number of reports have associated amino-acids variations in NS5A with issues in antiviral therapy [2, 10, 27] or the evolution of liver disease toward cancer [28, 29]. Recently, particular mutations in NS3 and NS5A were also showed to be more closely associated with the development of HCC [30]. Our results suggest that the identified polymorphism in NS5A may also be associated with a pejorative progression of liver disease. We observed that this V3 domain duplication was much more prevalent in patients with cirrhosis and HCC. Moreover, this prevalence increased with liver disease severity, and the relationship with liver complications remained strong after adjustment for sex and age, although non-significant.

Clinical data for liver fibrosis were available for 551 patients with a cohort of 119 cirrhosis patients. These data were in accordance with the level of severe disease expected in the physiopathological history of HCV disease and sufficient to perform robust statistical analyses. We were unable to identify other factors that may potentially influence liver disease severity. In the present study, alcohol consumption and viral load level were not related to liver disease severity. Unfortunately, other well-established confounder factors were not available or only in a subsample of subjects. Date and route of transmission were not frequently recorded, as mostly observed in prospective studies [31]. Time since infection may be one of the potential confounding factors of the observed relationships with liver complications. However this factor was indirectly controlled by age adjustment in our study.
Indeed, we found a high correlation between time since infection and age among patients for whom this information was available. Moreover, in this subsample, time since infection lost its significant relation to liver complications after age adjustment (data not shown).

Although we feel that the prevalence of the duplication in NS5A should be considered as elevated in the setting of RNA viruses and especially in that of HCV, the small number of patients with V3 insertions in our study population may lead to a lack of statistical power. This may explain the borderline or non-significant p-values and the wide confidence intervals, despite the strong observed differences. For these same reasons, the non-significant relationship with extrahepatic disease (cryoglobulinemia and lymphoma) should be interpreted cautiously. This kind of correlation was previously identified with single nucleotide insertions located in the HVR1-envelope [6]. Contrary to E1-E2, NS5A does not appear to be genuinely involved in immune system stimulation or clonal selection of lymphocytes. The V3 domain, located within NS5A domain III, has been shown to be dispensable for HCV replication in vitro [32], and our results suggest that its duplication does not influence viral load in vivo. Indeed, we observed no differences in viral loads as a function of V3 status. Here, we identified in a clinical study a wide duplication event in the NS5A protein of a HCV-1b strain that can be transmitted and persists, and may be associated with a higher risk of liver complications. The results of this cross-sectional study should be confirmed in a larger cohort.
Conflicts of interest:

Funding: This study was funded by the ANRS (Agence de Nationale de Recherche sur le VIH et les hépatites, appel d’offre Mars 2006).

Competing interests: none declared

Ethical approval: An information letter was sent to all patients and the study was approved by the Ethics Committee of the University Hospital of Brest (Avis CPP Ouest 6-15112006). The study was also approved and registered by the national commission for information technology and civil liberties (CNIL, 907057-09032007).

Acknowledgements

The authors thank K. Erwin for proofreading the English manuscript.

The authors thank the AC11-HCV Study and AC33-Virology groups from the ANRS, and the following clinicians: Angers - I Fouchard-Hubert, P Calès; Avicenne - D Roulot; Besançon - V Di Martino; Bordeaux - V de Lédinghen; Brest - JB Nousbaum, F Tanné; Clermont-Ferrand - A Abergel; Dijon - A Minello, P Hillon; Grenoble - JP Zarski, V Leroy, MN Hilleret; Limoges - V Loustaud-Ratti; Lyon - V Zoulim; Nantes - J Gournay; Paris-Cochin - P Podevin; Paris-Pitié Salpêtrière - P Lebray; Rennes - D Guyader; Saint-Etienne - M. Ecochard, X. Roblin; Strasbourg - M. Doffoël; Toulouse - S Métivier, K Barange; Tours - L D'Alteroche, Y Bacq.

The authors thank A Lefebvre, E Muel, Y Desille, I Renard, A Plages, A Rodallec and W Merrouche for their assistance in clinical data recording.
References

19

FIGURE CAPTIONS

Figure 1. Alignments of the 25 sequences showing a V3-NS5A duplicated domain with respect to the HCV-J 1b reference sequence. The first V3 domain is located between positions 2353 and 2383 (light grey column), the second is tandemly located thereafter out to position 2414 (dark grey column). Dots (.) represent identical residues; dashes (-) indicate shorter insertions in the last four aligned sequences; X denotes a mixture.

