A. Bergouignan, F. Rudwill, C. Simon, S. Blanc, and M. E. Widlansky, Physical inactivity as the culprit of metabolic inflexibility: evidence from bed-rest studies, Journal of Applied Physiology, vol.111, issue.4, pp.1201-1210, 1985.
DOI : 10.1152/japplphysiol.00698.2011

E. Schulz, Physical inactivity rapidly induces insulin resistance and microvascular dysfunction in healthy volunteers The hindlimb unloading rat model: literature overview, technique update and comparison with space flight data The diseasome of physical inactivity--and the role of myokines in muscle--fat cross talk, Arterioscler Thromb Vasc Biol Adv Space Biol Med J Physiol, vol.275, issue.587, pp.2650-26567, 2005.

M. J. Laye, J. P. Thyfault, C. S. Stump, F. W. Booth, J. Xu et al., Inactivity induces increases in abdominal fat Long-term perturbation of muscle iron homeostasis following hindlimb suspension in old rats is associated with high levels of oxidative stress and impaired recovery from atrophy, J Appl Physiol Exp Gerontol, vol.1027, issue.47, pp.1341-1347100, 1985.

J. Y. Hokama, R. S. Streeper, E. J. Henriksen, N. Bashan, J. Kovsan et al., Voluntary exercise training enhances glucose transport in muscle stimulated by insulin-like growth factor I Positive and negative regulation of insulin signaling by reactive oxygen and nitrogen species, Mechanistic links between oxidative stress and disuse muscle atrophy, pp.508-51227, 1985.

M. S. Tremblay, A. G. Leblanc, M. E. Kho, T. J. Saunders, R. Larouche et al., Systematic review of sedentary behaviour and health indicators in school-aged children and youth, International Journal of Behavioral Nutrition and Physical Activity, vol.8, issue.1, p.98, 2011.
DOI : 10.1186/1479-5868-8-98

P. C. Hallal, L. B. Andersen, F. C. Bull, R. Guthold, W. Haskell et al., Global physical activity levels: surveillance progress, pitfalls, and prospects, The Lancet, vol.380, issue.9838, pp.247-257, 2012.
DOI : 10.1016/S0140-6736(12)60646-1

M. P. Mattson, Evolutionary aspects of human exercise???Born to run purposefully, Ageing Research Reviews, vol.11, issue.3
DOI : 10.1016/j.arr.2012.01.007

J. N. Morris and J. A. Heady, Mortality in Relation to the Physical Activity of Work: A Preliminary Note on Experience in Middle Age, Occupational and Environmental Medicine, vol.10, issue.4, pp.245-254, 1953.
DOI : 10.1136/oem.10.4.245

I. M. Lee, E. J. Shiroma, F. Lobelo, P. Puska, S. N. Blair et al., Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy, The Lancet, vol.380, issue.9838, pp.219-229, 2012.
DOI : 10.1016/S0140-6736(12)61031-9

B. C. Strunk, P. B. Ginsburg, and M. I. Banker, The Effect Of Population Aging On Future Hospital Demand, Health Affairs, vol.25, issue.3, pp.141-149, 2006.
DOI : 10.1377/hlthaff.25.w141

R. M. Kleinpell, K. Fletcher, and B. M. Jennings, Reducing Functional Decline in Hospitalized Elderly ed. Patient Safety and Quality: An Evidence-Based Handbook for Nurses, Rockville (MD), 2008.

O. R. Seynnes, C. N. Maganaris, M. D. De-boer, P. E. Di-prampero, and M. V. Narici, Early structural adaptations to unloading in the human calf muscles, Acta Physiologica, vol.78, issue.3, pp.265-274, 2008.
DOI : 10.1111/j.1748-1716.2008.01842.x

M. R. Deschenes, A. N. Holdren, and R. W. Mccoy, Adaptations to Short-Term Muscle Unloading in Young and Aged Men, Medicine & Science in Sports & Exercise, vol.40, issue.5, pp.856-863, 2008.
DOI : 10.1249/MSS.0b013e318164f4b6

E. Borina, M. A. Pellegrino, G. Antona, and R. Bottinelli, Myosin and actin content of human skeletal muscle fibers following 35 days bed rest, Scandinavian Journal of Medicine & Science in Sports, vol.20, issue.1, pp.65-73, 2010.
DOI : 10.1111/j.1600-0838.2009.01029.x

D. Kresevic, Loss of independence in activities of daily living in older adults hospitalized with medical illnesses: increased vulnerability with age, J Am Geriatr Soc, vol.51, pp.451-458, 2003.

O. Mercante, C. Gagliardi, L. Spazzafumo, A. Gaspari, S. David et al., Loss of autonomy of hospitalized elderly patients: does hospitalization increase disability?, Eur J Phys Rehabil Med, vol.50, pp.703-708, 2014.

S. Lyman, P. Koulouvaris, S. Sherman, H. Do, L. A. Mandl et al., Epidemiology of Anterior Cruciate Ligament Reconstruction, The Journal of Bone and Joint Surgery-American Volume, vol.91, issue.10, pp.2321-2328, 2009.
DOI : 10.2106/JBJS.H.00539

S. K. Powers and M. J. Jackson, Exercise-Induced Oxidative Stress: Cellular Mechanisms and Impact on Muscle Force Production, Physiological Reviews, vol.88, issue.4, pp.1243-1276, 2008.
DOI : 10.1152/physrev.00031.2007

M. P. Murphy, How mitochondria produce reactive oxygen species, Biochemical Journal, vol.417, issue.1, pp.1-13, 2009.
DOI : 10.1042/BJ20081386

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2605959

E. Barbieri and P. Sestili, Reactive Oxygen Species in Skeletal Muscle Signaling, Journal of Signal Transduction, vol.265, issue.5, pp.982794-2012, 2012.
DOI : 10.1073/pnas.0903485106

