R. Haralick and D. Dori, A Pattern Recognition Approach to Detection of Complex Edges, Pattern Recognition Letters, vol.16, issue.5, pp.517-529, 1995.

R. Schowengerdt, Remote Sensing: Models and Methods for Image Processing, 2006.

F. Cheikh, B. Cramariuc, and M. Gabbouj, <title>MUVIS: a system for content-based indexing and retrieval in large image databases</title>, Storage and Retrieval for Image and Video Databases VII, pp.41-44, 1998.
DOI : 10.1117/12.333830

O. V. Tsymbal, V. V. Lukin, N. N. Ponomarenko, A. A. Zelensky, K. O. Egiazarian et al., Three-State Locally Adaptive Texture Preserving Filter for Radar and Optical Image Processing, EURASIP Journal on Advances in Signal Processing, vol.2005, issue.8, pp.1185-1204, 2005.
DOI : 10.1155/ASP.2005.1185

C. Deledalle, L. Denis, and F. Tupin, How to Compare Noisy Patches? Patch Similarity Beyond Gaussian Noise, International Journal of Computer Vision, vol.21, issue.11, pp.86-102, 2012.
DOI : 10.1007/s11263-012-0519-6

URL : https://hal.archives-ouvertes.fr/hal-00672357

M. Lebrun, M. Colom, A. Buades, and J. M. , Secrets of image denoising cuisine, Acta Numerica, vol.21, pp.475-576, 2012.
DOI : 10.1017/S0962492912000062

D. Fevralev, V. Lukin, N. Ponomarenko, S. Abramov, K. Egiazarian et al., Efficiency analysis of color image filtering, EURASIP Journal on Advances in Signal Processing, vol.2011, issue.1, pp.412-431, 2011.
DOI : 10.1109/LSP.2002.806054

K. Dabov, Image and Video Restoration with Nonlocal Transform-Domain Filtering: Thesis for the degree of Doctor of Technology, Tampere

G. Gilboa, N. Sochen, and Y. Y. Zeevi, Variational denoising of partly textured images by spatially varying constraints, IEEE Transactions on Image Processing, vol.15, issue.8, pp.2281-2289, 2006.
DOI : 10.1109/TIP.2006.875247

W. Zuo, L. Zhang, C. Song, and D. Zhang, Texture Enhanced Image Denoising via Gradient Histogram Preservation, 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp.1203-1210
DOI : 10.1109/CVPR.2013.159

A. Buades, A. Coll, and J. M. , A Non-Local Algorithm for Image Denoising, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), pp.60-65, 2005.
DOI : 10.1109/CVPR.2005.38

P. Chatterjee and P. Milanfar, Is Denoising Dead?, IEEE Transactions on Image Processing, vol.19, issue.4, pp.895-911, 2010.
DOI : 10.1109/TIP.2009.2037087

R. Lukac, Adaptive vector median filtering, Pattern Recognition Letters, vol.24, issue.12, pp.1889-1899, 2003.
DOI : 10.1016/S0167-8655(03)00016-3

M. Szczepanski, B. Smolka, K. N. Plataniotis, and A. N. Venetsanopoulos, On the geodesic paths approach to color image filtering, Signal Processing, vol.83, issue.6, pp.1309-1342, 2003.
DOI : 10.1016/S0165-1684(03)00058-6

M. Lebrun, M. Colom, and J. Morel, The Noise Clinic: a Blind Image Denoising Algorithm, Image Processing On Line, vol.5, pp.1-54, 2015.
DOI : 10.5201/ipol.2015.125

V. Lukin, R. Oktem, N. Ponomarenko, and K. Egiazarian, Image Filtering Based on Discrete Cosine Transform, Telecommunications and Radio Engineering, vol.66, issue.18, pp.1685-1701, 2007.
DOI : 10.1615/TelecomRadEng.v66.i18.70

L. Sendur and I. Selesnick, Bivariate shrinkage with local variance estimation, IEEE Signal Processing Letters, vol.9, issue.12, 2002.
DOI : 10.1109/LSP.2002.806054

O. Pogrebnyak and V. Lukin, Wiener discrete cosine transform-based image filtering, Journal of Electronic Imaging, vol.21, issue.4, 2012.
DOI : 10.1117/1.JEI.21.4.043020

R. R. Coifman, D. Donoho, and S. Wavelets, Translation-Invariant De-Noising, pp.125-150, 1995.
DOI : 10.1007/978-1-4612-2544-7_9

J. Portilla, V. Strela, M. J. Wainwright, and E. Simoncelli, Image denoising using scale mixtures of gaussians in the wavelet domain, IEEE Transactions on Image Processing, vol.12, issue.11, pp.1338-1351, 2003.
DOI : 10.1109/TIP.2003.818640

K. Dabov, A. Foi, V. Katkovnik, and . Egiazarian, Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering, IEEE Transactions on Image Processing, vol.16, issue.8, pp.2080-2095, 2007.
DOI : 10.1109/TIP.2007.901238

K. He, J. Sun, and X. Tang, Guided Image Filtering, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.35, issue.6, pp.1397-1409, 2013.
DOI : 10.1109/TPAMI.2012.213

A. Buades, B. Coll, and J. Morel, A Review of Image Denoising Algorithms, with a New One, Multiscale Modeling & Simulation, vol.4, issue.2, pp.490-530, 2005.
DOI : 10.1137/040616024

URL : https://hal.archives-ouvertes.fr/hal-00271141

V. Lukin, S. Abramov, N. Ponomarenko, K. Egiazarian, and J. Astola, Image filtering: Potential efficiency and current problems, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2011.
DOI : 10.1109/ICASSP.2011.5946683

