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ABSTRACT 

In the literature, the terms physical inactivity and immobilization are largely used as 

synonyms. The present review emphasizes the need to establish a clear distinction between 

these two situations. Physical inactivity is a behavior characterized by a lack of physical 

activity, whereas immobilization is a deprivation of movement for medical purpose. In 

agreement with these definitions, appropriate models exist to study either physical inactivity 

or immobilization, leading thereby to distinct conclusions. In this review, we examine the 

involvement of oxidative stress in skeletal muscle insulin resistance and atrophy induced by, 

respectively, physical inactivity and immobilization. A large body of evidence demonstrates 

that immobilization-induced atrophy depends on the chronic overproduction of reactive 

oxygen and nitrogen species (RONS). On the other hand, the involvement of RONS in 

physical inactivity-induced insulin resistance has not been investigated. This observation 

outlines the need to elucidate the mechanism by which physical inactivity promotes insulin 

resistance.  

INTRODUCTION 

The terms physical inactivity and immobilization are a source of confusion in the literature. 

Most of the conclusions drawn on physical inactivity are based on results from 

immobilization experiments [1, 2]. Physical inactivity is a behavior characterized by a lack of 

physical exercise, whereas immobilization is a clinical state in which one limb or whole body 
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is mechanically unloaded. Although immobilization belongs to the continuum of physical 

inactivity, it is an extreme situation, requiring a distinct experimental design. On the one 

hand, immobilization is investigated in human through several models such as bed rest, 

casting and unilateral lower limb suspension. In rodents, hindlimb unloading remains the 

reference model of immobilization [3]. On the other hand, physical inactivity is 

experimentally reproduced with the reduction of the daily number of steps from 10,000 to 

1,500-3,000 in human or with the locked-wheel model in rodents [4, 5]. From physical 

inactivity to immobilization, decline of muscle load promotes insulin resistance and atrophy 

[6, 7], pathological states in which the overproduction of reactive oxygen and nitrogen species 

(RONS) seems a common denominator [8, 9]. Herein, we will focus this review on the role of 

RONS on skeletal muscle insulin resistance and atrophy in the context of physical inactivity 

and immobilization. To avoid confusion, we chose to make a clear distinction between 

physical inactivity and immobilization (see Figure 1). 

 

Physical inactivity: definition, causes and consequences  

Physical inactivity is basically defined as a lack of physical activity [10]. The World 

Health Organization (WHO) established a threshold, separating inactive vs. active humans, 

based on the metabolic equivalent of task (MET), one MET being the minimum power 

required to maintain the basal metabolism. According to WHO, active adult performs at least 

150 minutes of moderate-intensity (3.0–5.9 MET) physical activity per week or at least 75 

minutes of vigorous-intensity (≥6.0 MET) physical activity per week or an equivalent 

combination of moderate- and vigorous-intensity activity achieving 600 MET-minutes score 

per week [11]. In children and adolescents (5-17 years old), physical inactivity is defined as 

not meeting 60 minutes of moderate to vigorous-intensity physical activity daily [11]. Based 

on these definitions, the worldwide prevalence of physical inactivity reaches 31% in adults 

and 80% in adolescents [12]. This high proportion of inactive people contrasts with the 

singular capacity of human for long endurance exercises [13]. 

In the genus Homo, a high level of physical activity was an adaptive behavior required 

for food procurement, escape from predators, social interactions and search for shelter. During 

the last two centuries, the scientific progress radically changed conditions which drove 

hominid evolution for 7 million years. By replacing human work with machines, the industrial 

revolution initiated a drastic reduction of physical activity. Since then, the development and 

democratization of new technologies have strengthened this phenomenon. In modern society, 

physical activity, instead of vital, became a leisure which is not practiced by a large part of the 
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population. In the beginning of the 20th century, the sedentary behavior was firstly encouraged 

by the scientific community which pointed out the hazards of exercise [14]. A turning point 

operated when, in 1953, Morris and Heady published a large scale epidemiological study 

highlighting the deleterious effect of physical inactivity on health. In this study, the authors 

concluded: “physical work may be a way of life conducive to good health” [15].  

First seen as a progress, the reduction of physical activity is now recognized as a major 

factor contributing to the burden of non-communicable diseases [12]. After smoking, physical 

inactivity is the second risk factor for non-communicable diseases, responsible for 5.3 million 

deaths per year worldwide [16]. In addition, Pedersen proposed a “diseasome of physical 

inactivity”, gathering cardiovascular disorders, different types of cancer, type 2 diabetes, 

depression and dementia [4]. Worldwide, Lee et al. [16] estimate that physical inactivity 

causes 6% of the coronary heart disease, 7% of type 2 diabetes and 10% of breast and colon 

cancers. Among these diseases, the most alarming is likely type 2 diabetes, a pathological 

state characterized by insulin resistance. In the United States, diabetes affects 9.3% of the 

population and the total cost reaches 245 billion dollars per year [17].  
 

Immobilization: definition, causes and consequences  

Immobilization is a deprivation of movement for medical purpose of either a limb or 

whole body. It is noteworthy that the cause is independent of the will and the consequences on 

biology are almost immediate, thus contrasting with physical inactivity. Due to medicine 

progress and aging of the population, more and more people are immobilized in hospital or at 

home. In the United States, hospitalization related to aging increased by 11.8% between 2005 

and 2015 [18]. For instance, osteoporotic hip fracture is estimated to reach 300,000 cases 

annually in the United States [19]. Given that the proportion of elderly will increase, the 

number of hospitalizations is expected to rise in the future [20].  

