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Abstract 

Activated carbon fiber cloths (ACFC) have shown promising results when applied to water treatment, 

especially for removing organic micropollutants such as pharmaceutical compounds. Nevertheless, 

further investigations are required, especially considering trace concentrations, which are found in 

current water treatment. Until now, most studies have been carried out at relatively high 

concentrations (mg.L-1), since the experimental and analytical methodologies are more difficult and 

more expensive when dealing with lower concentrations (ng.L-1). Therefore, the objective of this 

study was to validate an extrapolation procedure from high to low concentrations, for four 

compounds (Carbamazepine, Diclofenac, Caffeine and Acetaminophen). For this purpose, the 

reliability of the usual adsorption isotherm models, when extrapolated from high (mg.L-1) to low 

concentrations (ng.L-1), was assessed as well as the influence of numerous error functions. Some 

isotherm models (Freundlich, Toth) and error functions (RSS, ARE) show weaknesses to be used as an 

adsorption isotherms at low concentrations. However, from these results, the pairing of the 

Langmuir-Freundlich isotherm model with Marquardt’s percent standard of deviation was evidenced 

as the best combination model, enabling the extrapolation of adsorption capacities by orders of 

magnitude.  

 

Keywords 

Extrapolation; adsorption capacities; trace concentrations; activated carbon fiber cloths; 

micropollutants 
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1. Introduction 

The contamination of aquatic systems by pharmaceutical residues is widely reported and constitutes 

a growing concern and risk for the environment and human health (Das et al., 2014; Gamarra et al., 

2015; Huerta-Fontela et al., 2011). For instance, Loos et al., (2009) detected diclofenac in 83 % of 

their samples in European rivers. The maximum concentration was 11 ng.L-1 (de Jesus Gaffney et al., 

2015). Likewise, carbamazepine and acetaminophen were identified and quantified at concentrations 

of 200 ng.L-1 in surface waters (Segura et al., 2011). Exposure to environmentally concentrations of 

pharmaceutical residues (Carbamazepine, Diclofenac and Acetaminophen) could alter biomarkers 

and biochemical processes of C. fluminea and duckweed plants (Chen et al., 2014; Kummerová et al., 

2015). However, risks for human health were considered negligible by Webb et al., (2003). 

Adsorption processes are recognized among the most efficient, promising and widespread water 

treatments for the removal of pharmaceuticals (Foo and Hameed, 2009). In practice, granular 

activated carbon (GAC) and/or powdered activated carbon (PAC) are used to eliminate organic 

pollutants. According to (Rigobello et al., 2013; Sotelo et al., 2014), the adsorption capacities of 

diclofenac onto granular activated carbon are about 230 mg.g-1 for a residual aqueous concentration 

of 40 mg.L-1. For carbamazepine, Cai and Larese-Casanova (2014) found capacities of 200 mg.g-1 onto 

granular activated carbon for a concentration of 0,5 mg.L-1. For a residual concentration of 500ng.L-1, 

(Yu et al., 2008) found capacities of 1 mg.g-1. More recently, activated carbon fiber cloths (ACFC) have 

also been studied for water treatment (Faur-Brasquet et al., 2002). The advantages of such textiles 

are their high specific surface areas, predominantly microporous texture and large adsorption 

capacities (Ayranci and Hoda, 2005). Therefore, ACFC were more efficient in terms of adsorption rate 

and selectivity than granular activated carbon for the removal of phenols (Dabrowski et al., 2005). 

However, to our knowledge, few studies have dealt with the adsorption of pharmaceutical residues 

onto ACFC (Ayranci and Duman, 2006; Bayram and Ayranci, 2012; Guedidi et al., 2014). 
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The design of the adsorption process is generally based on the equilibrium data for the particular 

system: adsorbent vs. adsorbate. Thus, relevant and accurate models for the sorption equilibrium are 

critical to predict the performances of the treatment. Adsorption isotherms (relationship between 

the amount adsorbed at equilibrium and the residual aqueous concentration for a given 

temperature) are usually reported for a narrow range of concentrations. Moreover, high aqueous 

concentrations (about mg.L-1) (Brasquet et al., 1996) of pollutants are commonly considered since 

trace concentrations are hardly achievable unless a complex and costly analytical strategy is carried 

out. The question is whether the adsorption capacities obtained at high concentrations can be easily 

transposed to realistic trace conditions. As mentioned above, in aquatic compartments, the 

concentrations of pharmaceutical residues are very low (in the ng.L-1 range) and the determination of 

adsorption isotherms at such environmental concentrations is difficult, requiring powerful analytical 

tools such as liquid chromatography coupled to mass spectrometry and time-consuming sample 

preparation (solid phase extraction).  