G. Csordas, G. Hajnoczky, and . Sr, SR/ER???mitochondrial local communication: Calcium and ROS, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1787, issue.11, pp.1352-1362, 2009.
DOI : 10.1016/j.bbabio.2009.06.004

P. Kleniewska, A. Piechota, B. Skibska, and A. Goraca, The NADPH Oxidase Family and its Inhibitors, Archivum Immunologiae et Therapiae Experimentalis, vol.281, issue.3, pp.277-294, 2012.
DOI : 10.1007/s00005-012-0176-z

G. Cheng, Z. Cao, X. Xu, E. G. Van-meir, and J. D. Lambeth, Homologs of gp91phox: cloning and tissue expression of Nox3, Nox4, and Nox5, Gene, vol.269, issue.1-2, pp.131-140, 2001.
DOI : 10.1016/S0378-1119(01)00449-8

Y. Nisimoto, H. M. Jackson, H. Ogawa, T. Kawahara, and J. D. Lambeth, Constitutive NADPH-Dependent Electron Transferase Activity of the Nox4 Dehydrogenase Domain, Constitutive NADPH-dependent electron transferase activity of the Nox4 dehydrogenase domain, pp.2433-2442, 2010.
DOI : 10.1021/bi9022285

L. Zuo, F. L. Christofi, V. P. Wright, S. Bao, and T. L. Clanton, Lipoxygenase-dependent superoxide release in skeletal muscle, Journal of Applied Physiology, vol.97, issue.2, pp.661-668, 1985.
DOI : 10.1152/japplphysiol.00096.2004

M. C. Gong, S. Arbogast, Z. Guo, J. Mathenia, W. Su et al., Calcium-independent phospholipase A2 modulates cytosolic oxidant activity and contractile function in murine skeletal muscle cells, Journal of Applied Physiology, vol.100, issue.2, pp.399-405, 1985.
DOI : 10.1152/japplphysiol.00873.2005

M. C. Gomez-cabrera, C. Borras, F. V. Pallardo, J. Sastre, L. L. Ji et al., Decreasing xanthine oxidase-mediated oxidative stress prevents useful cellular adaptations to exercise in rats, The Journal of Physiology, vol.546, issue.1, pp.113-120, 2005.
DOI : 10.1113/jphysiol.2004.080564

Y. Hellsten, U. Frandsen, N. Orthenblad, B. Sjodin, and E. A. Richter, Xanthine oxidase in human skeletal muscle following eccentric exercise: a role in inflammation., The Journal of Physiology, vol.498, issue.1, pp.239-248, 1997.
DOI : 10.1113/jphysiol.1997.sp021855

C. Hwang, A. J. Sinskey, and H. Lodish, Oxidized redox state of glutathione in the endoplasmic reticulum, Science, vol.257, issue.5076, pp.1496-1502, 1992.
DOI : 10.1126/science.1523409

K. Zhang and R. J. Kaufman, From endoplasmic-reticulum stress to the inflammatory response, Nature, vol.307, issue.7203, pp.455-462, 2008.
DOI : 10.1038/nature07203

B. P. Tu and J. S. Weissman, Oxidative protein folding in eukaryotes: Figure 1., The Journal of Cell Biology, vol.2, issue.3, pp.341-346, 2004.
DOI : 10.1126/science.290.5496.1571

C. H. Tengan, G. S. Rodrigues, and R. Godinho, Nitric Oxide in Skeletal Muscle: Role on Mitochondrial Biogenesis and Function, International Journal of Molecular Sciences, vol.13, issue.12, pp.17160-17184, 2012.
DOI : 10.3390/ijms131217160

J. S. Stamler and G. Meissner, Physiology of nitric oxide in skeletal muscle, Physiol Rev, vol.81, pp.209-237, 2001.

M. B. Reid, Role of nitric oxide in skeletal muscle: synthesis, distribution and functional importance, Acta Physiologica Scandinavica, vol.267, issue.3, pp.401-409, 1998.
DOI : 10.1016/0014-5793(96)00829-0

J. L. Rains and S. K. Jain, Oxidative stress, insulin signaling, and diabetes, Free Radical Biology and Medicine, vol.50, issue.5, pp.567-575, 2011.
DOI : 10.1016/j.freeradbiomed.2010.12.006

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3557825

S. K. Powers, A. J. Smuder, and A. R. Judge, Oxidative stress and disuse muscle atrophy, Current Opinion in Clinical Nutrition and Metabolic Care, vol.15, issue.3, pp.240-245, 2012.
DOI : 10.1097/MCO.0b013e328352b4c2

J. R. Stone and S. Yang, Hydrogen Peroxide: A Signaling Messenger, Antioxidants & Redox Signaling, vol.8, issue.3-4, pp.243-270, 2006.
DOI : 10.1089/ars.2006.8.243

H. N. Kirkman and G. Gaetani, Mammalian catalase: a venerable enzyme with new mysteries, Trends in Biochemical Sciences, vol.32, issue.1, pp.44-50, 2007.
DOI : 10.1016/j.tibs.2006.11.003

M. Schrader and H. Fahimi, Peroxisomes and oxidative stress, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1763, issue.12, pp.1755-1766, 2006.
DOI : 10.1016/j.bbamcr.2006.09.006

S. K. Powers, L. L. Ji, A. N. Kavazis, and M. J. Jackson, Reactive Oxygen Species: Impact on Skeletal Muscle, Compr Physiol, vol.279, issue.Suppl 10, pp.941-969, 2011.
DOI : 10.1002/cphy.c100054

S. Chakravarthi, C. E. Jessop, and N. J. Bulleid, The role of glutathione in disulphide bond formation and endoplasmic-reticulum-generated oxidative stress, EMBO reports, vol.15, issue.3, pp.271-275, 2006.
DOI : 10.1074/jbc.R400008200