Whatever the cause, the major complication for bedridden patients is the rapid 

development of skeletal muscle atrophy [21-23], a collateral damage which poses challenging 

health issues. Indeed, skeletal muscle atrophy is associated with a loss of strength, a situation 

which promotes functional deficits, exacerbates illness and complicates patient recovery, 

especially in the elderly [24]. In this population, immobilization constitutes a major risk factor 

for functional decline and loss of autonomy [25]. Consequently, the prevention of skeletal 

muscle atrophy is crucial for patients, medical team and healthcare system [24, 26].  
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SKELETAL MUSCLE OXIDATIVE STRESS IN IMMOBILIZATION AND 

PHYSICAL INACTIVITY 

Source of RONS in skeletal muscle  

From immobilization to strenuous physical exercise, RONS production in skeletal muscle 

follows a U-shaped curve [27]. This representation brings out the RONS paradox, good 

friends when associated with physical activity but bad guys when induced by an absence of 

physical activity. Herein, we will present the main mechanisms leading to RONS production 

in skeletal muscle. 

Sequential univalent reduction of dioxygen produces oxidant molecules collectively 

named reactive oxygen species (ROS). The primary ROS generated, superoxide (O2
-), gives 

rise to others ROS, e.g., hydrogen peroxide (H2O2) and the highly toxic hydroxyl radical 

(HO ). In skeletal muscle, ROS are produced by: 1) mitochondria; 2) nicotinamide adenine 

dinucleotide phosphate (NADPH) oxidase (NOX); 3) phospholipase A2 (PLA2); 4) xanthine 

oxidase (XO); 5) endoplasmic reticulum (ER). 

In the mitochondria, electrons from NADH and FADH2 are transferred from electron 

donor to electron acceptor molecules in a process coupled with energy production. Electrons 

are transported through four enzymatic complexes (I, II, III, IV) known as electrons transport 

chain. During this process, a small part of the electrons leaks, mainly through complex I, 

reduced dioxygen thus leading to O2
- formation [28]. According to in vitro experiments, it 

has been proposed that 0.12-2% of dioxygen consumed by mitochondria is converted into O2
- 

[28]. However, these values cannot be generalized to the in vivo situation, and depend on 

several factors such as oxidized substrate, mitochondria respiratory states, fiber types and 

electron donor concentration [27, 28]. Whatever the exact proportion of dioxygen converted 

into O2
-, mitochondria is a major source of ROS in skeletal muscle [29]. 

The enzymatic complex NOX catalyzes the NADPH-dependent reduction of dioxygen to 

produce O2
-. In immune cells such as neutrophils and macrophages, NOX2 (also called 

gp91phox) is used as a «superoxide gun» to kill pathogens during phagocytosis [30]. In 

addition to the phagocyte NOX2, six non-phagocytic NOXs have been identified: NOX1, 

NOX3, NOX4, NOX5, DUOX1 and DUOX2 [31]. Skeletal muscle expressed NOX2 and 

NOX4, located in the sarcoplasmic reticulum, the sarcolemma and transverse tubules [29, 32]. 

It has been reported that NOX4 is constitutively active and directly produces hydrogen 

peroxide [33]. Although NOXs contributes to skeletal muscle ROS production both at rest and 

during exercise, their physiological functions remain unidentified in myocytes.  
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PLA2 hydrolyses membrane phospholipid and releases arachidonic acid. This lipid serves 

as a substrate for the lipoxygenases, a reaction coupled with the reduction of dioxygen into 

O2
- [34]. Furthermore, PLA2 could stimulate NOXs and mitochondria O2

- production [27]. 

Gong et al. proposed that PLA2-dependent process generates O2
- in skeletal muscle under 

resting and exercise conditions [35]. 

XO and xanthine dehydrogenase (XDH) are isoenzymes of xanthine oxidoreductase 

(XOR), whose activities have been well identified during ischemia-reperfusion phenomenon. 

During ischemia, energy-starved tissues catabolize ATP to hypoxanthine. Calcium activates 

specific proteases which convert XDH to XO by cleavage. Then, XO catalyzes the oxidation 

of hypoxanthine and xanthine to produce respectively xanthine and acid uric, these reactions 

are coupled with the reduction of dioxygen into O2
-. Interestingly, XO is likely a major 

source of ROS in skeletal muscle during exercise [36]. However, in this tissue, XO seems 

present in capillary endothelium and infiltrated leucocytes rather than in myocytes [37]. 

ER lumen is highly oxidant compared to cytosol [38], this unique environment allows the 

formation of disulfide bonds, a process generating ROS. Inside the ER, electrons from 

oxidized thiol groups are accepted by the protein disulfide isomerase and then transferred to 

the endoplasmic reticulum oxidoreductin-1-like protein (ERO1). Finally, ERO1 transfers 

electrons to oxygen and produces H2O2 [39]. Although this source of ROS is usually not 

mentioned, it has been estimated that ER could be responsible for up to 25% of ROS 

generated during protein synthesis [40].  