 

The accuracy of the extrapolation is greatly dependent on the isotherm model considered as well as 

the adjustment procedure used for the optimization of the isotherm parameters. In the literature, 

numerous isotherm models are available, starting from the Freundlich and Langmuir models, which 

have been widely used and validated to describe equilibrium relationships between various 

adsorbents and adsorbates (Ho, 2004; Nam et al., 2014; Sotelo et al., 2014; Yu et al., 2008). Nam et 

al. (2014) have shown a better fit of adsorption onto granular activated carbon with the linear form 

of the Langmuir model, compared to the Freundlich model, for acetaminophen adsorption. These 

authors used concentrations of pollutants between 20 and 500 ng.L-1, with a mass of granular 

activated carbon of 1 mg.L-1. Regarding diclofenac, (Nam et al., 2014) have shown a better fit with 

the Freundlich model while, for carbamazepine, (Yu et al., 2008) have shown better results with the 

Freundlich model, for an equilibrium concentration of 10-800 ng.L-1. Over the years, a wide variety of 

equilibrium isotherm models have been developed while considering various assumptions 
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(heterogeneity of the surface energy, multilayer adsorption, etc.). These isotherm models can be 

classified as two-parameter (Langmuir, Freundlich, Temkin, Elovich, Dubinin-Radushkevich) or three-

parameter models (Redlich-Peterson, Toth, Langmuir-Freundlich, Sips, Radke-Prausnitz). (Limousin et 

al., 2007; Rouquerol et al., 1999; Ruthven, 1984; Worch, 2012). 

 

In combination with the selection of the relevant model, various options are possible to determine 

the model parameters: linearization of the equations with a simple least-square regression or a non-

linear regression method. This latter approach has generally been preferred since it provides the 

most accurate description of experimental data (Foo and Hameed, 2010). Moreover, some models 

cannot be linearized and the determination of parameters is necessarily based on minimizing an 

error function, which corresponds to the deviation between the experimental data and the predicted 

value from the model. The optimized parameters for the isotherm model thus strongly depend on 

the selected error function. It should be noted that the choice of the error function influences the 

accuracy of the modeled data, since this function promotes a better fit of isotherms at low or high 

concentration with different weights for the experimental data. 

Recent studies have compared several error functions in combination with the usual isotherm 

models (Allen et al., 2003; Chan et al., 2012; Foo and Hameed, 2010). Normally, error functions are 

used to minimize or maximize the error distribution between the experimental equilibrium data and 

the predicted isotherms, according to the definition of the error function. Although the method of 

least squares is one of the most widely used techniques with the maximum coefficient of 

determination, r², some studies have pointed out that other error functions are more relevant, such 

as the hybrid fractional error function (HYBRID), Marquardt’s percent standard of deviation (MPSD), 

the average relative error (ARE), the sum of the absolute errors (EABS) etc. According to Chan et al. 

(2012), the hybrid error function provided the best overall results. For this study, the Sips model 

performed the best prediction only if the model was adjusted using the hybrid method with the 

experimental data.  
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Most investigations have been carried out for the adsorption of organic compounds at high 

concentrations (at the mg.L-1 scale) (Sotelo et al., 2014). Only recently, research programs have 

focused on the modeling of adsorption isotherms at lower concentrations (µg.L-1 or less) with the 

development of analytical tools (Al Mardini and Legube, 2010; Matsui et al., 2003). This trend is more 

consistent with the emerging pollutants encountered in the environment and should be generalized 

to achieve a better understanding of the adsorption process used for the production of drinking 

water. However, at trace concentrations, experimental results are more difficult and more expensive 

to obtain. In order to avoid this problem, the extrapolation of the isotherm model from high to low 

concentrations would be an interesting option. In fact, if the model is fitted at high concentrations, 

the prediction outside the range of measurements (to trace contents) could give relevant results. As 

previously mentioned, the selection of the isotherm model and the error function plays a key role in 

predicting adsorption capacities.  

This study focused on the relevance and reliability of the extrapolation of adsorption isotherms from 

high to low concentrations, with the aim of evaluating the ability of numerous isotherm model/error 

function pairs to achieve this change of scale. For this purpose, three emerging pollutants were 

chosen and their isotherms of adsorption were determined for one ACFC. Two sets of experiments 

were carried out at low and high concentrations. Then, the combinations between 13 models and 8 

error functions were evaluated. 

 

 

2. Materials and methods 

2.1. Materials 

2.1.1. Organic compounds 

The targeted compounds – acetaminophen, carbamazepine and diclofenac - were all purchased from 

Sigma-Aldrich (purity > 98 %). The physicochemical properties and molecular structures of the 
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compounds are listed in Table 1. Stock solutions (10 mg.L-1) were prepared by dissolving the 

commercial standard in ultrapure water (UPW) provided by an ElgaPureLab System (18.2 M.cm). 

Two sets of experiments were carried out. The first was conducted at high concentrations of 

pollutant (0.1 – 20 mg.L-1). The second set was achieved at low concentrations (0.1 – 2 µg.L-1), which 

is the range closer to the levels observed in surface waters (Petrie et al., 2014). 