A. Rubel, V. Lukin, and O. Pogrebniak, Efficiency of DCT-Based Denoising Techniques Applied to Texture Images, Proceedings of MCPR, pp.261-270, 2014.
DOI : 10.1007/978-3-319-07491-7_27

M. Uss, A. Rubel, V. Lukin, B. Vozel, and K. Chehdi, Lower bound on image filtering mean squared error in the presence of spatially correlated noise, 2014 IEEE Microwaves, Radar and Remote Sensing Symposium (MRRS), pp.10-13, 2014.
DOI : 10.1109/MRRS.2014.6956653

URL : https://hal.archives-ouvertes.fr/hal-01111023

S. Abramov, S. Krivenko, A. Roenko, V. Lukin, I. Djurovic et al., Prediction of filtering efficiency for DCT-based image denoising, 2013 2nd Mediterranean Conference on Embedded Computing (MECO), 2013.
DOI : 10.1109/MECO.2013.6601327

O. Rubel and V. Lukin, An Improved Prediction of DCT-Based Filters Efficiency Using Regression Analysis Information and Telecommunication Sciences, pp.30-41, 2014.

A. Rubel, A. Naumenko, and V. Lukin, A Neural Network Based Predictor of Filtering, Proceedings of MRRS, pp.14-17, 2014.

K. Egiazarian, J. Astola, N. Ponomarenko, V. Lukin, F. Battisti et al., New fullreference quality metrics based on HVS, Proceedings of the Second International Workshop on Video Processing and Quality Metrics, 2006.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, Image Quality Assessment: From Error Visibility to Structural Similarity, IEEE Transactions on Image Processing, vol.13, issue.4, pp.600-612, 2004.
DOI : 10.1109/TIP.2003.819861

M. Matrecano, G. Poggi, and L. Verdoliva, Improved BM3D for correlated noise removal, Proceedings of International Conference on Computer Vision, pp.129-134, 2012.

A. S. Rubel, V. V. Lukin, and K. O. Egiazarian, Metric performance in similar blocks search and their use in collaborative 3D filtering of grayscale images, Proceedings of SPIE, vol.9019, issue.12, 2014.

A. Kadir, L. E. Nugroho, A. Susanto, and P. I. Santosa, Experiments of distance measurements in a foliage plant retrieval system, International Journal of Signal Processing Image Processing and Pattern Recognition, vol.5, issue.14, 2012.

V. Lukin, N. Ponomarenko, and K. Egiazarian, HVS-Metric-Based Performance Analysis Of Image Denoising Algorithms, Proceedings of EUVIP, pp.156-161, 2011.

P. Chatterjee and P. Milanfar, Practical Bounds on Image Denoising: From Estimation to Information, IEEE Transactions on Image Processing, vol.20, issue.5, pp.1221-1233, 2011.
DOI : 10.1109/TIP.2010.2092440

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. Uss, B. Vozel, V. Lukin, and K. Chehdi, Potential MSE of color image local filtering in component-wise and vector cases, Proceedings of CADSM, pp.91-101, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01127128

B. Pesquet-popescu and J. L. Véhel, Stochastic fractal models for image processing, IEEE Signal Processing Magazine, vol.19, issue.5, pp.48-62, 2002.
DOI : 10.1109/MSP.2002.1028352

URL : https://hal.archives-ouvertes.fr/inria-00581030

A. Badiru and J. Cheung, Fuzzy Engineering Expert Systems with Neural Network Applications, 2002.

C. Cameron, A. Windmeijer, A. G. Frank, H. Gramajo, D. E. Cane et al., An R-squared measure of goodness of fit for some common nonlinear regression models, Journal of Econometrics, vol.77, issue.2, pp.329-342, 1997.
DOI : 10.1016/S0304-4076(96)01818-0

V. V. Abramova, S. K. Abramov, V. V. Lukin, K. O. Egiazarian, and J. T. Astola, On required accuracy of mixed noise parameter estimation for image enhancement via denoising, EURASIP Journal on Image and Video Processing, vol.2014, issue.1, pp.16-26, 2014.
DOI : 10.1016/j.sigpro.2009.04.035

N. Ponomarenko, O. Ieremeiev, V. Lukin, K. Egiazarian, L. Jin et al., Color Image Database TID2013: Peculiarities and Preliminary Results, Proceedings of EUVIP, pp.106-111, 2013.
DOI : 10.1007/978-3-319-02895-8_36

URL : https://hal.archives-ouvertes.fr/hal-01111092

K. Egiazarian, J. Astola, M. Helsingius, and P. Kuosmanen, Adaptive denoising and lossy compression of images in transform domain, Journal of Electronic Imaging, vol.8, issue.3, pp.7233-245, 1999.
DOI : 10.1117/1.482673

A. Rubel-received-the and M. Sc, degree in digital image processing from the National Aerospace University,Department of Receivers, Transmitters and Signal Processing where he is currently pursuing the Candidate of Technical Science degree in digital signal processing for remote sensing. His interests include image enhancement and design of image processing algorithms. His current work focuses on image processing algorithms adaptation to different noise models and its effectiveness prediction, 2013.

V. Vladimir, ) in 1983 and got Diploma with honor in radio engineering Since then he has been with the Dept of Transmitters, Receivers and Signal Processing of National Aerospace University. He presented the thesis of Candidate of Technical Science and in 1988 and Doctor of Technical Science in 2002 in DSP for Remote Sensing. Since 1995 he has been in cooperation with Tampere University of Technology. Currently he is Dept Vice-chairman and Professor. His research interests include digital signal/image processing, remote sensing data processing, image filtering and compression

O. Karen, He is a leading scientist in signal, image, and video processing,with about 300 refereed journal and conference articles, three book chapters, and a book published by Marcel Dekker, Inc. His main interests are in the field of multirate signal processing, image and video denoising and compression, and digital logic, 1986.