 

The primary reactive nitrogen species (RNS) generated, nitric oxide ( NO), give rises to 

others RNS such as nitrogen dioxide ( NO2) and the highly aggressive peroxynitrite (ONOO-

). In the cells, NO is mainly synthetized from L-arginine, a reaction catalyzed by enzymes 

belonging to the nitric oxide synthase (NOS) family. In skeletal muscle, three NOS are 

expressed: 1) neuronal NOS (NOS1 or nNOS); 2) inducible NOS (NOS2 or iNOS); 3) 

endothelial NOS (NOS3 or eNOS). In skeletal muscle, NOS1 and NOS3 are constitutively 

expressed while NOS2 is mainly found under inflammatory condition [41]. NOS1 is typically 

present in the sarcolemma linked to the dystrophin complex, whereas NOS3 seems localized 

in the mitochondria [27, 42]. When expressed, NOS2 is likely localized in the cytosol [43]. It 

is noteworthy that localization of NOSs in skeletal muscle is still under debate. Indeed, NOS1 

has also been found in the sarcoplasm and the Golgi apparatus, whereas identification of the 

mitochondrial NOS remains controversial [41]. 
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In physiological conditions, RONS are signaling molecules, involved in essential 

processes such as insulin action, immune response, apoptosis, autophagy, mitochondria 

biogenesis and differentiation [8, 29, 41]. On the other hand, continuous and high 

concentration of RONS induces oxidative and irreversible damage to proteins, lipids, RNA 

and DNA. In skeletal muscle, oxidation of these biomolecules participates in the development 

of insulin resistance and atrophy [44, 45]. Thus, an efficient antioxidant system is required to 

maintain RONS concentration in a physiological range. 

 

Antioxidant defense in skeletal muscle 

Antioxidant defense gathers enzymatic and non-enzymatic systems, acting in a 

complementary manner within cells, extracellular and vascular space. The enzymatic defenses 

mainly include superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx), 

whereas non-enzymatic defenses include multiple molecules such as reduced glutathione 

(GSH), vitamin E and vitamin C. 

In mammals, three isoforms of SOD have been identified: SOD1, SOD2 and SOD3. 

SOD1 is present in the cytosol and the mitochondrial intermembrane space, SOD2 is found in 

the mitochondrial matrix and SOD3 is localized in the extracellular space [27]. SOD1/SOD3 

and SOD2 use, respectively, copper-zinc and manganese as a co-factor. By catalyzing the 

dismutation of O2
- into H2O2, SOD limits O2

- content. However, the product of this reaction, 

H2O2, can exert a wide range of deleterious effects due to its relative long half-life and high 

diffusion capacity [29]. Thus, H2O2 concentration must be tightly limited in the cells. 

The removal of H2O2 is performed by both catalase and GPx [46]. Catalase requires heme 

iron as a co-factor to convert H2O2 into water and dioxygen [47]. This enzyme is widely 

distributed in the cell but predominates in peroxisomes [27, 48]. GPx catalyzes the reduction 

of H2O2 into water by using an electron donor, GSH, which is converted into its oxidized 

form GSSG. GPx is mainly localized in cytosol and mitochondria [27]. It is noteworthy that, 

compared to the glycolytic fibers, the oxidative fibers contain a higher level of SOD, catalase 

and GPx [49]. 

A wide range of non-enzymatic antioxidants are present in cells (e.g., GSH, vitamin C, 

vitamin E and β-carotene), only GSH will be mentioned herein. Ubiquitous and present in all 

parts of the cells, the tripeptide GSH is a major antioxidant [50]. As aforementioned, GSH 

serves as a substrate in the reaction catalyzed by GPx but it is also a reducing agent which 

exerts a direct antioxidant action. In addition, GSH allows the recycling of vitamin E and C, 

thus maintaining their antioxidant power [49].  
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Skeletal muscle oxidative stress in immobilization and physical inactivity  

Oxidative stress has been extensively studied in skeletal muscle, especially during 

exercise [27], and more recently during immobilization [51]. In contrast, much less attention 

has been paid to alteration of the redox system induced by physical inactivity. It is noteworthy 

that, studies comparing sedentary behavior to lifelong exercise will not be discussed in this 

review. Indeed, those ways of life are studied in the context of aging, a process well-known to 

promote oxidative stress. Thus, aging constitutes a cofounding factor preventing to isolate the 

effects of physical inactivity on oxidative stress. For the same reason, studies dealing with 

aging and immobilization will not be discussed in this review. To the best of our knowledge, 

no studies characterized the effects of physical inactivity on muscle oxidative stress. 

Consequently, we will focus on the effects of immobilization on muscle oxidative stress.  

Data from animals, and more recently from humans, indicate that immobilization 

increases O2
- and H2O2 emissions in skeletal muscle [52-56]. Mitochondria contributes to 

muscle ROS production during immobilization [52, 54-56], but other studies highlight that 

XO plays also an important role [57, 58]. To the best of our knowledge no studies reported 

that NOX, NOS or ER plays a role in the production of ROS induced by immobilization. ROS 

production promotes the activation of non-enzymatic and enzymatic antioxidant systems. On 

one hand, the ratio GSH/GSSG decreases in skeletal muscle during hindlimb unloading [59-

61]. On the other hand, immobilization causes, in skeletal muscle, an increase of SOD1 and 

catalase protein content and activities [53, 57, 59, 61-64], whereas SOD2 protein content and 

activity do not change [61, 63-65].  

Although immobilization increases ROS production and upregulates antioxidant 

defenses, the effects on macromolecular damage are less clear. Carbonylation of proteins is 

frequently measured to determine oxidative damage during immobilization. The few studies 

conducted in human observed that carbonylated protein levels did not change in the vastus 

lateralis after 8 and 14 days of bed rest [66, 67], but became higher after 35 days [66]. In 

rodents, some studies reported an increase of carbonylated proteins in the soleus during the 

first week of hindlimb unloading [57, 68-70], whereas other reports did not observed such 

effect after 3, 7 and 14 days of hindlimb unloading [53, 60, 62]. A more restricted number of 

studies focused on the effects of immobilization on α,β-unsaturated aldehydes (e.g., 4-HNE, 

MDA), markers of lipid peroxidation. 4-HNE content increased in rat soleus after 8 days of 

hindlimb unloading [64, 71], whereas elevations in MDA and TBARS contents were reported 

after 10 and 14 days of hindlimb unloading, respectively [61, 69]. All together, these results 
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suggest that immobilization first induced lipid peroxidation and later protein carbonylation in 

skeletal muscle. In this context, elevation of 4-HNE level could be an early event contributing 

to protein carbonylation via Michael addition cascade [72].  