M. A. Pellegrino, J. F. Desaphy, L. Brocca, S. Pierno, D. C. Camerino et al., Redox homeostasis, oxidative stress and disuse muscle atrophy, The Journal of Physiology, vol.95, issue.1, pp.2147-2160, 2011.
DOI : 10.1113/jphysiol.2010.203232

X. Xu, C. N. Chen, E. A. Arriaga, and L. Thompson, Asymmetric superoxide release inside and outside the mitochondria in skeletal muscle under conditions of aging and disuse, Journal of Applied Physiology, vol.109, issue.4, pp.1133-1139, 1985.
DOI : 10.1152/japplphysiol.00174.2010

J. Cannavino, L. Brocca, M. Sandri, R. Bottinelli, and M. A. Pellegrino, PGC1-?? over-expression prevents metabolic alterations and soleus muscle atrophy in hindlimb unloaded mice, The Journal of Physiology, vol.95, issue.20, pp.4575-4589, 2014.
DOI : 10.1113/jphysiol.2014.275545

M. Gram, A. Vigelso, T. Yokota, J. W. Helge, and F. Dela, emission increases with immobilization and decreases after aerobic training in young and older men, The Journal of Physiology, vol.543, issue.17, pp.4011-4027, 2015.
DOI : 10.1113/JP270211

F. Derbre, B. Ferrando, M. C. Gomez-cabrera, F. Sanchis-gomar, V. E. Martinez-bello et al., Inhibition of Xanthine Oxidase by Allopurinol Prevents Skeletal Muscle Atrophy: Role of p38 MAPKinase and E3 Ubiquitin Ligases, PLoS ONE, vol.7, issue.10, pp.46668-2012
DOI : 10.1371/journal.pone.0046668.t001

URL : https://hal.archives-ouvertes.fr/hal-01159428

H. Kondo, M. Miura, and Y. Itokawa, Oxidative stress in skeletal muscle atrophied by immobiIization, Acta Physiologica Scandinavica, vol.95, issue.4, pp.527-528, 1991.
DOI : 10.1111/j.1748-1716.1991.tb09191.x

D. Desplanches, Oxidative stress, apoptosis, and proteolysis in skeletal muscle repair after unloading, Am J Physiol Cell Physiol, vol.299, pp.307-315, 2010.

S. Dupre-aucouturier, J. Castells, and D. Freyssenet, Trichostatin A, a histone deacetylase inhibitor, modulates unloaded-induced skeletal muscle atrophy, Journal of Applied Physiology, vol.119, issue.4, pp.342-351, 1985.
DOI : 10.1152/japplphysiol.01031.2014

S. Servais, D. Letexier, R. Favier, C. Duchamp, and D. Desplanches, Prevention of unloading-induced atrophy by vitamin E supplementation: Links between oxidative stress and soleus muscle proteolysis?, Free Radical Biology and Medicine, vol.42, issue.5, pp.627-635, 2007.
DOI : 10.1016/j.freeradbiomed.2006.12.001

URL : https://hal.archives-ouvertes.fr/hal-00129693

J. Cannavino, L. Brocca, M. Sandri, B. Grassi, R. Bottinelli et al., The role of alterations in mitochondrial dynamics and PGC-1alpha over-expression in fast muscle atrophy following hindlimb unloading, J Physiol, vol.593, 1981.

H. Kondo, M. Miura, and Y. Itokawa, Antioxidant enzyme systems in skeletal muscle atrophied by immobilization, Pfl???gers Archiv European Journal of Physiology, vol.35, issue.4, pp.404-406, 1993.
DOI : 10.1007/BF00374299

J. T. Selsby and S. L. Dodd, Heat treatment reduces oxidative stress and protects muscle mass during immobilization, AJP: Regulatory, Integrative and Comparative Physiology, vol.289, issue.1, pp.134-139, 2005.
DOI : 10.1152/ajpregu.00497.2004

H. Kondo, I. Nakagaki, S. Sasaki, S. Hori, and Y. Itokawa, Mechanism of oxidative stress in skeletal muscle atrophied by immobilization, Am J Physiol, vol.265, pp.839-844, 1993.

D. Libera, L. Ravara, B. Gobbo, V. Tarricone, E. Vitadello et al., A transient antioxidant stress response accompanies the onset of disuse atrophy in human skeletal muscle, Journal of Applied Physiology, vol.107, issue.2, pp.549-557, 1985.
DOI : 10.1152/japplphysiol.00280.2009

E. I. Glover, N. Yasuda, M. A. Tarnopolsky, A. Abadi, and S. M. Phillips, Little change in markers of protein breakdown and oxidative stress in humans in immobilization-induced skeletal muscle atrophy, Applied Physiology, Nutrition, and Metabolism, vol.35, issue.2, pp.125-133, 2010.
DOI : 10.1139/H09-137

N. Ota, S. Soga, S. Haramizu, Y. Yokoi, T. Hase et al., Tea catechins prevent contractile dysfunction in unloaded murine soleus muscle: A pilot study, Nutrition, vol.27, issue.9, pp.955-959, 2011.
DOI : 10.1016/j.nut.2010.10.008

M. Vitadello, E. Germinario, B. Ravara, L. D. Libera, D. Danieli-betto et al., Curcumin counteracts loss of force and atrophy of hindlimb unloaded rat soleus by hampering neuronal nitric oxide synthase untethering from sarcolemma, The Journal of Physiology, vol.1833, issue.12, pp.2637-2652, 2014.
DOI : 10.1089/ars.2012.4794