For the high range of concentrations, analyses were performed by Ultra Performance Liquid 

Chromatography (UPLC) using a Waters ACQUITY H-class system (Waters Assoc., Milford, MA) 

equipped with a photodiode array detector (PDA). Detection was carried out at 243, 272, 276 and 

280 nm with a PDA e detector (Waters) for acetaminophen, diclofenac and carbamazepine, 

respectively. 5 µL of sample was injected onto a BEH C18 column (100 x 2.1 mm x 1.7 µm, Waters) 

thermostated at 35 °C. The binary gradient consisted of a mixture of acetonitrile as mobile phase A, 

and acetonitrile/water/formic acid (10:90:0.1, v/v/v) as mobile phase B. The separation was initiated 

at a constant flow of 0.4 ml/min with 90 % B for 1 min, followed by a decrease in B to 10 % within 7 

min. This composition was then maintained for 10 min and returned to the initial composition. 

 

For the low range of concentrations, analyses of the selected compounds were performed using 

UPLC with an Acquity system (Waters) coupled with a tandem mass spectrometer (Quattro Premier, 

Micromass). The chromatographic system included a 2777 autosampler (Waters) equipped for dual 

on-line solid phase extraction (on-line SPE) with HLB cartridges. 5 mL of sample was loaded onto the 

HLB column using a large volume injection loop and a quaternary solvent pump (QSM – Waters). 

After the loading and cleaning steps, HLB cartridges were connected to the analytical hydraulic 

circuit. Chromatographic conditions were similar to those described previously.  

 

Mass spectrometry was used with an electrospray ionization source in positive mode with a capillary 

voltage of 3 kV and nitrogen as the nebulizer and drying gas. The cone gas flow and the desolvation 

gas flow were set at 50 L h-1 and 750 L h-1, respectively. The source temperature and desolvation gas 
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temperature were 120 °C and 350 °C, respectively. The multiple reaction monitoring (MRM) mode 

was used for the quantification of all compounds. Retention time, MRM transitions, cone voltage and 

collision cell energy are summarized in Table 1. 

 

Table 1 : Properties of pharmaceutical residues used in adsorption procedures 

Compound Acetaminophen Carbamazepine Diclofenac 

N° CAS 103-90-2 298-46-4 15307-79-6 
Structure 

 
  

MW (g.mol-1) 151.16 236.27 318.13 
log Kow 0.46 2.45 4.51 
pKa 9.5 14 4.15 
Solubility (g.L-1) 14.9 0.02 50.0 
Size (A) 7*5*2 10*8*5 10*8*1 
Cone Voltage (V) 
Collision energy (eV) 

25 
19 

28 
19 

22 
25 

Transition 152>110 237.1>194 296.1>250 
Retention time (min) 1.49 3.61 4.73 

 

 

2.1.2.  Adsorbent 

The ACFC was supplied by Dacarb (Asnières-sur-Seine, France). It was soaked as received in ultrapure 

water to remove any dissolved contaminants and/or fine particles and then dried at 120 °C prior to 

the experiment. The physical and chemical characteristics of the ACFC are given in Table 2. The 

physisorption of nitrogen at 77 K (Autosorb, Quantachrome Instruments) was used to determine the 

specific surface area (multi-point BET method in the range of relative pressures 0.01 to 0.1), the total 

pore volume (relative pressure of 0.995), the micropore volume and the average pore size 

(Quenched Solid State Functional Theory, QSDFT) (Condon, 2006; Rouquerol et al., 1994). In addition, 

the Boehm titration method was used to quantify the functional surface groups (Boehm, 1994). 
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The ACFC possesses a highly microporous texture (over 90 % of the total pore volume) and few 

functional groups in comparison to common granular activated carbons (Lopez-Ramon et al., 1999). 

This specificity was confirmed by the residual pH (measured after 24 h in ultrapure water), which was 

close to neutrality and in agreement with the balance between acidic and basic groups. This 

information is summarized in Table 2.  

Table 2 : Physical and chemical properties of the ACFC 

Textural properties from N2 adsorption at 77 K 

Specific surface area (m².g-1) 1615 
Total pore volume (cm3.g-1) 1.02 
Micropore volume (QSDFT) (cm3.g-1) 0.92 
Micropore size (QSDFT) (nm) < 0.48 

Chemical surface properties from Boehm titration 

Residual pH 6.14 
Basic functions (µeq.L-1) 286 
Carboxylic acid functions (µeq.L-1) 12 
Lactone functions (µeq.L-1) 87 
Phenolic functions (µeq.L-1) 377 

 

2.2. Adsorption isotherm curves 

Kinetics and adsorption isotherms were performed for single components and multi-components in 

UPW. For the set of experiments at high concentration, each reactor contained 1 L of the aqueous 

solution with the single targeted compound. Initial concentrations (C0) ranged from 0.1 mg.L-1 to 20 

mg.L-1. On the other hand, 10 L reactors were used for the second set of experiments and the 

concentrations ranged from 100 ng.L-1 to 2 µg.L-1 (multi-components). Preliminary experiments 

demonstrated that inter-component adsorption competition was not significant if the initial 

concentration was lower than 10 µg.L-1. 