Presently, oxidative stress is no longer seen as disequilibrium between pro- and 

antioxidant. Indeed, this reductive approach implies that oxidative stress depends on a single 

balance, thus setting aside the diversity and complexity of the redox system. To bypass this 

difficulty, oxidative stress is currently defined from its endpoint: “macromolecular damage, 

and disruption of thiol redox circuits, which leads to aberrant cell signaling and dysfunctional 

redox control” [73]. Based on this definition, data presented in this section lead us to conclude 

that immobilization induces oxidative stress in skeletal muscle. 

 

ROLE OF OXIDATIVE STRESS IN IMMOBILIZATION-INDUCED SKELETAL 

MUSCLE ATROPHY 

Cellular mechanisms involved in immobilization-induced skeletal muscle atrophy 

Myocytes are postmitotic cells like neurons or cardiomyocytes, whose size are de facto 

regulated by the balance between protein synthesis and degradation. Despite the debate 

concerning the dominant mechanism of immobilization-induced muscle atrophy [74], the 

scientific community agrees that protein turnover is altered in this pathological process.  

Immobilization causes a rapid decrease of protein synthesis in rodent and human skeletal 

muscle. Indeed, numerous studies demonstrated that a reduction in muscle protein fractional 

synthesis rate (FSR) occurs in the first days of immobilization [53, 75, 76]. This rapid 

reduction of protein synthesis persists for several weeks since a decrease of muscle FSR has 

been also reported in human skeletal muscle after 14 and 28 days of bed rest [77, 78]. Protein 

synthesis is mainly modulated at the translation level through the PI3K (phosphatidyl inositol 

3-kinase)/Akt/mTORC1 (mammalian target of rapamycin) pathway [79]. Specifically, 

mTORC1 enhances the formation of the 40S ribosomal subunit through the phosphorylation 

of the 4E binding protein 1 (4E-BP1) and the ribosomal protein S6 kinase (S6K). 

Phosphorylation of 4E-BP1 and S6K induce their activation and dissociation from eukaryotic 

initiation factor 4E (eIF4E) and eIF3, respectively, allowing the formation of the 40S 

ribosomal subunit. Interestingly, skeletal muscle exhibits alteration in PI3K/Akt/mTORC1 

axis during immobilization [75, 76, 80-82]. This phenomenon, called anabolic resistance, 

emphasizes the reduced response to anabolic stimuli [80, 82].  

Under apoptosis, the loss of myonuclei is another mechanism proposed to explain the 

reduced ability of myocytes to synthetize proteins during immobilization [83]. In myocytes, a 
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decrease number of nuclei reduces the transcriptional activity in the surrounding domain of 

cytoplasm of each nucleus (i.e., myonuclear domain), and therefore reduces the overall 

protein synthesis capacity [84]. In myonuclei, DNA fragmentation has been reported in rodent 

during the first days of hindlimb unloading using histological TUNEL staining [85-88]. This 

suggests that apoptosis would be a biological process promoting atrophy through a loss of 

myonuclei during immobilization. Such idea is supported by studies demonstrating that 

caspase-3 activity [59, 89] and the apoptotic mitochondrial intrinsic pathways (i.e., 

endonuclease G and apoptosome) [86, 90] are stimulated in unloaded skeletal muscle. 

However, these results have been challenged [91]. Using an in vivo time-lapse microscopy to 

quantify myonuclei in single muscle fibers, Gundersen and Bruusgaard showed that 14 days 

of hindlimb unloading were not accompanied by a loss of nuclei [91]. Their convincing 

experiment highlighted that, the histological TUNEL staining may lead to confound 

myonuclear and nuclei from stromal/satellite cells [91]. Additional experiments are needed to 

determine whether immobilization does result in a loss of myonuclei.  

Proteolysis plays a major role in immobilization-induced skeletal muscle atrophy. 

Calpains, caspase-3, ubiquitin-proteasome and autophagy-lysosome systems act 

synergistically to stimulate protein breakdown in unloaded skeletal muscle. Although a loss of 

sarcoplasmic proteins occurs, myofibrillar proteins are the main target of proteolysis during 

immobilization [92]. The calpains and caspase-3 are key proteases that initiate muscle 

proteolysis by degrading sarcomeres. Indeed, calpains breakdown structural proteins like titin, 

nebulin or α-fodrin [93], whereas caspase-3 targets intact actomyosin [94]. The breakdown of 

sarcomeric proteins releases actin and myosin, which in turn are degraded by the ubiquitin 

proteasome system (UPS). In skeletal muscle, recent studies demonstrated that both calpains 

and caspase-3 were activated by hindlimb unloading [59, 95, 96]. Interestingly, 

pharmacological inhibition of calpains or caspase-3 prevents type I fibers atrophy observed in 

casted rats, demonstrating that these proteases are mandatory for skeletal muscle atrophy [89]. 

These results also suggest that activation of caspase-3 signaling pathway contributes to 

skeletal muscle atrophy independently from a loss of myonuclei. 