M. Vitadello, J. Gherardini, and L. Gorza, The Stress Protein/Chaperone Grp94 Counteracts Muscle Disuse Atrophy by Stabilizing Subsarcolemmal Neuronal Nitric Oxide Synthase, Antioxidants & Redox Signaling, vol.20, issue.16, pp.2479-2496, 2014.
DOI : 10.1089/ars.2012.4794

J. M. Lawler, M. Kunst, J. M. Hord, Y. Lee, K. Joshi et al., EUK-134 ameliorates nNOS?? translocation and skeletal muscle fiber atrophy during short-term mechanical unloading, AJP: Regulatory, Integrative and Comparative Physiology, vol.306, issue.7, pp.470-482, 2014.
DOI : 10.1152/ajpregu.00371.2013

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3962621

J. M. Curtis, W. S. Hahn, E. K. Long, J. S. Burrill, E. A. Arriaga et al., Protein carbonylation and metabolic control systems, Trends in Endocrinology & Metabolism, vol.23, issue.8, pp.399-406, 2012.
DOI : 10.1016/j.tem.2012.05.008

D. P. Jones, Radical-free biology of oxidative stress, AJP: Cell Physiology, vol.295, issue.4, pp.849-868, 2008.
DOI : 10.1152/ajpcell.00283.2008

S. M. Phillips and C. Mcglory, CrossTalk proposal: The dominant mechanism causing disuse muscle atrophy is decreased protein synthesis, The Journal of Physiology, vol.306, issue.24, pp.5341-5343, 2014.
DOI : 10.1113/jphysiol.2014.273615

J. S. You, G. B. Anderson, M. S. Dooley, and T. A. Hornberger, The role of mTOR signaling in the regulation of protein synthesis and muscle mass during immobilization in mice, Disease Models & Mechanisms, vol.8, issue.9, pp.1059-1069, 2015.
DOI : 10.1242/dmm.019414

A. R. Kelleher, S. R. Kimball, M. D. Dennis, R. J. Schilder, and L. S. Jefferson, The mTORC1 signaling repressors REDD1/2 are rapidly induced and activation of p70S6K1 by leucine is defective in skeletal muscle of an immobilized rat hindlimb, AJP: Endocrinology and Metabolism, vol.304, issue.2, pp.229-236, 2013.
DOI : 10.1152/ajpendo.00409.2012

A. A. Ferrando, K. D. Tipton, M. M. Bamman, and R. R. Wolfe, Resistance exercise maintains skeletal muscle protein synthesis during bed rest, J Appl Physiol, vol.82, pp.807-810, 1985.

R. R. Wolfe, Atrophy and impaired muscle protein synthesis during prolonged inactivity and stress, J Clin Endocrinol Metab, vol.91, pp.4836-4841, 2006.

M. Sandri, Signaling in Muscle Atrophy and Hypertrophy, Physiology, vol.23, issue.3, pp.160-170, 2008.
DOI : 10.1152/physiol.00041.2007

P. T. Reidy, Bed rest impairs skeletal muscle amino acid transporter expression, mTORC1 signaling, and protein synthesis in response to essential amino acids in older adults

E. Dupont, C. Cieniewski-bernard, B. Bastide, and L. Stevens, Electrostimulation during hindlimb unloading modulates PI3K-AKT downstream targets without preventing soleus atrophy and restores slow phenotype through ERK, AJP: Regulatory, Integrative and Comparative Physiology, vol.300, issue.2, pp.408-417, 2011.
DOI : 10.1152/ajpregu.00793.2009

G. Biolo, B. Ciocchi, M. Lebenstedt, R. Barazzoni, M. Zanetti et al., Short-term bed rest impairs amino acid-induced protein anabolism in humans, The Journal of Physiology, vol.79, issue.2, pp.381-388, 2004.
DOI : 10.1113/jphysiol.2004.066365

D. L. Allen, R. R. Roy, and V. R. Edgerton, Myonuclear domains in muscle adaptation and disease, Muscle & Nerve, vol.10, issue.10, pp.1350-1360, 1999.
DOI : 10.1002/(SICI)1097-4598(199910)22:10<1350::AID-MUS3>3.0.CO;2-8

G. K. Pavlath, K. Rich, S. G. Webster, and H. M. Blau, Localization of muscle gene products in nuclear domains, Nature, vol.337, issue.6207, pp.570-573, 1989.
DOI : 10.1038/337570a0

D. L. Allen, J. K. Linderman, R. R. Roy, A. J. Bigbee, R. E. Grindeland et al., Apoptosis: a mechanism contributing to remodeling of skeletal muscle in response to hindlimb unweighting, Am J Physiol, vol.273, pp.579-587, 1997.

J. D. Fluckey, Nuclear translocation of EndoG at the initiation of disuse muscle atrophy and apoptosis is specific to myonuclei, Am J Physiol Regul Integr Comp Physiol, vol.291, pp.1730-1740, 2006.

P. M. Siu, E. E. Pistilli, D. C. Butler, and S. E. Alway, Aging influences cellular and molecular responses of apoptosis to skeletal muscle unloading, AJP: Cell Physiology, vol.288, issue.2, pp.338-349, 2005.
DOI : 10.1152/ajpcell.00239.2004

C. Leeuwenburgh, C. M. Gurley, B. A. Strotman, and E. E. Dupont-versteegden, Age-related differences in apoptosis with disuse atrophy in soleus muscle, AJP: Regulatory, Integrative and Comparative Physiology, vol.288, issue.5, pp.1288-1296, 2005.
DOI : 10.1152/ajpregu.00576.2004

E. E. Talbert, A. J. Smuder, K. Min, O. S. Kwon, and S. K. Powers, Calpain and caspase-3 play required roles in immobilization-induced limb muscle atrophy, Journal of Applied Physiology, vol.114, issue.10, pp.1482-1489, 1985.
DOI : 10.1152/japplphysiol.00925.2012

