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Abstract: 

The performance of the porous glass ceramic doped with 10 % wt Zinc and 2% wt TiN 

(46S6-10Zn) ,in the restoration of critical diaphyseal bone defect, was evaluated by 

several physicochemical methods and histological studies. The critical defect in rabbits 

was created and then filled with 46S6-10Zn. At different periods after implementation, 

animals were sacrificed. Samples were harvested for exploration. The nuclear magnetic 

resonance (MAS-NMR) of 31P and 29Si illustrates the progressive degradation of 46S6-

10Zn in favor to of the formation and the development of biological apatite. Therefore, 

after one month of implementation, MAS- NMR 29Si proves the presence of Q2 (25%), 

Q3 (73%) and Q4 (2%). However, after six months, the disappearance of all these 

species was revealed and characterized by the 46S6-10Zn dissolution. Besides, MAS- 

NMR 31P demonstrates the presence of Qc
0 (4%), QHA

0 (55%) and Qa
0 (41%) after one 

month. Nevertheless, six months later, we observe the presence of QHA
0 (80%) and Qa

0 

(20%). Histological study  demonstrates an intimate contact of 46S6-10Zn surrounding 

bone after one month of implantation. However, after four months, mature bone matrix 

became calcified and the implanted 46S6-10Zn began to be degraded. Moreover, nine 

months later, 46S6-10Zn was nearly resorbed and replaced by a calcified tissue in 

the periphery and an osteoid tissue in the middle of bone defects.  
 
Key words: Porous glass ceramic ; Nuclear magnetic resonance; Crystalline structure; 

Cells attachment. 
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1. Introduction: 

Bone defects caused by various reasons such as trauma, infection, tumor, congenital 

deformity, etc., still a clinically unsolved puzzle. The autogenous bone transplantation is 

the optimum choice today, but  it cannot satisfy the clinical demand because of its 

limited source and even worse, it may causes  damage to the donor site of 

transplantation or even complications, sometimes [1]. This problem leads experts to 

discover synthetic materials that have a potential restorative effect of bone defects. In 

this study we are interested in bioactive glasses (46S6) as support doped with Zinc (Zn) 

and titanium (Ti).    

 Bioactive glasses are widely used in the clinical repair of bone defects, because they are 

spontaneously bonded and  integrated with the bone in the living body through the rapid 

formation of a thin hydroxycarbonate-apatite layer on the material surface when 

implanted or in contact with biological fluids [2].  Bioactive glasses are a subset of 

inorganic bioactive materials as well, which are capable of reacting with physiological 

fluids to form tenacious bonds to the bone through the formation of bone-like 

hydroxyapatite layers and the biological interaction of collagen with the material 

surface [3]. It has been found that reactions on bioactive glass surfaces lead to the 

release of critical concentrations of soluble Silicon (Si), Calcium (Ca), Phosphorus (P) 

and Sodium (Na) ions, which induce favorable intracellular and extracellular responses, 

leading to the rapid bone formation [4]. Bioactive glass is an amorphous system which 

promotes its association with other elements such as strontium [5], magnesium [6] and 

zinc [7] and other molecules such as bisphonates [8]. Zinc is an essential trace element 

for the boby. It assures several functions: metabolism of cells [9], wound healing [10] 
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and it stimulates cell proliferation and differentiation, protein synthesis in osteoblastic 

cells [10,11] as well. In a previous study, it was demonstrated that, after immersion of 

46S6 and 46S6-10Zn in the SBF, the incorporation of Zn in the vitreous matrix based 

on 46S6 increases the bioactivity of this biomaterial [7]. This highlights the role of zinc 

in the development, differentiation and  proliferation of osteoblasts. Its deficiency 

decreases bone weight and delays growth in bone metabolism. Zinc deficiency results in 

a retardation of  bone growth, development, and maintenance of bone health [12, 13]. It 

has a stimulatory effect on bone formation and mineralization in vitro and vivo [14, 15]. 

The biocompatibility of  46S6-10Zn was maximized by the incorporation of titanium in 

its matrix. Therefore, it was reported that the excellent biocompatibility of titanium and 

its alloys with bone tissue can be explained by the unique characteristics of titanium-

bone interface [16]. 

