]. E. Drioli and L. Giorno, Comprehensive membrane science and engineering, 2010.

H. Yacubowicz, J. Yacubowicz, A. I. Schäfer, A. G. Fane, T. D. Waite-]-r et al., Nanofiltration: properties and uses, Filtr Composite reverse osmosis and nanofiltration membranes, Nanofiltration: Principles and Applications, pp.16-21, 1993.

W. J. Misdan, .. F. Lau, T. Ismail, D. R. Matsuura, S. Hu et al., Study on the thin film composite poly(piperazine-amide) nanofiltration membrane: Impacts of physicochemical properties of substrate on interfacial polymerization formation, Desalination Preparation and performance of novel thermally stable polyamide/PPENK composite nanofiltration membranes, Appl. Surf. Sci, vol.258, pp.344-198, 2012.

]. B. Mi, O. Coronell, B. Marinas, F. Watanabe, D. Cahill et al., Physico-chemical characterization of NF/RO membrane active layers by Rutherford backscattering spectrometry???, Journal of Membrane Science, vol.282, issue.1-2, pp.282-71, 2006.
DOI : 10.1016/j.memsci.2006.05.015

L. Schäfer, Y. H. Paugam, and . La, Physico-chemical characterization of polyamide NF/RO membranes: Insight from streaming current measurements, J. Memb. Sci, pp.461-130, 2014.

P. S. Singh, A. P. Rao, P. Ray, A. Bhattacharya, K. Singh et al., Techniques for characterization of polyamide thin film composite membranes, Desalination, pp.282-78, 2011.

F. A. Pacheco, I. Pinnau, M. Reinhard, and J. O. Leckie, Characterization of isolated polyamide thin films of RO and NF membranes using novel TEM techniques, Journal of Membrane Science, vol.358, issue.1-2, pp.358-51, 2010.
DOI : 10.1016/j.memsci.2010.04.032

A. H. Galama, J. W. Post, M. A. Cohen-stuart, and P. M. Biesheuvel, Validity of the Boltzmann equation to describe Donnan equilibrium at the membrane???solution interface, Journal of Membrane Science, vol.442, pp.442-131, 2013.
DOI : 10.1016/j.memsci.2013.04.022

M. Higa, A. Kira, A. Tanioka, and K. Miyasaka, Ionic partition equilibrium in a charged membrane immersed in a mixed ionic solution, Journal of the Chemical Society, Faraday Transactions, vol.89, issue.18, p.89, 1993.
DOI : 10.1039/ft9938903433

D. Vezzani and S. Bandini, Donnan equilibrium and dielectric exclusion for characterization of nanofiltration membranes, Desalination, pp.149-477, 2002.

C. Labbez, P. Fievet, A. Szymczyk, A. Vidonne, A. Foissy et al., Retention of mineral salts by a polyamide nanofiltration membrane, Separation and Purification Technology, vol.30, issue.1, pp.30-47, 2003.
DOI : 10.1016/S1383-5866(02)00107-7

W. R. Bowen and J. S. Welfoot, Modelling the performance of membrane nanofiltration???critical assessment and model development, Chemical Engineering Science, vol.57, issue.7, pp.1121-1137, 2002.
DOI : 10.1016/S0009-2509(01)00413-4

W. Bowen, A. Mohammad, and N. Hilal, Characterisation of nanofiltration membranes for predictive purposes ??? use of salts, uncharged solutes and atomic force microscopy, Journal of Membrane Science, vol.126, issue.1, pp.91-105, 1997.
DOI : 10.1016/S0376-7388(96)00276-1

C. Labbez, P. Fievet, . Szymczyk, . Vidonne, J. Foissy et al., Analysis of the salt retention of a titania membrane using the ???DSPM??? model: effect of pH, salt concentration and nature, Journal of Membrane Science, vol.208, issue.1-2, pp.315-329, 2002.
DOI : 10.1016/S0376-7388(02)00310-1

J. Schaep, C. Vandecasteele, A. W. Mohammad, and W. R. Bowen, Analysis of the Salt Retention of Nanofiltration Membranes Using the Donnan???Steric Partitioning Pore Model, Separation Science and Technology, vol.90, issue.15, pp.34-3009, 1999.
DOI : 10.1252/jcej.28.186

E. Glueckauf, Proceeding of the first international symposium on water desalination, Proceeding First Int. Symp. Water Desalin, p.143, 1967.