P. M. Siu, E. E. Pistilli, and S. E. Alway, Apoptotic responses to hindlimb suspension in gastrocnemius muscles from young adult and aged rats, AJP: Regulatory, Integrative and Comparative Physiology, vol.289, issue.4, pp.1015-1026, 2005.
DOI : 10.1152/ajpregu.00198.2005

J. C. Bruusgaard and K. Gundersen, In vivo time-lapse microscopy reveals no loss of murine myonuclei during weeks of muscle atrophy, Journal of Clinical Investigation, vol.118, issue.4, pp.1450-1457, 2008.
DOI : 10.1172/JCI34022

K. A. Munoz, S. Satarug, and M. E. Tischler, Time course of the response of myofibrillar and sarcoplasmic protein metabolism to unweighting of the soleus muscle, Metabolism, vol.42, issue.8, pp.1006-1012, 1993.
DOI : 10.1016/0026-0495(93)90014-F

J. Huang and N. Forsberg, Role of calpain in skeletal-muscle protein degradation, Proceedings of the National Academy of Sciences, vol.95, issue.21, pp.12100-12105, 1998.
DOI : 10.1073/pnas.95.21.12100

J. Du, X. Wang, C. Miereles, J. L. Bailey, R. Debigare et al., Activation of caspase-3 is an initial step triggering accelerated muscle proteolysis in catabolic conditions, Journal of Clinical Investigation, vol.113, issue.1, pp.115-123, 2004.
DOI : 10.1172/JCI18330

M. Vermaelen, P. Sirvent, F. Raynaud, C. Astier, J. Mercier et al., Differential localization of autolyzed calpains 1 and 2 in slow and fast skeletal muscles in the early phase of atrophy, AJP: Cell Physiology, vol.292, issue.5, pp.1723-1731, 2007.
DOI : 10.1152/ajpcell.00398.2006

T. L. Nemirovskaya, Calpain-dependent regulation of the skeletal muscle atrophy following unloading, Arch Biochem Biophys, vol.584, pp.36-41, 2015.

T. Ogawa, H. Furochi, M. Mameoka, K. Hirasaka, Y. Onishi et al., Ubiquitin ligase gene expression in healthy volunteers with 20-day bedrest, Muscle & Nerve, vol.30, issue.4, pp.463-469, 2006.
DOI : 10.1002/mus.20611

B. J. Krawiec, R. A. Frost, T. C. Vary, L. S. Jefferson, and C. H. Lang, Hindlimb casting decreases muscle mass in part by proteasome-dependent proteolysis but independent of protein synthesis, AJP: Endocrinology and Metabolism, vol.289, issue.6, pp.969-980, 2005.
DOI : 10.1152/ajpendo.00126.2005

R. E. Tanner, L. B. Brunker, J. Agergaard, K. M. Barrows, R. A. Briggs et al., Age-related differences in lean mass, protein synthesis and skeletal muscle markers of proteolysis after bed rest and exercise rehabilitation, The Journal of Physiology, vol.45, issue.18, pp.4259-4273, 2015.
DOI : 10.1113/JP270699

V. C. Foletta, L. J. White, A. E. Larsen, B. Leger, and A. P. Russell, The role and regulation of MAFbx/atrogin-1 and MuRF1 in skeletal muscle atrophy, Pfl??gers Archiv - European Journal of Physiology, vol.6, issue.3, pp.325-335, 2011.
DOI : 10.1007/s00424-010-0919-9

C. L. Wu, E. W. Cornwell, R. W. Jackman, and S. C. Kandarian, NF-??B but not FoxO sites in the MuRF1 promoter are required for transcriptional activation in disuse muscle atrophy, AJP: Cell Physiology, vol.306, issue.8, pp.762-767, 2014.
DOI : 10.1152/ajpcell.00361.2013

S. C. Kandarian, Activation of an alternative NF-kappaB pathway in skeletal muscle during disuse atrophy, FASEB J, vol.16, pp.529-538, 2002.

A. R. Judge, A. Koncarevic, R. B. Hunter, H. C. Liou, R. W. Jackman et al., Role for I??B??, but not c-Rel, in skeletal muscle atrophy, AJP: Cell Physiology, vol.292, issue.1, pp.372-382, 2007.
DOI : 10.1152/ajpcell.00293.2006

R. B. Hunter and S. C. Kandarian, Disruption of either the Nfkb1 or the Bcl3 gene inhibits skeletal muscle atrophy, Journal of Clinical Investigation, vol.114, issue.10, pp.1504-1511, 2004.
DOI : 10.1172/JCI200421696

M. Sandri, C. Sandri, A. Gilbert, C. Skurk, E. Calabria et al., Foxo Transcription Factors Induce the Atrophy-Related Ubiquitin Ligase Atrogin-1 and Cause Skeletal Muscle Atrophy, Cell, vol.117, issue.3, pp.399-412, 2004.
DOI : 10.1016/S0092-8674(04)00400-3

M. Sandri, J. Lin, C. Handschin, W. Yang, Z. P. Arany et al., PGC-1?? protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription, Proceedings of the National Academy of Sciences, vol.103, issue.44, pp.16260-16265, 2006.
DOI : 10.1073/pnas.0607795103

S. M. Senf, S. L. Dodd, and A. R. Judge, FOXO signaling is required for disuse muscle atrophy and is directly regulated by Hsp70, AJP: Cell Physiology, vol.298, issue.1, pp.38-45, 2010.
DOI : 10.1152/ajpcell.00315.2009

J. D. Furlow, The glucocorticoid receptor and FOXO1 synergistically activate the skeletal muscle atrophy-associated MuRF1 gene, Am J Physiol Endocrinol Metab, vol.295, pp.785-797, 2008.