The pH was maintained at 7.5 using hydrogen carbonate buffer and did not vary more than 0.1 pH 

unit between the initial and final time of the experiment. A constant mass of ACFC (20 mg ± 0.2) was 

then incorporated and the reactors were tightly sealed and shaken at 400 rpm. A constant 

temperature of 25 °C was achieved using a thermostatic bath. Preliminary kinetic data indicated that, 

for all cases, the adsorption equilibrium was reached within 10 days. After equilibration, the 
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supernatants were filtered using a 0.2 µm GHP Acrodisc filter prior to analysis by SPE-UPLC/ MS-MS 

in order to determine the residual concentration (Ce) and adsorption capacities (Qe) according to the 

mass balance. 

2.3. Isotherm models 

As previously mentioned, numerous models have been formulated to describe adsorption equilibria, 

considering various assumptions to represent the adsorption phenomenon. Table 3 presents the 

most common equations for adsorption in the aqueous phase. An ideal model should have four 

properties: it must be effective, comprehensive, realistic and predictive (Worch, 2012). The choice of 

the isotherm model is important to understand the state of the adsorbed phase, the interactions 

between the adsorbent surface and the adsorbed molecules, and the interactions between the 

adsorbed molecules. 

The Freundlich model is widely used for organic pollutants. However, this isotherm model has no 

limitation to the adsorption capacity at the highest liquid-phase concentrations. On the contrary, the 

Langmuir isotherm model follows a Henry-type equation at low concentrations and a saturation limit 

at high concentrations. According to this model, adsorption takes place at specific homogeneous 

sites within the adsorbent, and once a molecule occupies a site, no further adsorption can take place 

onto this site. The Langmuir equation can be expressed in its general form (L) or with linearized 

relationships (L1-L5). Elovich’s model is based on kinetic development and supposes a multi-layer 

adsorption. Three-parameter models have been derived from the Langmuir and Freundlich models. 

The Sips equation is a combination of these two isotherm equations. At low concentrations, it 

effectively reduces to a Freundlich isotherm and thus does not follow Henry’s law. At high 

concentrations, the Sips model predicts a monolayer sorption capacity, which is a characteristic 

similar to the Langmuir isotherm (Foo and Hameed, 2010). The Toth equation is another empirical 

model developed to improve Langmuir isotherm fittings and useful for describing heterogeneous 

adsorption isotherm systems, which satisfy both the low- and high-end boundary of the 

concentration. Adsorption sites are considered to possess low energies. 
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Table 3. Adsorption models and error functions for the adjustment of the isotherm adsorption model 

Isotherm Number of parameters Mathematical expression Reference 

Freundlich (F) 2 qe=KF.Ce
n (Freundlich, 1906) 

Langmuir (L) 2 qe

qm
= 

bCe

1+bCe
 

(Langmuir, 1915) 

Langmuir 1 (L1) 2 1

qe
=

1

Ce

1

qmb
+

1

qm
 

(Langmuir, 1915) 

Langmuir 2 (L2) 2 Ce

qe
= Ce

1

qm
+

1

qmb
 

(Langmuir, 1915) 

Langmuir 3 (L3) 2 
qe=-

1

b

qe

Ce
+qm 

(Langmuir, 1915) 

Langmuir 4 (L4) 2 qe

Ce
=-bqe+bqm (Langmuir, 1915) 

Langmuir 5 (L5) 2 1

Ce
=bqm

1

qe
-b 

(Langmuir, 1915) 

Elovich (Ev) 2 qe

qm
= beCeexp- (

qe

qm
) (Elovich and Larinov, 1962) 

Langmuir-Freundlich 
(L-F) 

3 qe

qm
=

(bCe)n

1+(bCe)n
 

(Sips, 1948) 

Sips (S) 3 qe

qm
=

bCe
n

1+bCe
n 

(Sips, 1948) 

Linearized Langmuir-
Freundlich (LLF) 

3 qe=
qm

1
bCe

n +
1
b

 (Limousin et al., 2007) 

Tóth 3 qe

qm
=

bCe

(1+(bCe)n)
1

n⁄
 

(Toth, 1971) 

Error function name  Mathematical expression Example of use 

Sum of the squared 
residual 

RSS ∑ (qe-q̂e)i
2

n

i=1

 (Kumar, 2006) 

Relative error E E= 
1

n
∑

qe,i mod-qe,i exp

qe,i exp

n

i=1

  

Average of absolute 
error 

EABS 
1

n
∑|qe-qe,avg|

i

n

i=1

 (Ng et al., 2003) 

Average relative error ARE 
1

n
∑ (

qe-q̂

qe
)

i

n

i=1

 (Kapoor and Yang, 1989) 

Standard deviation of 
relative errors 

sRE √
∑ ((

qe-q̂
qe

)
i
-ARE)

i

2
n
i=1

n-1
 

(Boulinguiez et al., 2008) 

Chi-square χ² ∑ (
qe-qe,avg

qe
)

i

2
n

i=1

 (Boulinguiez et al., 2008) 