Our study aimed to evaluate the behavior of porous glass ceramic doped with Zn and Ti 

in the restoration of critical diaphyseal bone defect in rabbits after its implementation 

during one, four, six and nine months. 

 For the evaluation of our biomaterial’s behavior (46S6-10Zn), several physicochemical 

techniques were used such as X- ray diffraction (DRX), Infra- red analysis (FTIR), 

Energy-dispersive X-ray (EDS) and solid-state nuclear magnetic resonance (MAS- 

NMR). The evolution of initial biomaterial was realized in function of the time 

implementation. Additionally, the histological study was used to evaluate the 

osseointegration and the resorption of this composite after one, four and nine months. 

 

2. Materials and Methods:  
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       2.1 Bioactive glass synthesis 

Bioactive glasses were synthesized by freeze-drying method. Their elaboration was 

carried out using sodium metasilicate (Na2SiO3), silicon dioxide (SiO2), calcium 

metasilicate (CaSiO3) and sodium metaphosphate (Na3P3O9). Powders were weighed 

and mixed in a polyethylene bottle, for 2h using a planetary mixer. 46S6-10Zn was 

synthesized from the composition of 46S6 (46 mass%SiO2 (silica), 24 mass% CaO 

(calcium oxide or lime), 24 mass% Na2O (Sodium oxide) and 6 mass%P2O5 

(Phosphorus pentoxide). Moreover, this bioactive glass composition 46S6 was studied 

by introducing 10 mass% zinc oxide and 2 mass% TiN to create porosity [17].  

The premixed mixtures were melted at 1250°C in platinum crucibles to avoid the risk of 

contamination. The fusion temperature of platinum is of 1760°C. The first rise of 

temperature rate was 10°C min-1 and was held at 900°C for 1h to achieve the 

decarbonatation of all products. The samples were cast in preheated brass molds, in 

order to form cylinders of 13 mm in diameter, and annealed at 565°C for 4h near the 

glass transition temperature. The obtained cylinders were used for the ‘in vivo’ studies. 

The prepared bioimplants were sterilized by γ-irradiation from a 60Co source gamma 

irradiation at a dose of 25 Gy (Equinox, UK) using standard procedures for medical 

devices. 

 

2.2 Animal model 

 

Twenty five mature New Zealand rabbits, nine months old and weighing 1.6-2 kg, were 

used. Animals were bred in the Central Animal House and they were randomly 

distributed into 2 groups:  
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*G1 (T) none operated and none implanted,   

*G2 (46S6-10Zn) operated and implanted with 46S6-10Zn.  

The animals were placed in individual cages, under standard conditions (room 

temperature 22 ± 2°C, relative humidity 55 ± 5% and illumination with a 12 h/12 h of 

light/darkness photoperiod), fed with a full rabbit’s on a pellet diet (Sico, Sfax, Tunisia), 

libitum added water, and without restriction of movement, according to the animal 

experimentation EU rules. 

 

2.3 Animal anesthesia 

 

Anesthesia was induced with 10 mg / kg of ketamine (KetaminoL, Intervet International 

GmbH, Unterschleibheim, Germany) and 0.1 mg / kg of Xylazine (Rompun, Bayer 

Healthcare, PuteauxFrance). Supplemented local anesthesia was applied after 15 - 20 

min using 4 mg / kg carprofen (Rimadyl, Pfizer, Paris, France) depending on body 

weight.  

 

2.4 Surgical operations 

 

The tibia was implanted and stabilized by mini external fixator. Cutaneous and 

subcutaneous incisions on the inner face of the tibia followed by an opening of the 

muscular aponeurose were carried out. A gap (1 cm in diameter) in the mid-diaphyseal 

level of the tibia was created aseptically. 46S6-10Zn filled the loss of osseous substance 

for the second group. Animals were killed after one, four, six and nine months and 

bones were harvested (Fig. 1). 
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2.5 Physicochemical exploration 

 

The evaluation of the crystalline and morphological structure of the surface and the 

kinetic of bioimplant degradation and resorption were carried out by using 

complementary methods such as XRD, FTIR, EDS and MAS- NMR. X-ray diffraction 

(XRD) was studied by using a diffractometer (Philips X'Pert-MPD system with a CuKa 

wave length of 1.5418Å). The diffractometer was operated at 40 kV and 30 mA at a 2θ 

range from 10°–70° employing a step size of 0.02°/s. Samples were dried for 24 h at 65 