H. F. Pidcoke, L. A. Baer, X. Wu, S. E. Wolf, J. K. Aden et al., Insulin effects on glucose tolerance, hypermetabolic response, and circadian-metabolic protein expression in a rat burn and disuse model, AJP: Regulatory, Integrative and Comparative Physiology, vol.307, issue.1, pp.1-10, 2014.
DOI : 10.1152/ajpregu.00312.2013

K. Sakuma, K. Watanabe, N. Hotta, T. Koike, K. Ishida et al., The adaptive responses in several mediators linked with hypertrophy and atrophy of skeletal muscle after lower limb unloading in humans, Acta Physiologica, vol.6, issue.Pt 2, pp.151-159, 2009.
DOI : 10.1111/j.1748-1716.2009.01995.x

R. M. Linnehan, Effects of 3 days unloading on molecular regulators of muscle size in humans, J Appl Physiol, vol.109, pp.721-727, 1985.

M. Sandri, Autophagy in health and disease. 3. Involvement of autophagy in muscle atrophy, AJP: Cell Physiology, vol.298, issue.6, pp.1291-1297, 2010.
DOI : 10.1152/ajpcell.00531.2009

L. Madaro, V. Marrocco, S. Carnio, M. Sandri, and M. Bouche, Intracellular signaling in ER stress-induced autophagy in skeletal muscle cells, The FASEB Journal, vol.27, issue.5, 1990.
DOI : 10.1096/fj.12-215475

L. Brocca, J. Cannavino, L. Coletto, G. Biolo, M. Sandri et al., The time course of the adaptations of human muscle proteome to bed rest and the underlying mechanisms, The Journal of Physiology, vol.16, issue.20, pp.5211-5230, 2012.
DOI : 10.1113/jphysiol.2012.240267

G. Zhang, B. Jin, and Y. P. Li, C/EBP?? mediates tumour-induced ubiquitin ligase atrogin1/MAFbx upregulation and muscle wasting, The EMBO Journal, vol.142, issue.20, pp.4323-4335, 2011.
DOI : 10.1038/emboj.2011.292

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3199382

P. M. Siu, Y. Wang, and S. E. Alway, Apoptotic signaling induced by H2O2-mediated oxidative stress in differentiated C2C12 myotubes, Life Sciences, vol.84, issue.13-14, pp.468-481, 2009.
DOI : 10.1016/j.lfs.2009.01.014

J. M. Mcclung, A. R. Judge, E. E. Talbert, and S. K. Powers, Calpain-1 is required for hydrogen peroxide-induced myotube atrophy, AJP: Cell Physiology, vol.296, issue.2, pp.363-371, 2009.
DOI : 10.1152/ajpcell.00497.2008

Y. P. Li, Y. Chen, A. S. Li, and M. B. Reid, Hydrogen peroxide stimulates ubiquitin-conjugating activity and expression of genes for specific E2 and E3 proteins in skeletal muscle myotubes, AJP: Cell Physiology, vol.285, issue.4, pp.806-812, 2003.
DOI : 10.1152/ajpcell.00129.2003

Y. P. Li, Y. Chen, J. John, J. Moylan, B. Jin et al., TNF-?? acts via p38 MAPK to stimulate expression of the ubiquitin ligase atrogin1/MAFbx in skeletal muscle, The FASEB Journal, vol.19, issue.3, pp.362-370, 2005.
DOI : 10.1096/fj.04-2364com

L. A. Gilliam, J. S. Moylan, E. W. Patterson, J. D. Smith, A. S. Wilson et al., Doxorubicin acts via mitochondrial ROS to stimulate catabolism in C2C12 myotubes, AJP: Cell Physiology, vol.302, issue.1, pp.195-202, 2012.
DOI : 10.1152/ajpcell.00217.2011

S. L. Dodd, B. J. Gagnon, S. M. Senf, B. A. Hain, and A. R. Judge, Ros-mediated activation of NF-????B and Foxo during muscle disuse, Muscle & Nerve, vol.303, issue.1, pp.110-113, 2010.
DOI : 10.1002/mus.21526

Y. Matuszczak, S. Arbogast, and M. B. Reid, Allopurinol mitigates muscle contractile dysfunction caused by hindlimb unloading in mice, Aviat Space Environ Med, vol.75, pp.581-588, 2004.

H. J. Appell, J. A. Duarte, and J. M. Soares, Supplementation of vitamin E may attenuate skeletal muscle immobilization atrophy, Int J Sports Med, vol.18, pp.157-160, 1997.

I. Momken, L. Stevens, A. Bergouignan, D. Desplanches, F. Rudwill et al., Resveratrol prevents the wasting disorders of mechanical unloading by acting as a physical exercise mimetic in the rat, The FASEB Journal, vol.25, issue.10, pp.3646-3660, 2011.
DOI : 10.1096/fj.10-177295

URL : https://hal.archives-ouvertes.fr/hal-00623157

M. Farid, M. B. Reid, Y. P. Li, E. Gerken, and W. J. Durham, Effects of dietary curcumin or N-acetylcysteine on NF-kappaB activity and contractile performance in ambulatory and unloaded murine soleus, Nutrition & Metabolism, vol.2, issue.1, p.20, 2005.
DOI : 10.1186/1743-7075-2-20

R. A. Defronzo, E. Jacot, E. Jequier, E. Maeder, J. Wahren et al., The Effect of Insulin on the Disposal of Intravenous Glucose: Results from Indirect Calorimetry and Hepatic and Femoral Venous Catheterization, Diabetes, vol.30, issue.12, pp.1000-1007, 1981.
DOI : 10.2337/diab.30.12.1000

L. Chang, S. H. Chiang, and A. R. Saltiel, Insulin signaling and the regulation of glucose transport, Mol Med, vol.10, pp.65-71, 2004.