A. G. Fane, A. R. Awang, M. Bolko, R. Macoun, R. Schofield et al., Metal recovery from wastewater using membranes, Water Sci. Technol, pp.25-30, 1992.

A. E. Yaroshchuk, Dielectric exclusion of ions from membranes, Advances in Colloid and Interface Science, vol.85, issue.2-3, pp.193-230, 2000.
DOI : 10.1016/S0001-8686(99)00021-4

S. Bandini and D. Vezzani, Nanofiltration modeling: the role of dielectric exclusion in membrane characterization, Chemical Engineering Science, vol.58, issue.15, pp.3303-3326, 2003.
DOI : 10.1016/S0009-2509(03)00212-4

W. R. Bowen and H. Mukhtar, Characterisation and prediction of separation performance of nanofiltration membranes, Journal of Membrane Science, vol.112, issue.2, pp.263-274, 1996.
DOI : 10.1016/0376-7388(95)00302-9

W. R. Bowen and A. W. Mohammad, Characterization and Prediction of Nanofiltration Membrane Performance???A General Assessment, Chemical Engineering Research and Design, vol.76, issue.8, pp.885-893, 1998.
DOI : 10.1205/026387698525685

A. Szymczyk and P. Fievet, Investigating transport properties of nanofiltration membranes by means of a steric, electric and dielectric exclusion model, Journal of Membrane Science, vol.252, issue.1-2, pp.77-88, 2005.
DOI : 10.1016/j.memsci.2004.12.002

A. E. Yaroshchuk, Non-steric mechanisms of nanofiltration: superposition of Donnan and dielectric exclusion, Separation and Purification Technology, vol.22, issue.1-2, pp.22-23, 2001.
DOI : 10.1016/S1383-5866(00)00159-3

D. L. Oatley, L. Llenas, N. H. Aljohani, P. M. Williams, X. Martínez-lladó et al., Investigation of the dielectric properties of nanofiltration membranes, Desalination, pp.315-100, 2013.

D. L. Oatley, L. Llenas, R. Pérez, P. M. Williams, X. Martínez-lladó et al., Review of the dielectric properties of nanofiltration membranes and verification of the single oriented layer approximation, Advances in Colloid and Interface Science, vol.173, pp.1-11, 2012.
DOI : 10.1016/j.cis.2012.02.001

D. L. Oatley-radcliffe, S. R. Williams, M. S. Barrow, and P. M. Williams, Critical appraisal of current nanofiltration modelling strategies for seawater desalination and further insights on dielectric exclusion, Desalination, vol.343, pp.343-154, 2014.
DOI : 10.1016/j.desal.2013.10.001

W. R. Bowen and J. S. Welfoot, Predictive modelling of nanofiltration: membrane specification and process optimisation, Desalination, vol.147, issue.1-3, pp.147-197, 2002.
DOI : 10.1016/S0011-9164(02)00534-9

R. Renou, A. Szymczyk, and A. Ghoufi, Unravelling the anomalous dielectric permittivity of nanoconfined electrolyte solutions, Nanoscale, vol.31, issue.15, pp.6661-6666, 2015.
DOI : 10.1039/C5NR00508F

URL : https://hal.archives-ouvertes.fr/hal-01132817

R. Renou, A. Szymczyk, G. Maurin, P. Malfreyt, and A. Ghoufi, Superpermittivity of nanoconfined water, The Journal of Chemical Physics, vol.142, issue.18, pp.142-184706, 2015.
DOI : 10.1063/1.4921043

URL : https://hal.archives-ouvertes.fr/hal-01212247

R. Renou, . Szymczyk, and . Ghoufi, Tunable dielectric constant of water at the nanoscale, Physical Review E, vol.91, issue.3, pp.91-032411, 2015.
DOI : 10.1103/PhysRevE.91.032411

URL : https://hal.archives-ouvertes.fr/hal-01134148

A. Ghoufi, A. Szymczyk, R. Renou, and M. Ding, Calculation of local dielectric permittivity of confined liquids from spatial dipolar correlations, EPL (Europhysics Letters), vol.99, issue.3, p.99, 2012.
DOI : 10.1209/0295-5075/99/37008