Figure 2. Phylodynamics at gene NS5A for 112 strains of a patient during its infection since the year of the transmission (1988) until the last date of the clinical follow-up (2000). (A) Coalescent tree inferred using the Bayesian Skyline Model using BEASTv1.8. Colors correspond to sampling times of quasispecies (1988: yellow; 1996: orange; 1998: red and 2000: pink). (B) Demographic dynamics using the Bayesian Skyline Plot. Distribution of effective population sizes are plotted against time. Black line corresponds to the median of distribution and 95% of the highest posterior density is given in blue.

Figure 3. Comparisons of the proportion of patients having the V3-duplicated HCV strain according to clinical status for two extrahepatic diseases cryoglobulinemia and lymphoma (A) and to the presence of HCC or cirrhosis (B). Error bars represent 95% confidence intervals.
Table 1. Characteristics of included patients according to HCV-1b NS5A V3 status

<table>
<thead>
<tr>
<th></th>
<th>Total n=821</th>
<th>Presence of V3 duplication n (%) or mean (sd) / median</th>
<th>Presence of V3 duplication n (%) or mean (sd) / median</th>
<th>Presence of V3 duplication n (%) or mean (sd) / median</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male (%)</td>
<td>50.3</td>
<td>50.3</td>
<td>48</td>
<td>0.84 (a)</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>54.8 (14.6) / 54.7</td>
<td>54.6 (14.6) / 54.3</td>
<td>61.0 (14.2) / 59.7</td>
<td>0.035 (b)</td>
<td></td>
</tr>
<tr>
<td>Viral load (log UI/mL)</td>
<td>5.91 (0.78) / 5.98</td>
<td>5.91 (0.78) / 5.99</td>
<td>5.82 (0.62) / 5.88</td>
<td>0.43 (b)</td>
<td></td>
</tr>
<tr>
<td>Time since infection (years)</td>
<td>n=191</td>
<td>n=176</td>
<td>n=15</td>
<td>0.91 (b)</td>
<td></td>
</tr>
<tr>
<td>Infection route known</td>
<td>n=279</td>
<td>n=265</td>
<td>n=14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transfusion</td>
<td>n=191 (68.5)</td>
<td>n=179 (67.6)</td>
<td>n=12 (85.7)</td>
<td>0.24 (b)</td>
<td></td>
</tr>
<tr>
<td>Injected drug use</td>
<td>n=43 (15.4)</td>
<td>n=42 (15.8)</td>
<td>n=1 (7.1)</td>
<td>0.70 (b)</td>
<td></td>
</tr>
</tbody>
</table>

(a) Fisher’s exact test; (b) Non-parametric Mann–Whitney–Wilcoxon test

Table 2. Patient characteristics and observed prevalence of V3 duplication according to combined status for cirrhosis and hepatocellular carcinoma.

<table>
<thead>
<tr>
<th></th>
<th>No cirrhosis</th>
<th>Cirrhosis without HCC</th>
<th>Cirrhosis with HCC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

442
443

444
445
<table>
<thead>
<tr>
<th>Variable</th>
<th>n=432</th>
<th>n=87</th>
<th>n=32</th>
<th>p for linear trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male (%)</td>
<td>44.1</td>
<td>51.8</td>
<td>68.7</td>
<td>0.0056<sup>(a)</sup></td>
</tr>
<tr>
<td>Age (years)</td>
<td>54.1 (14.1) / 53.9</td>
<td>59.9 (12.2) / 62.0</td>
<td>65.2 (9.7) / 66.6</td>
<td><0.0001<sup>(b)</sup></td>
</tr>
<tr>
<td>Viral load (log IU/ml)</td>
<td>5.91 (0.74) / 5.97</td>
<td>5.94 (0.79) / 6.00</td>
<td>5.67 (0.80) / 5.72</td>
<td>0.17<sup>(b)</sup></td>
</tr>
<tr>
<td>V3 duplication (%)</td>
<td>3.01 (1.61-5.09)</td>
<td>5.75 (1.89-12.90)</td>
<td>9.38 (1.98-25.02)</td>
<td>0.0449<sup>(a)</sup></td>
</tr>
</tbody>
</table>

^(a) Cochrán-Armitage test for trend; ^(b) General linear model including a linear contrast to test trend