°C and weighed accurately. Fourier transformed infrared analysis (FTIR; Nicolet 

Magna-IR 550 spectrometers, Madison, Wisconsin) was performed to identify the 

nature of the chemical groups and their evolution versus time of implementation. The 

samples were small pellets, of 0.5 cm diameter, obtained by pressing the   powder with 

KBr. Quantification of calcium (Ca, mol %), phosphorus (P, mol %) and zinc (Zn, mol 

%) in the interface 46S6-10Zn- bone was determined by the dispersive X-ray 

spectroscopic additionally the ratio of calcium to phosphorus (Ca/P) was calculated at 

each period. Nuclear Magnetic Resonance (NMR) using a Bruker MAS spectrometer 

ASX300 (7.05 T) was employed to highlight the new formation of bone and the 

degradation of biomaterial. 

 

2.6 Histological studies 

 

The cells’ attachment and bone formation have been studied by using histological study. 

After one, four and nine months the implanted bone was harvested from each rabbit and 
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fixed in Burdack, (formalin). The time delay was selected to assess the performance of 

the biomaterials on bone formation before degradation. Samples were included in a 

mixture of polymethylmethacrylate (PMMA) and glycolmthacrylate (GMA) without 

prior decalcification. Sections 6 to 7 μm thick were debited along a transverse plane 

using a sliding microtome (Reichert-Jung). 

 

    2.7 Statistical analysis 

 

The statistical analysis of the data was carried out using the Student’s t-test. The 

determinations were performed from 5 animals per group. All values were expressed 

as means ± SE at the significance level 2a=0.05 

 

3. Results  

 

      3.1 Crystalline structure by using X-ray diffraction (XRD) 

 

Data reported by XRD show structural changes of the porous glass ceramic before 

and after implementation. Therefore, before implementation, biomaterial shows the 

presence of two crystal phases referenced in JCPDS: major crystalline phase 

(Na4Ca4Si6O18) and a secondary crystalline  phase (Na2Ca4 (PO4)2SiO4) as shown in Fig. 

2. After one month of implementation , we observe the persistence of these two phases 

of the 46S6-10Zn (Na4Ca4Si6O18 and  Na2Ca4 (PO4)2SiO4). This result exhibits the onset 

degradation of this composite. Four months later, the diffractogram illustrates the 

disappearance of the two phases of 46S6-10Zn and the appearance of two lines of 
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biological apatite which indicate the progressive mineralization and nucleation of bone. 

Finally, after nine months we observe a diffractogram similar to that of biological bone. 

All these findings demonstrate the biodegradability of 46S6-10Zn and its progressive 

replacement by the apatite (Fig. 2).  

    

3.2 Molecular vibrations: Infra- red analysis (FTIR) 

Spectrum of 46S6-10Zn before and after its implementation (Fig. 3) illustrates  

several changings. 46S6-10Zn before implementation, indicates the presence of 4 bands 

of   Si-O-Si at a wave-number 503 cm-1 and Si-O at 745, 932 and 1036 cm-1. In 

addition, we note the presence of three bands of  P-O at the wave-numbers 580, 645 and 

1048 cm-1. One month later of implementation, we observe the presence of three bands 

of Si-O respectively at the wave-number of 448, 526 and 920 cm-1. Also, we notice the 

presence of  P-O bands and with a chemical displacement respectively at the 

wavelength of 620, 566 and 1028 cm-1. Whereas, the absorption bond at 1657 cm-1 is 

attributed to amide I. Moreover, the band at 154 cm-1 corresponds to the amide II. All 

these findings suggest the beginning  of 46S6-10Zn degradation and its replacement by 

the newly formed bone cells compared to carbonated hydroxyapatite used as a reference 

(Fig. 3).  After four months, we illustrate the increasing of biomaterial degradation. 