URL : https://hal.archives-ouvertes.fr/hal-00870061

B. Saliha, F. Patrick, and S. Anthony, Investigating nanofiltration of multi-ionic solutions using the steric, electric and dielectric exclusion model, Chemical Engineering Science, vol.64, issue.17, pp.3789-3798, 2009.
DOI : 10.1016/j.ces.2009.05.020

T. Liu, H. Yuan, Q. Li, Y. Tang, Q. Zhang et al., Ion-Responsive Channels of Zwitterion-Carbon Nanotube Membrane for Rapid Water Permeation and Ultrahigh Mono-/Multivalent Ion Selectivity, ACS Nano, vol.9, issue.7, pp.7488-96, 2015.
DOI : 10.1021/acsnano.5b02598

J. Palmeri, P. Blanc, A. Larbot, and P. David, Theory of pressure-driven transport of neutral solutes and ions in porous ceramic nanofiltration membranes, Journal of Membrane Science, vol.160, issue.2, pp.141-170, 1999.
DOI : 10.1016/S0376-7388(99)00081-2

X. Wang, T. Tsuru, S. Nakao, and S. Kimura, The electrostatic and steric-hindrance model for the transport of charged solutes through nanofiltration membranes, Journal of Membrane Science, vol.135, issue.1, pp.19-32, 1997.
DOI : 10.1016/S0376-7388(97)00125-7

X. Lefebvre, J. Palmeri, and P. David, Nanofiltration Theory:?? An Analytic Approach for Single Salts, The Journal of Physical Chemistry B, vol.108, issue.43, pp.16811-16824, 2004.
DOI : 10.1021/jp048631t

A. Szymczyk, M. Sbaï, P. Fievet, and A. Vidonne, Transport Properties and Electrokinetic Characterization of an Amphoteric Nanofilter, Langmuir, vol.22, issue.8, pp.22-3910, 2006.
DOI : 10.1021/la051888d

X. Lefebvre and J. Palmeri, Nanofiltration Theory:?? Good Co-Ion Exclusion Approximation for Single Salts, The Journal of Physical Chemistry B, vol.109, issue.12, pp.5525-5540, 2005.
DOI : 10.1021/jp0458710

G. Hagmeyer and R. , Modelling the salt rejection of nanofiltration membranes for ternary ion mixtures and for single salts at different pH values, Desalination, vol.117, issue.1-3, pp.247-256, 1998.
DOI : 10.1016/S0011-9164(98)00109-X

J. Garcia-aleman, Experimental analysis, modeling, and theoretical design of McMaster pore-filled nanofiltration membranes, Journal of Membrane Science, vol.240, issue.1-2, pp.237-255, 2004.
DOI : 10.1016/j.memsci.2004.05.009

P. Ramírez, V. Gómez, J. Cervera, B. Schiedt, and S. Mafé, Ion transport and selectivity in nanopores with spatially inhomogeneous fixed charge distributions, The Journal of Chemical Physics, vol.126, issue.19, p.126, 2007.
DOI : 10.1063/1.2735608

W. B. De-lint, P. M. Biesheuvel, and H. Verweij, Application of the Charge Regulation Model to Transport of Ions through Hydrophilic Membranes: One-Dimensional Transport Model for Narrow Pores (Nanofiltration), Journal of Colloid and Interface Science, vol.251, issue.1, pp.131-142, 2002.
DOI : 10.1006/jcis.2002.8363

A. Plecis, R. B. Schoch, and P. Renaud, Ionic Transport Phenomena in Nanofluidics:?? Experimental and Theoretical Study of the Exclusion-Enrichment Effect on a Chip, Nano Letters, vol.5, issue.6, pp.1147-1155, 2005.
DOI : 10.1021/nl050265h

P. M. Bungay and H. Brenner, The motion of a closely-fitting sphere in a fluid-filled tube, International Journal of Multiphase Flow, vol.1, issue.1, pp.25-56, 1973.
DOI : 10.1016/0301-9322(73)90003-7

A. Szymczyk, H. Zhu, and B. Balannec, Ion Rejection Properties of Nanopores with Bipolar Fixed Charge Distributions, The Journal of Physical Chemistry B, vol.114, issue.31, pp.10143-10150, 2010.
DOI : 10.1021/jp1025575