M. F. White and C. R. Kahn, The insulin signaling system, J Biol Chem, vol.269, pp.1-4, 1994.

M. F. White, Insulin Signaling in Health and Disease, Science, vol.302, issue.5651, pp.1710-1711, 2003.
DOI : 10.1126/science.1092952

I. Hers, E. E. Vincent, and J. M. Tavare, Akt signalling in health and disease, Cellular Signalling, vol.23, issue.10, pp.1515-1527, 2011.
DOI : 10.1016/j.cellsig.2011.05.004

K. Sakamoto and G. D. Holman, Emerging role for AS160/TBC1D4 and TBC1D1 in the regulation of GLUT4 traffic, AJP: Endocrinology and Metabolism, vol.295, issue.1, pp.29-37, 2008.
DOI : 10.1152/ajpendo.90331.2008

J. Stockli, D. J. Fazakerley, and D. E. James, GLUT4 exocytosis, Journal of Cell Science, vol.124, issue.24, pp.4147-4159, 2011.
DOI : 10.1242/jcs.097063

T. T. Chiu, T. E. Jensen, L. Sylow, E. A. Richter, and A. Klip, Rac1 signalling towards GLUT4/glucose uptake in skeletal muscle, Cellular Signalling, vol.23, issue.10, pp.1546-1554, 2011.
DOI : 10.1016/j.cellsig.2011.05.022

T. M. Wallace, J. C. Levy, and D. R. Matthews, Use and Abuse of HOMA Modeling, Diabetes Care, vol.27, issue.6, pp.1487-1495, 2004.
DOI : 10.2337/diacare.27.6.1487

M. Matsuda and R. A. Defronzo, Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp, Diabetes Care, vol.22, issue.9, pp.1462-1470, 1999.
DOI : 10.2337/diacare.22.9.1462

B. Balkau, L. Mhamdi, J. M. Oppert, J. Nolan, A. Golay et al., Physical Activity and Insulin Sensitivity: The RISC Study, Diabetes, vol.57, issue.10, pp.2613-2618, 2008.
DOI : 10.2337/db07-1605

URL : https://hal.archives-ouvertes.fr/inserm-00292181

A. Lentzas and Y. , Physical activity, obesity status, and glycemic control: The ATTICA study, Med Sci Sports Exerc, vol.39, pp.606-611, 2007.

R. H. Olsen, R. Krogh-madsen, C. Thomsen, F. W. Booth, and B. K. Pedersen, Metabolic responses to reduced daily steps in healthy nonexercising men, JAMA, vol.299, pp.1261-1263, 2008.

J. P. Thyfault, The influence of reduced insulin sensitivity via short-term reductions in physical activity on cardiac baroreflex sensitivity during acute hyperglycemia, J Appl Physiol, 1985.

R. Mounier, A 2-wk reduction of ambulatory activity attenuates peripheral insulin sensitivity, J Appl Physiol, vol.108, pp.1034-1040, 1985.

D. S. Kump and F. W. Booth, Alterations in insulin receptor signalling in the rat epitrochlearis muscle upon cessation of voluntary exercise, The Journal of Physiology, vol.46, issue.3, pp.829-838, 2005.
DOI : 10.1113/jphysiol.2004.073593

A. Gratas-delamarche, F. Derbre, S. Vincent, and J. Cillard, Physical inactivity, insulin resistance, and the oxidative-inflammatory loop, Free Radical Research, vol.299, issue.1, pp.93-108, 2014.
DOI : 10.1016/j.metabol.2012.11.004

C. De-luca and J. M. Olefsky, Inflammation and insulin resistance, FEBS Letters, vol.54, issue.1, pp.97-105, 2008.
DOI : 10.1016/j.febslet.2007.11.057

H. Shi, M. V. Kokoeva, K. Inouye, I. Tzameli, H. Yin et al., TLR4 links innate immunity and fatty acid???induced insulin resistance, Journal of Clinical Investigation, vol.116, issue.11, pp.3015-3025, 2006.
DOI : 10.1172/JCI28898

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1616196

J. A. Chavez, T. A. Knotts, L. P. Wang, G. Li, R. T. Dobrowsky et al., A Role for Ceramide, but Not Diacylglycerol, in the Antagonism of Insulin Signal Transduction by Saturated Fatty Acids, Journal of Biological Chemistry, vol.278, issue.12, pp.10297-10303, 2003.
DOI : 10.1074/jbc.M212307200

R. H. Lambertucci, Mechanisms underlying skeletal muscle insulin resistance induced by fatty acids: importance of the mitochondrial function, Lipids Health Dis, vol.11, p.30, 2012.

J. W. Eriksson, Metabolic stress in insulin's target cells leads to ROS accumulation - A hypothetical common pathway causing insulin resistance, FEBS Letters, vol.444, issue.19, pp.3734-3742, 2007.
DOI : 10.1016/j.febslet.2007.06.044

J. L. Evans, I. D. Goldfine, B. A. Maddux, and G. M. Grodsky, Oxidative Stress and Stress-Activated Signaling Pathways: A Unifying Hypothesis of Type 2 Diabetes, Endocrine Reviews, vol.23, issue.5, pp.599-622, 2002.
DOI : 10.1210/er.2001-0039

K. L. Hoehn, A. B. Salmon, C. Hohnen-behrens, N. Turner, A. J. Hoy et al., Insulin resistance is a cellular antioxidant defense mechanism, Proceedings of the National Academy of Sciences, vol.106, issue.42, pp.17787-17792, 2009.
DOI : 10.1073/pnas.0902380106

N. Houstis, E. D. Rosen, and E. S. Lander, Reactive oxygen species have a causal role in multiple forms of insulin resistance, Nature, vol.18, issue.7086, pp.944-948, 2006.
DOI : 10.1038/nature04634