Therefore, we notice the presence of Si-O bands with a slight intensity.  Moreover, we 

show the increasing of bonds characterizing amide I and II, besides, we observe the 

appearance of amide III and the bands of carbonate at the wave numbers 1242, 872, 

1409 and 1455 cm-1. These findings explain the disappearance of 46S6-10Zn  matrix in 

favor of the overlapping of the apatite bands. These bands were replaced by 601 cm-

1,564 cm-1and 1028 cm-1 (P-O) group arising from that of the apatite- bone. The P-O 
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intensity increased with the advance of implementation time, this exhibits the 

progression of bone growth with implementation time. This is confirmed by the 

appearance of the C-O band characteristic of bone carbonate group.  Moreover, after 

nine months, all Si-O bands disappeared and replaced by P-O bands, amide I, II, III and 

carbonates. This highlights the increasing of ours biomaterial (46S6-10Zn) 

biodegradation and the bone mineralization and  formation.  

 

3.3 Evolution of the mineral composition: Energy- dispersive (EDS) 

 As shown in Fig. 4, before implementation, 46S6-10Zn shows a phosphocalcic Ca/P 

ratio of 2.67. After implementation, this value decreased. Therefore, after one month, 

the attenuation of  Ca/P value  to 1.33 can be explained by the exchanges of these two 

elements Ca and P between biomaterial and nearby tissue. This interchange may lead 

for the mineralization and the crystallization of the new formed bone.  

 This Ca/P  value exhibits the absence of calcium phosphate. Four months later, this 

value increased to 1.66 which explains the mineralization and the formation of the 

biological apatite in the interface bone / 46S6-10Zn. After nine months, the Ca/P ratio is 

near to 1.88 which highlights the progression of the bone mineralization. Whereas, 

silicon value shows a modification before and after implementation, in fact before 

implementation it was near to 47. After one month of implementation, we observe a 

height concentration of Si and Zn. This demonstrates the slowly dissolution of the 

46S6-10Zn matrix. After four months, we observe a decreasing of Si and Zn 

concentrations. This highlights the progressive degradation of the 46S6-10Zn. Nine 

months later, we note a total absence of Si and the reduction of Zn value. Data reported 
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after nine months explains the degradation and the resorption of 46S6-10Zn and its 

replacement by bone (Fig. 5).  

 

3.4 Structural evolution after in vivo tests: Nuclear Magnetic Resonance analysis 

(MAS- NMR) 

 

The 29Si MAS-NMR spectrum obtained for the porous glass ceramic and the results of 

its deconvolution before implementation are presented  by  Fig. 6 and table 1. It 

highlights the location of 2 distinct contributions at -78 ppm and -89 ppm. There are 

characteristics of the tetrahedral silicon environment Q2 and Q3 respectively. Q2 

represents  21%  whereas Q3 shows 79%. Q2 and Q3 were calculated by the integrate 

model  DM-FIT 32 software. In a previous study, the deconvolution of the 29Si MAS-

NMR spectrum of 46S6 showed the presence of Q2 (80%) and Q3 (20%) respectively at 

-78 and -87 ppm. Thus, we notice the inversion of proportions of Q2 and Q3 species. 

This is may be explained by the crystallization induced by the thermal treatment during 

the synthesis process of glass ceramic . According to the literature, Ca2+ cations are 

associated with Q2 species while Na+ cations are associated with  Q3 species. The 29Si 

MAS-NMR spectrum shows  some structural modifications due to the chemical reaction 

between glass ceramic and the in vivo biological fluid. The spectrum of control bone 

exhibits no silicon resonance. It confirms the absence of this nucleus within the bone 

matrix. After one and four months of implementation, we notice the reduction of these 

Q2 and Q3 species suggesting  the progressive degradation of the biomaterial. The 

decrease of these species is accompanied by the emergence, the development and the 

increase of new species (Q4), implying the perturbation of the vitreous matrix of 46S6-
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10Zn. The Q4 species characterize condensation of the network and the formation of a 

silicon-rich layer on the surface of the biomaterial. After 6 months, we observe the 

disappearance of these Q2, Q3 and Q4 species which explains the total degradation of the 

biomaterial (Fig. 6). The 31P MAS-NMR spectrum obtained for the glass ceramic and 

the results of its deconvolution before and after implementation are presented in Fig. 7 

and Table 3. It highlights the location of 2 distinct contributions at 3 ppm and 8 ppm.  