Marquardt’s percent 
standard deviation 

MPSD √
1

n-p
∑ (

qe-qe,avg

qe
)

i

2
n

i=1

 (Marquardt, 1963) 

Hybrid function Hybrid 
1

n-p
∑ (

qe-qe,avg

qe
)

i

2
n

i=1

 (Ng et al., 2003) 
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2.4. Error functions 

The parameters of each isotherm model then have to be adjusted to fit the experimental data 

(Limousin et al., 2007). Initially, the values of each parameter were guessed and predicted isotherm 

data 𝑞𝑒,𝑎𝑣𝑔 were computed. Assessment of the goodness-of-fit was then discussed in terms of 

various error functions. Searching for the best fitted adsorption isotherm using the method of least 

squares (RSS) is the most widely used technique to predict the optimum isotherm. However, at 

higher concentration ranges, squares of errors tend to increase, so that this range of concentration 

has more weight on the fitting procedure than the lower values of concentration/capacities (Foo and 

Hameed, 2010). As a consequence, for extrapolation towards trace concentrations, the RSS error 

function is probably inappropriate and the prediction of low values of the isotherm from data 

obtained at high concentration requires alternative error functions. The hybrid function was 

developed to improve the RSS fit at low concentrations. Average relative error (ARE) attempts to 

minimize the fractional error distribution over the entire concentration range. The sum of absolute 

errors (EABS) approach provides a better fit compared to the RSS model although this function also 

favors the highest concentrations. The coefficient of determination (r²) represents the percentage of 

variability in the dependent variable. Standard deviations of relative errors (sRE) are individually 

determined to evaluate the overall correlation and the dispersion of its relative errors (Foo and 

Hameed, 2010). Marquardt’s percent standard deviation (MPSD) is similar to a geometric mean error 

distribution modified according to the number of degrees of freedom of the system. These models 

are presented in Table 3. 

Previously, linear regressions were used to fit isotherms. This procedure was easily applied to many 

experimental data and the equations were quite simple (Ayoob and Gupta, 2008). However, more 

recently, many researchers have combined isotherm models with different error functions to show 

the applicability of linear or non-linear isotherm models to describe the adsorption mechanism. 

Table 4 summarizes, for adsorption onto activated carbon only, the different combinations of 

isotherm model/error function used to depict the adsorption of organic and inorganic pollutants. 
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Table 4. Some uses of isotherm adsorption models with different error functions 

Type of activated 
carbon 

Adsorbate Isotherm models Error functions 
Linear/non

-linear 
Reference 

Activated carbon 
Tetrahydrothi(o)

phene 
Langmuir 

r², EABS, RSS, 
ARE, sRE, Hybrid 

Non-linear 
(Boulinguiez 
et al., 2008) 

Activated carbon Methylene blue 
Freundlich, 

Langmuir, Redlich-
Peterson 

r², ARE, Hybrid, 
MPSD, EABS 

Non-linear 
(Kumar et 
al., 2008a) 

Activated carbon Basic red 9 
Freundlich, 

Langmuir, Redlich-
Peterson 

r², EABS, Hybrid, 
ARE, SAE, MPSD 

Non-linear 
(Kumar et 
al., 2008b) 

Activated carbon Basic blue 9 dye 
Freundlich, 

Langmuir, Redlich-
Peterson 

r², χ² Non-linear 
(Jumasiah et 

al., 2005) 

Activated carbon Acid dyes 
Freundlich, 

Langmuir, Sips, 
Redlich-Peterson 

Hybrid, MPSD, 
ARE, EABS 

Linear and 
non-linear 

(Chan et al., 
2012) 

 

2.5. Adjustment procedure, validation and extrapolation 

Optimization was achieved, using the Microsoft Excel solver, for all the combinations of isotherm 

models with error functions (Table 3). However, the accuracy of the prediction was difficult to 

compare since the values for the error functions could not be compared with each other. Therefore, 

in order to compare the ability of the “isotherm model/error function” couples to describe and 

predict experimental data, the sum of relative error (E) was used as the comparative variable. The 

methodology is illustrated in Figure 1. First, the parameters of each isotherm model were optimized 

for the full range of concentrations (FR) in accordance with the error functions. These parameters 

were then used to determine two average relative errors (E). EFR was related to the average relative 

error for all experimental data, whereas EFR-LC corresponded to the error of the model for the set of 

low concentrations based on the FR optimization of parameters. On the other hand, the isotherm 

parameters were adjusted to the set of high concentrations and the corresponding EHC was 

calculated. Finally, the accuracy of the extrapolation was determined from EHC-LC, which was the 

average relative error for the low range of concentrations with parameters determined at high 

concentrations (Figure 1) (Assoumani et al., 2009). 
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Figure 1. Methodology for the optimization procedure and the extrapolation of the model to the low-range 
concentrations 
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3. Results and discussion 