Once calpains/caspase-3 system initiates the sarcomeres disassembly, the myofibrillar 

proteins are ubiquinated and degraded by the 26S proteasome complex. The ubiquitin-

activating enzyme (E1) activates ubiquitin, which is then transferred to the ubiquitin 

conjugating protein (E2). The E2 enzyme interacts with an ubiquitin ligase (E3) which 

catalyzes the transfer of ubiquitin to the target protein, marking it for proteasomal 

degradation. The muscle RING finger 1 (MurF1) and muscle atrophy F-box (MAFbx) are the 
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main ubiquitin ligases responsible for protein degradation in skeletal muscle. It is well 

established that immobilization causes an accumulation of polyubiquitinated proteins in 

rodent and human skeletal muscle [96-98] due to increase in both MuRF-1 and MAFbx 

expression [53, 57, 62, 99]. The nuclear factor-κB (NF-κB) directly regulates the transcription 

of MuRF1, and consequently plays an important role in immobilization-induced protein 

degradation [100, 101]. On the one hand, activation of the NF-κB p65-p50 heterodimer is 

regulated through its release from IκBα, thus leading to its nuclear translocation (canonical 

pathway). On the other hand, BCL-3 binding to the NF-κB p50-p50 homodimer is an 

alternative pathway promoting NF-κB activation [102]. Interestingly, the alternative NF-κB 

signaling is required for immobilization-induced skeletal muscle atrophy [102-104], this may 

be not the case for the canonical NF-κB signaling [102]. The Forkhead box subfamily O 

(FOXO) transcription factors regulate the transcription of MAFbx [105, 106], but their role in 

MuRF-1 expression is still under debate [101, 107, 108]. Interestingly, hindlimb unloading 

stimulates FOXO1A and FOXO3A activities in rodent skeletal muscle [81, 101, 109], 

whereas results from unilateral lower limb suspension experiments are less consistent in 

human [110, 111]. The radical model used in rodent, i.e., hindlimb suspension, could explain 

the discrepancy with human experiment. 

In skeletal muscle atrophy, the autophagy-lysosome system operates in a complementary 

manner with UPS. Autophagy is a process characterized by the formation of a double-

membrane vesicle (autophagosome) engulfing cytoplasmic components. Subsequently, 

autophagosome fuses with lysosomes for digestion [112]. This process is regulated by more 

than 30 autophagy-related (Atg) genes. The autophagosome formation is initiated by the small 

ubiquitin-like molecules [microtubule-associated proteins 1A/1B light chain 3A (LC3), 

GABARAP, GATE16 and Atg12]. The latter are activated by E1 enzyme (Atg7) and 

transferred to E2 enzymes (Atg 3 or Atg10). Then, small ubiquitin-like molecules are 

transferred via Atg12-Atg5-Atg16 complex to membranes, which then grow leading to 

autophagosome formation [112]. Autophagy constitutes a quality control mechanism, 

ensuring cell homeostasis and functions. However, its hyperactivation leads to cellular 

dysfunctions and exacerbates muscle loss in atrophying conditions [113]. In skeletal muscle, 

myofibrillar proteins targeted by ubiquitin can have a double fate: 1) recognized and removed 

by the proteasome 26S or 2) docked to the autophagosome. In the latter case, polyubiquitin 

chains interact with the ubiquitin binding protein p62 which possesses an interaction domain 

with LC3. This mechanism brings then ubiquitinated proteins to the growing autophagosome. 

Interestingly, Cannavino and colleagues reported an elevation of p62 mRNA in the soleus of 
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mice after one week of hindlimb unloading [53, 62]. Moreover, hindlimb unloading and 

casting caused, in skeletal muscle, an increase of LC3 ratio (LC3II/I) [54, 60], a marker of 

autophagy activation. Data in human are scarce and less consistent [114]. All together, the 

results suggest that autophagy plays a role in skeletal muscle loss during immobilization.  

Evidence for a role of RONS in immobilization-induced skeletal muscle atrophy  

In vitro and in vivo evidence strongly support the involvement of RONS in skeletal 

muscle atrophy [115-119]. In the last decade, studies demonstrated that oxidant molecules 

(H2O2 and doxorubicin) stimulate ubiquitin conjugation, upregulated E2 enzyme, MAFbx and 

MuRF-1 gene expression in C2C12 myotubes [118, 120]. Specifically, RONS-dependent p38 

phosphorylation mediates MAFbx expression [115, 119], whereas molecular mechanisms by 

which RONS regulate MuRF-1 expression remain unknown. RONS have been also identified 

as mediators for activation of the calpain system. Using small interfering RNA in C2C12 

myotubes, Talbert and colleagues have demonstrated that, among the different proteases, 

calpain-1 was required for H2O2-induced C2C12 myotubes atrophy [117]. As previously 

described, myonuclear apoptosis is thought to play a role in skeletal muscle atrophy. In 

C2C12 myotubes, H2O2 induces DNA fragmentation mediated by Bax upregulation, 

mitochondrial cytochrome c and apoptosis-inducing factor releases [116], a result supporting 

that RONS overproduction stimulates apoptosis during immobilization.  