Based on the half height widths, which are located at the position of 1 and 15 ppm, we 

attributed the resonance of 3ppm to a crystalline phase noted Q0
C and the other of 8 ppm 

to an amorphous phase named Q0
a. Both populations are present respectively with 52% 

and 48%. Thus, we show an equivalent distribution of phosphorus between the 

amorphous and the crystallized phases. The 31P MAS-NMR spectrum obtained for the 

bioglass pure and the results of its deconvolution before implementation (Table 3) 

illustrates a chemical displacement which characterizes phosphorus in an 

orthophosphate environment PO4
3-  which corresponds to the species Q0

C. The 31P 

MAS-NMR spectrum of the implanted 46S6-10Zn (Fig. 7 and Table 4) shows some 

structural modifications. These changes are due to the chemical reaction between glass 

and the in vivo biological environment. Therefore, bone illustrates the presence of 

species, with a chemical displacement of 4 ppm and with half height width of 3ppm , 

illustring thus, the presence of the carbonate hydroxyapatite (Q0
HA). After one month, 

we show a sharp decrease of the Q0
C, this highlights the release of phosphorus from the 

crystallized phases of the glass ceramic under the effect of the surrounding 

environment. After, four months,  this species disappeared. The Q0
a species also 

decreased with the implementation time advance, but its attenuation is weaker than the 

other of Q0
C. These two phases: crystallized and amorphous phases participate in the 
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formation of an apatite layer on the surface of the porous glass ceramic. But the largest 

participation is assured by crystallized phase, which accelerates the degradation of 

biomaterials. Whereas, after one month, Q0
HA species, characteristic of hydroxyapatite 

phosphorus,  was formed  and was located at 4 ppm. This population increased and 

achieved  80% after six months of implementation. This data highlights the maturation 

and the mineralization of newly formed bone tissue. 

 

3.5 Histological studies 

 

All the rabbits presented satisfactory postoperative results, with no evidence of 

inflammation or infection at the surgical site. No adverse reaction was observed during 

the procedure. This explains the non toxicity of this biomaterial. Regardless of the type 

of specimen, after one month (Fig. 8), new bone was observed at the implant-bone 

interface, this explains the biocompatibilty of our composite which was accepted by the 

body and interacts with its biological system. Therefore, this tissue at the interface 

bone- bioimpalant is the results of the exchange between biological systems and 46S6-

10Zn which lead to the formation in the first time of an osteiod tissue and after one 

month this tissue is matured and transformed to a trabecular tissue leading to the 

osseointegration four months later (Fig. 9). New bone was observed growing into the 

pores and lead to the formation of calcified bone network. Indeed, this network of these 

cells is formed from mesenchymal cells, which will be transformed into fibroblasts 

contained in the collagen bundles which are deposited without apparent orientation. 

Fibroblasts metamorphosed into active osteoblasts, which are elongated along spans of 

mineralized bone tissue. The ossification is setting up step by step from the periphery to 
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the center and therefore centripetally. This result highlights the pores importance  in the 

neovascularization and the integration of newly formed bone cells in the biomaterial. 

During this staining technique, we have used a colorant which alters the biomaterial 

leading to the appearance of yellowish ranges within the bone matrix. The new growth 

bone is most abundant in the peripheral regions of the implanted zone, near to the bone 

contact zones. The initiation was done in contact with the biomaterial but never afar of 

old bone. Toward, the center of the implanted zones, the pores are denser and the 

cellularity and bone quantity is lower. The contact between the new growth bone and 

the material is intimate without fibrous interface or encapsulating. The bone "flows" are 

clearly guided by the 46S6-10Zn pores and seem building bridges from the periphery of 

bone loss (Fig. 9).  Nine months later, the rest of the 46S6-10Zn is invaded by 

connective tissue. Thereby, from the periphery to the center we see the presence of a 

fibrocartilaginous tissue, then we show the presence of trabecular bone tissue and in the 

middle we illustrate the presence  of a fibrous connective tissue which mingles with the 

rest of biomaterial (Fig. 10, 11). It represents the neosynthesis sign. This result suggests 

the degradation of biomaterial and its replacement firstly with an osteoid tissue, which 

developed and transformed in calcified tissue. 