URL : https://hal.archives-ouvertes.fr/hal-00918422

H. Zhu, A. Szymczyk, and B. Balannec, On the salt rejection properties of nanofiltration polyamide membranes formed by interfacial polymerization, Journal of Membrane Science, vol.379, issue.1-2, pp.215-223, 2011.
DOI : 10.1016/j.memsci.2011.05.062

URL : https://hal.archives-ouvertes.fr/hal-00920363

H. Zhu, Multiscale modelling of transfer mechanisms through nanofiltration membranes, 2011.

S. Déon, A. Escoda, and P. Fievet, A transport model considering charge adsorption inside pores to describe salts rejection by nanofiltration membranes, Chemical Engineering Science, vol.66, issue.12, pp.2823-2832, 2011.
DOI : 10.1016/j.ces.2011.03.043

J. Schaep, C. Vandecasteele, A. W. Mohammad, and W. R. Bowen, Modelling the retention of ionic components for different nanofiltration membranes, Separation and Purification Technology, vol.22, issue.1-2, pp.22-23, 2001.
DOI : 10.1016/S1383-5866(00)00163-5

M. Born, Volumen und Hydratationswärme der Ionen, Zeitschrift Für Phys, pp.45-48, 1920.
DOI : 10.1007/bf01881023

A. A. Rashin and B. Honig, Reevaluation of the Born model of ion hydration, The Journal of Physical Chemistry, vol.89, issue.26, pp.5588-5593, 1985.
DOI : 10.1021/j100272a006

G. Hagmeyer and R. , Modelling the salt rejection of nanofiltration membranes for ternary ion mixtures and for single salts at different pH values, Desalination, vol.117, issue.1-3, pp.247-256, 1998.
DOI : 10.1016/S0011-9164(98)00109-X

W. B. De-lint, Transport of electrolytes through ceramic nanofiltration membranes, 2003.

Y. Zhao, Y. Zhang, W. Xing, and N. Xu, Influences of pH and ionic strength on ceramic microfiltration of TiO2 suspensions, Desalination, vol.177, issue.1-3, pp.59-68, 2005.
DOI : 10.1016/j.desal.2004.10.032

J. Palmeri, J. Sandeaux, R. Sandeaux, X. Lefebvre, P. David et al., Modeling of multi-electrolyte transport in charged ceramic and organic nanofilters using the computer simulation program NanoFlux, Desalination, pp.147-231, 2002.

A. W. Mohammad, Y. H. Teow, W. L. Ang, Y. T. Chung, D. L. Oatley-radcliffe et al., Nanofiltration membranes review: Recent advances and future prospects, Desalination, vol.356, pp.356-226, 2014.
DOI : 10.1016/j.desal.2014.10.043

N. Hilal, M. Al-abri, H. Al-hinai, and M. , Abu-Arabi, Characterization and retention of NF membranes using PEG, HS and polyelectrolytes, Desalination, pp.221-284, 2008.

A. Pérez-gonzález, R. Ibáñez, P. Gómez, A. M. Urtiaga, and I. Ortiz, Nanofiltration separation of polyvalent and monovalent anions in desalination brines, Journal of Membrane Science, vol.473, pp.473-489, 2015.
DOI : 10.1016/j.memsci.2014.08.045

L. D. Nghiem and S. Hawkes, Effects of membrane fouling on the nanofiltration of pharmaceutically active compounds (PhACs): Mechanisms and role of membrane pore size, Separation and Purification Technology, vol.57, issue.1, pp.176-184, 2007.
DOI : 10.1016/j.seppur.2007.04.002

Y. Lin, P. Chiang, and E. Chang, Removal of small trihalomethane precursors from aqueous solution by nanofiltration, Journal of Hazardous Materials, vol.146, issue.1-2, pp.20-29, 2007.
DOI : 10.1016/j.jhazmat.2006.11.050

W. Mohammad, N. Hilal, H. Al-zoubi, and N. Darwish, Prediction of permeate fluxes and rejections of highly concentrated salts in nanofiltration membranes, Journal of Membrane Science, vol.289, issue.1-2, pp.289-329, 2007.
DOI : 10.1016/j.memsci.2006.11.035

C. Lin, S. Shirazi, and P. Rao, Mechanistic Model for CaS O4 Fouling on Nanofiltration Membrane, Journal of Environmental Engineering, vol.131, issue.10, pp.1387-1392, 2005.
DOI : 10.1061/(ASCE)0733-9372(2005)131:10(1387)