In vivo, recent studies support that UPS and autophagy are regulated in a redox-

dependent manner. In skeletal muscle of rats, catalase overexpression prevented 

immobilization-induced skeletal muscle atrophy [121]. Interestingly, this effect was 

associated with a reduction of FOXO and NF-κB activation. These results have been 

confirmed by using antioxidant agents such as EUK-134 (SOD and catalase mimetic) [71] and 

SS-31 (mitochondria-targeted antioxidant) [54, 121]. The inhibition of mitochondrial ROS 

production prevented soleus atrophy and UPS/autophagy activation induced by casting [54], 

whereas EUK-134 limited skeletal muscle atrophy and FOXO3a activation induced by 

hindlimb unloading [71]. Taken together, these data support that RONS activate UPS and 

autophagy in immobilization-induced skeletal muscle atrophy. As previously pointed out, 

xanthine oxidase is an important source of ROS in skeletal muscle during immobilization [57, 

65]. Using allopurinol, an inhibitor of xanthine oxidase, our laboratory demonstrated that this 

strategy partially prevented hindlimb unloading-induced skeletal muscle loss in rats through a 

mechanism involving the p38-MAFbx axis [57]. However, these results contrast with a 

previous study conducted in mice [122], emphasizing the need for further researches. 
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The use of non-pharmacological antioxidants has also been tested to prevent skeletal 

muscle atrophy. Vitamin E and analogs appeared as compounds which prevent muscle 

atrophy induced by immobilization [58, 61, 123]. Specifically, vitamin E would counteract 

muscle atrophy by reducing expression of proteases (caspase-3 and calpains), MuRF-1 and 

MAFbx [61]. Other dietary antioxidant compounds have been recently proposed to prevent 

hindlimb unloading-induced skeletal muscle atrophy. In rats, resveratrol supplementation 

partially prevents skeletal muscle atrophy induced by 14 days of hindlimb unloading [124]. 

The effects of curcumin supplementation on muscle atrophy have been also assessed in both 

mice and rats. Vitadello and colleagues observed, in rats, that daily curcumin injections 

prevented muscle atrophy induced by 10 days of hindlimb unloading [69], whereas others did 

not report any preventive effects in suspended mice fed with a curcumin supplemented diet 

[125]. These contradictory results underscore that dose and mode of administration may 

modulate the effectiveness of antioxidant agents. 

All together, these results highlight that antioxidant supplementation could be a 

promising strategy to prevent skeletal muscle atrophy during immobilization. However, 

additional studies are needed to test whether antioxidant supplementations prevent muscle 

atrophy in bedridden or casted patients. The Figure 2 illustrates the mechanism of RONS-

induced skeletal muscle atrophy in immobilization. 

 

ROLE OF OXIDATIVE STRESS IN PHYSICAL INACTIVITY-INDUCED 

SKELETAL MUSCLE INSULIN RESISTANCE 

Regulation of insulin-dependent glucose uptake in skeletal muscle 

Insulin resistance is defined as an inadequate response to insulin in target tissues. In 

skeletal muscle, insulin resistance results in a reduced ability of insulin to stimulate glucose 

uptake. Given that skeletal muscle accounts for ~80% of insulin-mediated glucose uptake 

[126], alteration of insulin action in myocytes plays a key role in hyperglycemia, the hallmark 

of type 2 diabetes.  

In skeletal muscle, regulation of glucose uptake by insulin is mediated by several 

effectors and culminates with the translocation of glucose transporter 4 (GLUT4) to the 

membrane, thus allowing the entry of glucose into myocytes (Figure 3). Insulin is the master 

regulator of glycemia in post-prandial state. After a meal, increase of glycemia stimulates 

insulin secretion by the pancreatic β-cells. Insulin binds to its transmembrane receptor, the 

insulin receptor (IR). IR is a heterotetramer composed by two extracellular α subunits and two 

transmembrane β subunits linked to each other by disulfide bridges [127]. Insulin interaction 
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with the α subunits activates the tyrosine kinase domain of the β subunits, resulting in 

autophosphorylation of several tyrosine residues located in the juxtamembrane region and 

intracellular C-tail [128]. Tyr960 of IR is a key residue for the regulation of insulin-stimulated 

glucose transport [128]. This docking site recruits proteins which contain a phosphotyrosine 

binding (PTB) domain. Among these proteins, the insulin receptor substrates 1 and 2 (IRS-1 

and IRS-2) mediate most of the insulin effects. IRS-1/2 contains a PTB domain next to a 

pleckstrin homology (PH) domain [129]. Due to its high affinity for phospholipids, the PH 

domain of IRS-1/2 stabilizes the protein at the membrane and facilitates the phosphorylation 

of its PTB domain by IR. Phosphorylated IRS-1/2 on tyrosine residue recruits the regulating 

subunit (p85) of PI3K through its Src homology 2 domain. This interaction leads to the 

activation of PI3K catalytic subunit (p110), which catalyzes the formation of the membrane 

phospholipid phosphatidylinositol 3,4,5-trisphosphate (PIP3) from phosphatidylinositol 4,5-

diphosphate (PIP2) [127]. PIP3 recruits Akt and phosphoinositide-dependent kinase-1 (PDK1) 

to the membrane through their PH domains. The serine/threonine kinase Akt contains a PH 

domain in its N-terminal end, a kinase domain and a C-terminal hydrophobic domain. In 

mammalian, three isoforms of Akt have been identified: Akt1, Akt2 and Akt3. Akt1 is widely 

expressed, whereas Akt3 is principally found in brain and testes. Akt2 expression is 

predominant in adipocytes and myocytes, where it is responsible for glucose uptake [130]. In 

the cytosol, Akt is maintained in an inactive state through an association between its kinase 

and PH domains. When recruited to the membrane by PIP3, Akt is phosphorylated by PDK1 

and mammalian target of rapamycin complex 2 on Thr308 (kinase domain) and Ser473 (C-

terminal domain), respectively. Akt activity increases by 100-fold when phosphorylated on 

Thr308, but full activation requires Ser473 phosphorylation [130]. Activated Akt returns to the 

cytosol and phosphorylates the TBC1 family member 1 (TBC1D1) and 4 (TBC1D4, formerly 

known as Akt substrate 160, AS160). TBC1D1/TBC1D4 proteins exhibit GTPase activity 

toward several G proteins, namely Rab, which are associated with GLUT4 storage vesicles 

(GSVs). This GTPase activity is inhibited by Akt phosphorylation, leading to an increase of 

the active forms of Rab, i.e., Rab GTP-bound form [131]. Activated Rab promotes all the 

steps of GLUT4 exocytosis: approach, tethering, docking and fusion [132].  