 

4. Discussion: 

 

Owing to its bioactivity, the 46S6-10Zn induces the formation of a hydroxyapatite layer 

at its interface after its immersion in SBF solution [7]. In this study based on in vivo 

assays, the biocompatibility of this composite is confirmed by its progressive 

degradation and its replacement by a newly formed hydroxyapatite layer. XRD 
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diffractogram of 46S6-10Zn, after its implementation, shows changes with time 

progression. Therefore, after one month, we observe the presence of peaks characteric 

of  46S6-10Zn composite.  This explains the slow dissolution of the composite 46S6-

10Zn. This result is confirmed by its behavior when it was in contact with biological 

fluids. Therefore, a smaller dissolution of the ceramic glass matrix (46S6-10Zn) 

generates a smaller formation of the silica rich layer [7]. Four months later, we saw the 

disappearance of the peaks of Na4Ca4Si6O18 and Na2Ca4(PO4)2SiO4 phases and the 

appearance of two halos at  2Ɵ  values of 26° and 32°, which correspond respectively to 

(002) and (211) hydroxyapatite reflection planes. Finally, after nine months, XRD 

pattern is similar to that of the control bone and exhibits the biocompatibility and the 

chemical reactivity of our composite. FTIR analyses of the reacted material after 

implementation show some alterations of the biomaterial. This is due to several 

reactions between bone and 46S6-10Zn.  Thus, after one month, the presence of amide I 

at a wave- number of 167 cm-1 indicates the mineralization of bone tissue [18-19]. After 

four and nine months, the crystallization and the changing of 46S6-10Zn is seemed by 

the appearance of all peaks characterizing biological apatite. This data highlights the 

bioactivity of our composite.  It has been demonstrated that dissolution products from 

bioactive glasses up -regulate the expression of genes that control osteogenesis [20, 21], 

which explains the high rate of bone formation in comparison to other inorganic 

ceramics such as hydroxyapatite [22]. 

    The degradation of the composite (46S6-10Zn) with time of implantation is seemed 

by its progressive degradation in favor of the formation and crystallization of new bone. 

Moreover, the crystallization of the new formed apatite layer is poor. Therefore, we 

notice the appearance of bands characterizing a stretching vibration of C = O of the 
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amide I [18, 19], with the persistence of the maximum characterizing the porous glass 

ceramic. Four months later, it was nearly completely degraded and replaced by bone 

tissues reported by the appearance of all bands charactering bone. Therefore, the band at 

1542 cm-1 (amide II) arising from the combination of C-N stretching and N-H bending 

vibrations of the protein bone can be related to the protein matrix formation of 

implanted bone [18, 19]. The crystallization of this HA layer is more shown by the 

appearance of amide II [18, 24] and carbonate bands [18, 19]. All results highlight the 

deposition of the apatite layer upon to the silicon layer when brought in contact with 

body fluids [25, 27]. Nine months later, all these bands increase in intensity and take the 

same form of biological apatite of bone. The contact between the biomaterial surface 

and the SBF solution leads to the formation of a hydrated silica layer on this surface and 

induces the deposition of HA. Silanol groups could be specific sites of apatite 

nucleation [7]. 

   The bioactivity of 46S6-10Zn after its implementation depends on its chemical 

composition [27]. The amounting of Ca/P ratio over time is an indication of progressive 

mineralization with time progressing. This finding highlights the good role of Zn in the 

mineralization of the interface:  bone- 46S6-10Zn. The incorporation of mineral ions 

such as zinc or silicate in calcium phosphate ceramics showed an increase of osteoblasts 

attachment and proliferation [28]. After one month of implementation, the slowly 

decreasing of Si in the interface of 46S6-10Zn is explained by the slowly dissolution of 

biomaterial which leads to its release. The increasing of Si  may be due to the breaking 

of the Si-O-Si bond and favorites the formation of Si-OH and Si(OH)4 groups at the 

glass/bone interface and which induces heterogeneous nucleation of the apatite with the 

progression time. Orthosilicate acid, Si(OH)4, has been shown to stimulate osteoblastic 
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differentiation and the formation of type I collagen in human osteoblasts [29]. Whereas, 

after four and nine months, the silicon value decreased and tended to 0 after nine 

months, this highlights the degradation of the porous glass ceramic and its replacement 

by bone cells. Data reported by the MAS-NMR confirm the previous findings reported 

by the other analyses.  