3.1 Kinetics of adsorption  

Kinetic studies are essential to determine the contact time at which the adsorption equilibrium is 

reached. Moreover, the change in aqueous concentration against time was used to compute the 

mass transfer coefficients for each pollutant/adsorbent system. Assuming that the adsorbent 

particles are spherical and of unique size, (Matthews and Weber, 1977) proposed a kinetic model 

based on the fact that the overall adsorption is kinetically limited by external and diffusion steps. This 

homogeneous surface diffusion model (HSDM) supposes that the diffusion has two major limiting 

steps: diffusion through the external film surrounding the particle and surface diffusion inside the 

porosity. Thus, two coefficients were evaluated (i) Kf, which represents the external mass transfer, 

and (ii) Ds, which corresponds to the surface diffusivity. For each adsorbate/adsorbent couple 

studied, these two mass transfer coefficients were adjusted at high and low concentrations (Table 5) 

using an iterative optimization procedure (Traegner and Suidan, 1989). Figure 2 shows the kinetics of 

adsorption for two ranges of concentration, starting at 10 mg.L-1 or 10 µg.L-1. The equilibrium times 

were highly dependent on the initial concentration whereas the nature of the compounds did not 

influence the equilibration time. For the lowest concentration, a contact time of 10 days was 

required to reach equilibrium and this decreased to 50 h when the initial concentration was 10 mg.L-

1. 
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Figure 2. Kinetic curves of adsorption obtained at (a) high concentration (C0 = 10 mg/L) and (b) low 
concentration (C0 = 10 µg/L). Solid line corresponds to the HSDM model. 

For conventional adsorbents, such as powders or grains of activated carbon, the average particle size 

is commonly determined by physical analysis (optical granulometry or sieving). However, these 

approaches are not relevant for ACFC, so the particle size was determined using image analysis by 

scanning electron microscopy. The images obtained show that ACFC KIP-1200 is constituted of 430-

µm yarns, which are themselves made of fibers (10-µm average diameter). As established by 

Mathews & Weber (1977), the HSDM was not appropriate to take into account this dual geometry. 

Both scales, yarn and fiber, were considered for the adjustment of the mass transfer coefficients (Kf 
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and Ds). Using the fiber diameter as the elementary particle size resulted in large differences 

between the modeled and experimental values. On the contrary, when considering the yarn 

diameter, the adjustment was relevant (Figure 2). Therefore, the external resistance to the mass 

transfer occurred in the film around the yarn while the flow between the fibers was neglected. 

Consequently, the adjusted Ds coefficients combined the diffusions inside the porosity and through 

the liquid film inside the yarn, between the fibers.  

Table 5. Mass transfer coefficients at different intital concentrations (C0) of micropollutants 

 
C0 = 10 mg.L-1 C0 = 10 µg.L-1 

Ds (m².s-1) Kf (m.s-1) 
Biot 

number 
Ds (m².s-1) Kf (m.s-1) 

Biot 
number 

Diclofenac 6.1×10-14 2.0×10-4 21.8 1.3×10-13 2.8×10-3 53.3 

Acetaminophen 2.1×10-13 2.3×10-5 2.5 1.2×10-13 4.1×10-4 1.5 

Carbamazepine 3.5×10-14 1.3×10-5 6.1 1.4×10-13 7.4×10-4 6.6 

 

In Table 5, the Biot numbers (ranging from 1.5 to 53.3) highlight the preponderance of both surface 

diffusion and external mass transfer as the limiting steps for mass transfer. The coefficients of 

external transfer, Kf, described the diffusion molecules through the boundary layer around the yarn. 

Furthermore, these external coefficients were shown to be solely influenced by the range of 

concentration, and independent of the type of adsorbed compound. At the highest concentration, Kf 

ranged from 1.3×10-5 to 2.0×10-4 m.s-1. At trace concentrations, this coefficient increased to between 

4.1×10-4 and 2.8×10-3 m.s-1. 

Ds values, obtained at the high concentration, varied by three orders of magnitude, 3.1x10-15 m2.s-1, 

for diclofenac. In comparison, at the low concentration, the surface diffusivities were similar for all 

compounds and only varied by one order of magnitude, from 4.4x10-14 to 1.4x10-13 m2.s-1. For 

granular activated carbon, (Baup et al., 2000) have shown Ds coefficients equal to 10-14 m².s-1, for an 

initial concentration of 0.5 µg.L-1. (Al Mardini and Legube, 2009) have reported some coefficients of 

10-16 m².s-1 for powdered activated carbon, with an initial concentration of 1 µg.L-1. 



18 
 

Two types of behavior were thus observed. On one hand, for carbamazepine, a significant decrease 

in Ds coefficients was seen as the bulk concentration decreased. On the other hand, no significant 

changes were observed for acetaminophen and diclofenac with the initial concentration. The steric 

effect could not explain these different behaviors. For instance, the molecular weight of diclofenac 

(M = 318.1 g.mol-1) is half that of acetaminophen (M = 151.2 g.mol-1) but these compounds exhibited 

similar surface diffusivities. Dipole moment, molecular volume or polarizability could explain these 

different behaviors.  