Upon insulin stimulation, the cytoskeleton provides tracks for the displacement of GSVs 

and insulin effectors such as IRS-1/2, PI3K and Akt. Recently, cytoskeletal reorganization 

appeared as an essential step of insulin-mediated glucose uptake, a process involving the G 

protein Rac1 in myocytes [133].  
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Physical inactivity causes skeletal muscle insulin resistance 

Insulin resistance is generally diagnosed in fasting state via the homeostasis model 

assessment-estimated insulin resistance (HOMA-IR) [134], or with the Matsuda index in the 

dynamic state [135]. Using these clinical tools, numerous epidemiological and experimental 

studies have clearly demonstrated, in human, that physical inactivity promotes insulin 

resistance [136-140]. Based on the physical inactivity threshold determined by the WHO, the 

epidemiological RISC and ATTICA studies highlighted that physically inactive people 

exhibited higher HOMA-IR values, and this was independent from the body mass index [136, 

137]. Human experimental studies confirmed these data by demonstrating that a reduction of 

daily steps from more than 10,000 to less than 1,500 steps/day increased the HOMA-IR and 

Matsuda index after only 5 days [139, 140]. Specifically, reduction in daily steps during 14 

days has been associated with peripheral insulin resistance and inhibition of insulin-stimulated 

Akt phosphorylation in skeletal muscle [141]. In rodents, similar results have been reported 

by using the locked-wheel model. Indeed, a reduction in insulin-stimulated glucose uptake 

was observed in skeletal muscle 53h after cessation of physical activity [142]. Interestingly, 

alteration in muscle glucose uptake was associated with a reduction of GLUT4 protein 

content, IR-tyrosine and Akt phosphorylations [142]. Unfortunately, studies exploring the 

cellular mechanisms responsible for physical inactivity-induced muscle insulin resistance are 

scarce [143].  

 

Evidence for a role of RONS in skeletal muscle insulin resistance  

At a cellular level, insulin resistance is a transduction defect of the insulin signaling. The 

physiopathology of insulin resistance remains difficult to apprehend since it results from a 

complex integration of diverse cellular disorders: inflammation [144], intra/extracellular 

lipids accumulation [145, 146], mitochondrial dysfunction [147] and oxidative stress [8]. 

However, a large body of evidence highlights that disruption of redox homeostasis could be a 

common factor by which these cellular disorders inhibit insulin signaling [148, 149]. In L6 

myotubes, SOD mimetic or SOD overexpression reduced insulin resistance induced by the 

tumor necrosis factor α (TNFα), chronic insulin or dexamethasone [150]. In addition, 

palmitate-induced insulin resistance in L6 myotubes was prevented by two chemical agents 

which reduce mitochondrial superoxide production [150]. In leptin-deficient ob/ob mice, SOD 

mimetic improved whole-body insulin sensitivity [151]. As described herein, considerable 

evidence shows that oxidative stress is a central player in the development of insulin 

resistance. In the literature, several mechanisms have been proposed, they include: 1) IRS-1/2 
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serine phosphorylation; 2) reduction of GLUT4 protein expression; 3) alteration of the 

molecular traffic required for insulin action; 4) insulin effectors oxidation. 

The mechanism by which oxidative stress induces insulin resistance is mainly based on 

IRS-1/2 serine phosphorylation caused by the redox-sensitive kinases p38, c-Jun amino-

terminal kinase (JNK), IκB kinase β (IKKβ) and extracellular signal-regulated kinases 

(ERK1/2) [152]. IRS-1/2 serine phosphorylation enhances its degradation and reduces its 

tyrosine phosphorylation, inhibiting de facto the insulin signaling [8]. In addition, oxidative 

stress activates NF-κB which in turn upregulates TNFα, an inflammatory cytokine inhibiting 

insulin signaling through IKKβ activation [153]. However, caution must be taken when 

generalizing these mechanisms to skeletal muscle. Muscle-specific JNK or IKKβ deficient 

mice were not protected against obesity-induced insulin resistance [154, 155]. In addition, 

overactivation of NF-κB and IKKβ in skeletal muscle does not lead to insulin resistance 

[156]. Finally, the role of IRS-1/2 serine phosphorylation in the development of insulin 

resistance has been challenged [157, 158]. In skeletal muscle, more studies are needed to 

determine the implication of p38, JNK, IKKβ, ERK and NF-κB in oxidative stress-induced 

insulin resistance. 

The downregulation of GLUT4 protein expression is a proposed mechanism by which 

oxidative stress disrupts insulin sensitivity [44]. Although that seems relevant in adipose 

tissue [8, 159, 160], this is not the case in skeletal muscle. Indeed, GLUT4 protein expression 

is, in most of the cases, unaltered in skeletal muscle of type 2 diabetic patients despite 

evidence for oxidative stress [161, 162]. In addition, exercise (single bout or training) is well 

known to stimulate both GLUT4 expression and RONS production in skeletal muscle [163]. 

Consequently, oxidative stress seems unlikely associated with GLUT4 downregulation in 

skeletal muscle. 