Therefore, 29Si MAS-NMR spectra of the implanted 46S6-10Zn illustrate the decreasing 

of  Q2 and Q3 species, with time progression, in favor of the increasing  of Q4. This 

result demonstrates the degradation of the biomaterial and the formation of a silicon-

rich layer on the surface of the biomaterial . Surface hydroxyl groups play an important 

role in bioactivity [3]. Silica gel in the bioactive glass surface provides a large number 

of silanol (Si-OH) terminations, which flex to match the crystals of hydroxyapatite and 

act as nucleation sites [30]. After six months, these species are disappearing. This 

exhibits the degradation of our composite and its replacement by bone. Glass bioactivity 

leads to both osteoconduction and osteoproduction [31] as a consequence of rapid 

reactions on the bioactive glass surface. 

  The 31P MAS-NMR spectrum obtained for the glass ceramic and the results of its 

deconvolution before implementation, demonstrate the location of 2 distinct 

contributions at 3 ppm and 8 ppm. There are  characteristics of phosphorus species of an 

orthophosphates environment Q0 [32]. The attenuation of species Qa
0 and Qc

0 with time 

progression and the increasing of QHA
0 highlight the degradation of bioimplant and its 

replacement by the bone. These findings exhibit also the bioactivity of our composite in 

the first time and in the second time the good effect of Zn incorporation in the vitreous 

matrix which stimulates osteobalst formation and inhibits osteoclast differentiation. To 

better understand the evolutionary phenomena of the degradation of the hybrid (46S6-
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10Zn) and its replacement by a new calcified bone, we have deepened our 

physicochemical study by histological exploration. Therefore, the degradation of this 

composite increased with time progression in favor of bone mineralization. These 

findings are correlated to the bioacompatibility, the degradability and the presence of 

pores which ensure the integration of bone cells in biomaterial. This osseointegration 

phenomena  increase with time progression and lead to almost total degradation of 

46S6-10Zn. The increasing microporosity may provide an increased surface area for the 

action of angiogenic and other proteins leading to the formation of blood vessels and 

promoting bone induction by osteoblasts at early time points [33, 34]. In the other hand, 

it is may be due to the presence of Zn in the vitreous matrix of 46S6-10Zn and which 

encouraged the differentiation and the development of mineralized bone tissue. Zinc is 

an essential trace metal known to have stimulatory effects on bone formation in vitro 

and in vivo studies [35]. 

 

5. Conclusion 

 

This study aimed to evaluate the behavior of our porous glass ceramic doped with Zn 

and Ti (46S6-10Zn) before and after its implementation in bone defect. This evaluation 

realized by several physico-chemical explorations through XRD, FTIR, EDS and 29Si, 

31P MASS-NMR. Therefore, XDR and FTIR illustrate the degradation and the 

neoformation of bone by the disappearance of peaks characterizing amorphous and 

crystalline phases of 46S6-10Zn, and their replacement by peaks similar to those of 

biological apatite. Moreover, EDS shows the mineralization of bone tissue by the 
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increasing of Ca/P ratio with time progression from 1.33 after one month to 1.88 nine 

months later. Also, it highlights progressive degradation of 46S6-10Zn, as indicated 

by the reduction of Zn and Si concentrations with time progression. MAS-NMR 

illustrates the degradation of biomaterial, then 29Si MAS-NMR indicates the 

disappearance of Q2, Q3 and Q4 species after six months of implementation. Whereas 

31P MAS-NMR shows the disappearances of Q0
C and Q0

a species in favor of the 

development of Q0
HA. Finally, histological exploration illustrates the osseointegration 

and the biodegradation of the composite by the progression of the osteoblasts’ 

deposition in the pores of biomaterial leading after nine months to it’s totally 

degradation and its replacement by mineralized and osteoid bone. All these data 

highlight the good effect of incorporation of Zn and Ti in the matrix of bioglass.  
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Figures captions: 

 

Figure 1: Steps of surgical operation 

Figure 2: XRD pattern of porous glass ceramic doped with Zinc (46S6-10Zn) before 

and after one, four and nine months of implementation in critical diaphyseal bone defect 

in rabbit. 