 

3.2 Modeling adsorption isotherms 

Isotherm curves of adsorption were obtained for each compound independently in ultra-pure water, 

without competition with organic matter. Every isotherm was modeled using the adsorption models 

mentioned in Table 3. The isotherm parameters were adjusted by minimizing the error functions 

(Table 3). Figure 3 presents the best “isotherm/error function” couple determined over the entire 

range of concentrations for each compound. 
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Figure 3. Adsorption isotherms of diclofenac, acetaminophen and carbamazepine on ACFC KIP-1200 

 

In Figure 3, at the highest concentrations (above 10 ng.L-1), the adsorption capacities were similar for 

all compounds (between 10 and 1000 µg.g-1). On the contrary, when the concentration decreased, 

the adsorption capacities were significantly influenced by the nature of the adsorbed molecule. 

Likewise, different shapes of the adsorption isotherm curves were observed. The organic compounds 

had an “L-shape” isotherm. Each type of isotherm was related to different adsorption mechanisms. 

The concave “L-shape” isotherms were the most common. These experimental data were described 

by the Freundlich or the Langmuir model (Limousin et al., 2007).  

For the highest concentrations, experimental errors were quite low. For instance, uncertainties were 

less than 5 % for diclofenac. However, at the lowest concentrations, values were more dependent on 

the compound. For diclofenac, some experimental errors of 72 % were observed, whereas for 

acetaminophen, they were only 20 %. An explication could come from the dispersion of points. For 

acetaminophen, values are relatively close to each other. On the contrary, for diclofenac, the 

dispersion is quite important.  

The best descriptors for each adsorption isotherm are presented in Table 6. 
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Table 6. Best descriptors for each adsorption isotherm equation 

 Full range of concentration High range of concentration 

Compound Isotherm model Average E (%) Isotherm model E (%) 

Diclofenac Langmuir-Freundlich/E  55.5 Toth/E  13.9 

Carbamazepine Langmuir-Freundlich/E  42.4 Elovich/MPSD  17.3 

Acetaminophen Sips/E 40.9 Elovich/E  66.6 

 

3.3 Extrapolation of adsorption capacities 

The influences of the isotherm model, error function, and nature of the organic compound were 

significant with average relative errors EHC-LC ranging from 60 to 1011 %. For extrapolation (using the 

procedure described in Figure 1) from high concentration parameters, relative errors were mostly 

over 100 % for the three compounds (Figure 4). 

  



21 
 

 

Figure 4. Extrapolation errors EHC-LC from high concentration parameters (F: Freundlich; L: Langmuir; 

L-F: Langmuir-Freundlich; LLF: Linearized Langmuir-Freundlich; S: Sips; E: Elovich; T: Toth) 

 

For diclofenac, the best extrapolations were obtained using the E error. Langmuir-Freundlich and Sips 

models led to the best extrapolation from high to low concentrations with EHC-LC errors from 67 to 

134 %, respectively. In a recent study, Nam et al. (2014) demonstrated that the Freundlich model 

was the most appropriate to describe the adsorption of diclofenac at low concentrations. For this 

study, the authors carried out diclofenac adsorption from 20 to 500 ng.L-1, with powdered activated 

carbon (1 mg.L-1). They showed that adsorption parameters were well adjusted by the Freundlich 

isotherm for hydrophobic compounds. However, in this study, Freundlich models, with all error 

functions, led to significant deviations in terms of the extrapolation. Errors were widely influenced by 

the high range of concentrations. The Freundlich isotherm can describe neither the linear range at 

very low concentrations nor the saturation effect at high concentrations (Worch, 2012). 

Moreover, the linearized Langmuir-Freundlich model did not provide a better extrapolation than the 

non-linear Langmuir-Freundlich model. (Choi et al., 2006) have shown that linear models have a poor 

fit for hydrophobic compounds. This conclusion was thus confirmed. 
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In the case of carbamazepine, Langmuir and Elovich models provided an acceptable extrapolation 

with an error of about 100 %. Moreover, the error function did not play a significant role in the 

accuracy of the extrapolation. On the contrary, the selected error function greatly influenced the 

accuracy of extrapolation when the Toth or Langmuir-Freundlich models were used. With these 

models, acceptable results were obtained with the E error (about 100 %) but revealed a large 

deviation (over 1000 %) when the hybrid error function was considered.  

According to the results obtained for carbamazepine, the Freundlich model appeared to be the worst 

choice to predict adsorption capacities at trace concentration from values obtained at high 

concentrations. However, this model is not so inaccurate for fitting experimental data at high 

concentrations or for the full range of concentrations. Like for diclofenac, linearization of the 

Langmuir-Freundlich model did not improve its extrapolation ability. 

 

Similar conclusions were obtained with acetaminophen. Langmuir and Elovich models led to the 

most accurate predictions irrespective of the error function. However, if all models are considered, E, 

MPSD and EABS errors gave the best extrapolations. Except for Langmuir and Elovich, RSS and ARE 

had errors of extrapolation higher than 105 %. Unlike diclofenac and carbamazepine, the linearized 

Langmuir-Freundlich model gave the best extrapolation. This result is in agreement with Kumar et al. 