As described above, activation of some insulin effectors requires their displacement from 

one subcellular compartment to another. Some studies reported that such protein movements 

are redox-sensitive. In skeletal muscle of rats, insulin-stimulated subcellular redistribution of 

tyrosine-phosphorylated IRS-1 and p85 were altered by oxidative stress induced by an 

inhibitor of glutathione synthesis [164]. Similar results were obtained in adipose tissue and 

3T3-L1 adipocytes [164, 165]. Additional evidences revealed that, in L6 myotubes, oxidative 

stress prevents insulin-induced actin reorganization [166]. Consequently, the molecular traffic 

required for insulin action could be regulated in a redox-dependent manner. 

In the context of insulin resistance, studies showed that several insulin effectors are 

nitrosylated, a mechanism thought to inhibit insulin signaling. Indeed, insulin-stimulated Akt 
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phosphorylation and activity were reduced in the skeletal muscle of diabetic db/db mice, this 

was associated with a drastic increase of Akt S-nitrosylation [167]. In the skeletal muscle of 

high-fat-fed rats and ob/ob mice, Carvalho-Filho et al. found a reduction of insulin-stimulated 

IR, IRS-1 and Akt phosphorylations, which was associated with an increase of their S-

nitrosylations [168]. In ob/ob mice, these effects were prevented by the downregulation of 

iNOS [168], suggesting a role of this enzyme in oxidative stress-induced insulin resistance. 

Additional evidence indicated that IRS-1 S-nitrosylation promotes its degradation in skeletal 

muscle [168]. Moreover, S-nitrosylation of Akt reduced its activity in C2C12 myotubes [167]. 

Consequently, S-nitrosylation of insulin effectors appears as a mechanism able to regulate 

insulin signaling in muscle fibers. In adipocytes, other studies pointed out a potential role of 

lipid peroxidation, protein nitration and carbonylation in the development of insulin resistance 

[169-171]. The Figure 4 illustrates the proposed mechanisms of RONS-induced insulin 

resistance in skeletal muscle.  

As described in this section, physical inactivity and oxidative stress contribute to insulin 

resistance. However, it is currently unknown whether oxidative stress mediates physical 

inactivity- induced insulin resistance.  

 

Oxidant molecules: Doctor Jekyll and Mister Hyde 

Although attractive, the hypothesis developed in this section has been challenged. Indeed, 

antioxidant supplementation such as vitamin C and E provided disappointing results in type 2 

diabetic patients [172]. As a consequence, this therapeutic strategy is not recommended to 

improve insulin action [172]. These puzzling results could be related to the complex relation 

between oxidative stress and insulin signaling. Depending on dose and exposure time, oxidant 

molecules are able to either inhibit or promote insulin action. As described above, RONS 

disrupt insulin signaling. However, RONS are also second messengers facilitating the 

transduction of insulin signaling [8]. These two faces of oxidant molecules may partly explain 

the failure of therapies seeking to alleviate oxidative stress in type 2 diabetes. Moreover, in 

human, antioxidant supplementation prevented the beneficial effect of exercise on insulin 

sensitivity [173], thus suggesting that therapies combining exercise and antioxidant are 

counterproductive. Taken together, these results indicate that the current antioxidants are not 

useful to fight against insulin resistance. However, other antioxidant strategies may prevent 

insulin resistance. Indeed, redox homeostasis appears as a complex system involving multiple 

RONS and antioxidant defenses operating in different compartments within tissues and cells. 

Moreover, RONS regulate essential processes to cell functions. Thus, several questions 
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deserve to be asked when using antioxidant: Which RONS is targeted ? Which source is 

targeted ? In what proportion RONS concentration should be reduced ?  

 

CONCLUDING REMARKS 

In this review, we examined the role of oxidative stress on physical inactivity and 

immobilization-induced, respectively, skeletal muscle insulin resistance and atrophy. First, in 

the literature a major confusion exists between the terms physical inactivity and 

immobilization. Physical inactivity is frequently associated with experiments where subjects 

are immobilized. Thus, caution must be taken when interpreting results from these studies. 

For the sake of clarity, we chose to make a clear distinction between physical inactivity and 

immobilization. We pointed out that skeletal muscle atrophy due to immobilization is a 

RONS-dependent process. In this condition, antioxidants provided promising results in 

animals, they need to be tested in human. On the other hand, the involvement of oxidative 

stress in physical inactivity-induced insulin resistance has not been investigated. This lack of 

data is, we believe, related to the confusion between physical inactivity and immobilization. 
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Figure 1. Human and rodent models used to study immobilization and physical 

inactivity. WHO: World Health Organization. 

Figure 2. Mechanism of RONS-induced skeletal muscle atrophy in immobilization UPS: 

ubiquitin proteasome system; RONS: reactive oxygen and nitrogen species. 

Figure 3. Regulation of glucose uptake by insulin. See details in the text. IR: insulin 

receptor; IRS: insulin receptor substrate; GLUT4: glucose transporter 4; mTORC2: 

mammalian target of rapamycin complex 2; PDK1: phosphoinositide-dependent kinase-1; 

PIP2: phosphatidylinositol 4,5-diphosphate; PIP3: phosphatidylinositol 3,4,5-trisphosphate; 

PI3K: phosphatidyl inositol 3-kinase. 

Figure 4. Proposed mechanisms of RONS-induced insulin resistance in skeletal muscle. 

The effect of physical inactivity on skeletal muscle oxidative stress is currently unknown. 

RONS: reactive oxygen and nitrogen species.  

 

 

HIGHLIGHTS 

 The terms physical inactivity and immobilization are a source of confusion in the 

literature 

 Immobilization alters redox homeostasis in skeletal muscle 

 RONS play a key role in immobilization-induced skeletal muscle atrophy 

 Lack of data regarding the effect of physical inactivity on skeletal muscle 

oxidative stress 

 The role of RONS in physical inactivity-induced insulin resistance needs to be 

investigated 
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