Figure 3: FTIR spectra of porous glass ceramic doped with zinc (46S6-10Zn) before and 

after one, four and nine months of implementation in critical diaphyseal bone defect in 

rabbit. 

Figure 4: Ca/P ratio (EDS) obtained from the chemical analysis of the porous glass 

ceramic doped with Zinc (46S6-10Zn) before and after one, four and nine months of 

implementation in critical diaphyseal bone defect in rabbit. 

Figure 5: Si and Zn value (EDS) obtained from the chemical analysis of the porous 

glass ceramic doped with Zinc (46S6-10Zn) before and after one, four and nine months 

of implementation in critical diaphyseal bone defect in rabbit. 

Figure 6: 29Si MAS-NMR spectra of porous glass ceramic doped with zinc (46S6-10Zn) 

before and after one, four and six months of implementation in critical diaphyseal bone 

defect in rabbit.  

Figure 7: 31P MAS-NMR spectra of porous glass ceramic doped with zinc (46S6-10Zn) 

before and one, four and six months after implementation in critical diaphyseal bone 

defect in rabbit.  



25 
 

Figure 8:  Goldner’s trichrome staining (10 × objective). Histological sections of the 

interface between porous glass ceramic (46S6-10Zn) and bone after one month after 

implementation in critical diaphyseal bone defect in rabbit:  

* indicates porous glass ceramic doped with zinc (46S6-10Zn) 

# indicates mineralized bone 

Figure 9:  Goldner’s trichrome staining (10 × objective). Histological sections of the 

interface between porous glass ceramic (46S6-10Zn) and bone four months after 

implementation in critical diaphyseal bone defect in rabbit:  

* indicates porous glass ceramic doped with zinc (46S6-10Zn) 

 #indicate mineralized bone and 

 @ indicate the osteoid bone. 

Arrows: indicates the osseointegration process 

Figure 10:  Goldner’s trichrome staining (10 × objective). Histological sections of the 

interface between porous glass ceramic (46S6-10Zn) and bone after nine months of 

implementation in critical diaphyseal bone defect in rabbit:  

#indicate mineralized bone and  

Arrows indicate the osteointegration process. 

Figure 11:  Goldner’s trichrome staining (10 ×objective). Histological sections of the 

interface between porous glass ceramic (46S6-10Zn) and bone after nine months of 

implementation in critical diaphyseal bone defect in rabbit:  

# indicates mineralized bone and  

@ indicate the osteoid bone. 
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Tables captions : 

 

Table 1: Contribution and chemical shifts of different species in 29Si spectra of bioactive 

pure glass (46S6) and porous glass ceramic doped with zinc (46S6-10Zn) before 

implementation.  

Table 2: Contribution and chemical shifts of different species in 29Si spectra of porous 

glass ceramic doped with zinc (46S6-10Zn) after one, four and six months after 

implementation. 
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Table 3: Contribution and chemical shifts of different species in 31P spectra of bioglass 

pure (46S6) and porous glass ceramic doped with zinc (46S6-10Zn) before 

implantation. 

Table 4: Contribution and chemical shifts of different species in 31P spectra of porous 

glass ceramic doped with zinc (46S6-10Zn) after one, four and six months of 

implementation 

 

 Q2 Q3 

δ (ppm) % δ (ppm) % 

Pure bioactive glass (46S6) -79 80 -87 20 

Porous glass ceramic doped 

with zinc (46S6-10Zn) 

-79 21 -89 79 

 

 

 Q2 Q3 Q4 

δ (ppm) % δ (ppm) % δ (ppm) % 

1 Month -79 25 -89 73 -108 4 

4 Months -79 19 -89 58 -108 23 

6Months 0 0 0 0 0 0 

Control bone 0 0 0 0 0 0 
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 Q0
c Q0

a 

δ (ppm) % δ (ppm) % 

Pure bioactive glass 

 (46S6) 

7.5 100 0 O 

Porous glass ceramic 
doped with Zinc (46S6-
10Zn) 

3 52 8 48 

 

 

              Q0
c              Q0

HA
                   Q0

a 

δ (ppm) % δ (ppm) % δ (ppm) % 

1 Month 3 4 4 55 8 41 

4 Months 3         0 4 71 8 29 

6 Months 3 0 4 80 8 20 

Control bone 0 0 4 100 0 0 

 

 