(2008) and Nam et al. (2014) who observed that acetaminophen could be fitted with precision by a 

linear isotherm.  

For all organic compounds, for two-parameter isotherm models, E and MPSD functions were found 

to be a good option to minimize the error distribution between the experimental and predicted 

adsorption capacities. Kumar et al. (2008) obtained similar results for their predicted isotherms at 

high concentrations. Three-parameter models were not better than two-parameter models during 

extrapolation. This observation is not true for fitting; the addition of parameters decreased the error 

(Table 6). For three-parameter equations, E and EABS were found to be the best functions in 

minimizing the error distribution. More generally, for all studied molecules and isotherm models, the 
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error function E was highlighted as the most relevant, although significant deviations were computed 

in some cases. If all molecules are considered, the Langmuir/MPSD, Elovich/E, Langmuir/E, 

Elovich/MPSD and Langmuir-Freundlich/E couples could be used to extrapolate the models to the 

lowest residual concentrations. These relationships were the most efficient. For instance, Elovich/E 

exhibited relative errors of 66 %, 113 % and 96 % for acetaminophen, diclofenac and carbamazepine, 

respectively. 

 

In order to extend the discussion, the errors of extrapolations from the high range of concentrations 

(EHC-LC, previously shown in Figure 4) were compared to those determined for the full range of 

concentrations (EFR-LC). The results are presented in Figure 2. Thus, if the ratio EHC-LC/EFR-LC approaches 

1, it means that there is no additional error caused by the extrapolation procedure and the model 

could be perfectly fitted at the highest concentrations and then extrapolated to the lowest 

concentrations. In these cases, the determination of isotherm parameters based only on the high 

concentration is relevant to predict equilibrium at trace concentration.  
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Figure 5. Evolution of the error function calculated from extrapolation of adsorption curves at high 

and full range of concentrations 

 

In Figure 5, three zones are highlighted (a, b and c), which show the best “model/error function” 

combinations for all organic molecules. For these couples, the ratio of errors was close to 1, meaning 

that no additional error was added by the extrapolation from high concentrations. Namely, the 

Langmuir equation could be associated with the SRE, ARE, RSS and MPSD error functions, the Elovich 

equation with SRE, ARE, RSS and MPSD and the Langmuir-Freundlich model with RSS. 

It should be noted that, from Figure 4, the Langmuir/MPSD, Elovich/E, Langmuir/E, Elovich/MPSD 

and Langmuir-Freundlich/E couples were highlighted for their absolute accuracy of extrapolation. 
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Therefore, considering the results presented in Figure 5, it was concluded that, for all organic 

compounds, the Langmuir/MPSD couple was the best choice for extrapolation. In fact, the 

extrapolation error was among the smallest and extrapolation from the high concentrations did not 

add significant errors compared to the adjustment over the entire range of concentrations. 

Table 7. Isotherm parameters for the best model 

Compound 
Isotherm 
model 

Full range of 
concentration 

High range of 
concentration 

Low range of 
concentration 

Diclofenac Langmuir-
Freundlich/E 

qm 
1525.8 

b 
1.0 

n 
1.3 

qm 
1611 

b 
0.7 

n 
1.1 

qm 
1670.4 

b 
16.8 

n 
2.1 

Carbamazepine Langmuir-
Freundlich/E 

qm 
521.1 

b 
0.1 

n 
0.7 

qm 
568.1 

b 
2.3 

n 
0.9 

qm 
1954.9 

b 
0.6 

n 
0.9 

Acetaminophen Sips/E qm 
4149.1 

b 
0.1 

n 
0.8 

qm 
2893.9 

b 
0.1 

n 
0.9 

qm 
165.0 

b 
0.1 

n 
0.5 

Units are based on liquid-phase concentration expressed in µg.L-1 and amounts adsorbed in µg.g-1 

 

As shown in Table 7, isotherm parameters have different behaviors according to the compound and 

range of concentration. The “n” parameter is little impacted by the extrapolation of adsorption 

capacities from high to low concentrations. Except for diclofenac, the change in concentration has no 

influence on the “b” parameter.  

For diclofenac, which presents the lowest extrapolation errors, the qm coefficients are not impacted 

by extrapolation. For the other compounds, this parameter is influenced by the range of 

concentration.  

 

4. Conclusion 

In this study, we investigated the sorption of three pharmaceutical compounds onto activated carbon 

fiber cloth. Adsorption kinetic coefficients were little impacted by the initial concentration for 
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diclofenac and acetaminophen. For a residual concentration of 0.1 µg.L-1, adsorption capacities were 

116, 134 and 248 µg.g-1 for diclofenac, acetaminophen and carbamazepine, respectively.  

The ability of several isotherm models associated with different error functions to extrapolate 

adsorption capacities from high to low concentrations was evaluated.  

Among the 104 combinations, for diclofenac, carbamazepine and acetaminophen, which present the 

usual isotherm shape, the Langmuir-Freundlich model adjusted with the MPSD error enabled the 

best extrapolation from mg.L-1 to µg.L-1.  
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