A. Bloch-damti and N. Bashan, Proposed Mechanisms for the Induction of Insulin Resistance by Oxidative Stress, Antioxidants & Redox Signaling, vol.7, issue.11-12, pp.1553-1567, 2005.
DOI : 10.1089/ars.2005.7.1553

Z. Gao, D. Hwang, F. Bataille, M. Lefevre, D. York et al., Serine Phosphorylation of Insulin Receptor Substrate 1 by Inhibitor ??B Kinase Complex, Journal of Biological Chemistry, vol.277, issue.50, pp.48115-48121, 2002.
DOI : 10.1074/jbc.M209459200

M. Rohl, M. Pasparakis, S. Baudler, J. Baumgartl, D. Gautam et al., Conditional disruption of I??B kinase 2 fails to prevent obesity-induced insulin resistance, Journal of Clinical Investigation, vol.113, issue.3, pp.474-481, 2004.
DOI : 10.1172/JCI200418712

F. Wunderlich, Alteration of JNK-1 signaling in skeletal muscle fails to affect glucose homeostasis and obesity-associated insulin resistance in mice, PLoS One, vol.8, pp.54247-2013

. Ikkbeta, NF-kappaB activation causes severe muscle wasting in mice, Cell, vol.119, pp.285-298, 2004.

K. L. Hoehn, C. Hohnen-behrens, A. Cederberg, L. E. Wu, N. Turner et al., IRS1-Independent Defects Define Major Nodes of Insulin Resistance, Cell Metabolism, vol.7, issue.5, pp.421-433, 2008.
DOI : 10.1016/j.cmet.2008.04.005

K. D. Copps, N. J. Hancer, L. Opare-ado, W. Qiu, C. Walsh et al., Irs1 Serine 307 Promotes Insulin Sensitivity in Mice, Cell Metabolism, vol.11, issue.1, pp.84-92, 2010.
DOI : 10.1016/j.cmet.2009.11.003

A. Rudich, A. Tirosh, R. Potashnik, R. Hemi, H. Kanety et al., Prolonged oxidative stress impairs insulin-induced GLUT4 translocation in 3T3-L1 adipocytes, Diabetes, vol.47, issue.10, pp.1562-1569, 1998.
DOI : 10.2337/diabetes.47.10.1562

D. Pessler, A. Rudich, and N. Bashan, Oxidative stress impairs nuclear proteins binding to the insulin responsive element in the GLUT4 promoter, Diabetologia, vol.44, issue.12, pp.2156-2164, 2001.
DOI : 10.1007/s001250100024

U. Kampmann, B. Christensen, T. S. Nielsen, S. B. Pedersen, L. Orskov et al., GLUT4 and UBC9 Protein Expression Is Reduced in Muscle from Type 2 Diabetic Patients with Severe Insulin Resistance, PLoS ONE, vol.354, issue.11, 2011.
DOI : 10.1371/journal.pone.0027854.t002

K. H. Ingram, H. Hill, D. R. Moellering, B. G. Hill, C. Lara-castro et al., Skeletal Muscle Lipid Peroxidation and Insulin Resistance in Humans, The Journal of Clinical Endocrinology & Metabolism, vol.97, issue.7, pp.1182-1186, 2012.
DOI : 10.1210/jc.2011-2963

J. Holloszy, Regulation by exercise of skeletal muscle content of mitochondria and GLUT4, J Physiol Pharmacol, vol.59, issue.7, pp.5-18, 2008.

A. Tirosh, R. Potashnik, N. Bashan, and A. Rudich, Oxidative Stress Disrupts Insulin-induced Cellular Redistribution of Insulin Receptor Substrate-1 and Phosphatidylinositol 3-Kinase in 3T3-L1 Adipocytes: A PUTATIVE CELLULAR MECHANISM FOR IMPAIRED PROTEIN KINASE B ACTIVATION AND GLUT4 TRANSLOCATION, Journal of Biological Chemistry, vol.274, issue.15, pp.10595-10602, 1999.
DOI : 10.1074/jbc.274.15.10595

L. Jebailey, O. Wanono, W. Niu, J. Roessler, A. Rudich et al., Ceramide- and Oxidant-Induced Insulin Resistance Involve Loss of Insulin-Dependent Rac-Activation and Actin Remodeling in Muscle Cells, Diabetes, vol.56, issue.2, pp.394-403, 2007.
DOI : 10.2337/db06-0823

T. Yasukawa, E. Tokunaga, H. Ota, H. Sugita, J. A. Martyn et al., S-Nitrosylation-dependent Inactivation of Akt/Protein Kinase B in Insulin Resistance, Journal of Biological Chemistry, vol.280, issue.9, pp.7511-7518, 2005.
DOI : 10.1074/jbc.M411871200

M. A. Carvalho-filho, M. Ueno, S. M. Hirabara, A. B. Seabra, J. B. Carvalheira et al., S-Nitrosation of the Insulin Receptor, Insulin Receptor Substrate 1, and Protein Kinase B/Akt: A Novel Mechanism of Insulin Resistance, Diabetes, vol.54, issue.4, pp.959-967, 2005.
DOI : 10.2337/diabetes.54.4.959

P. A. Grimsrud, M. J. Picklo, . Sr, T. J. Griffin, and D. A. Bernlohr, Carbonylation of Adipose Proteins in Obesity and Insulin Resistance: Identification of Adipocyte Fatty Acid-binding Protein as a Cellular Target of 4-Hydroxynonenal, Molecular & Cellular Proteomics, vol.6, issue.4, pp.624-637, 2007.
DOI : 10.1074/mcp.M600120-MCP200

D. Demozay, J. C. Mas, and S. Rocchi, FALDH Reverses the Deleterious Action of Oxidative Stress Induced by Lipid Peroxidation Product 4-Hydroxynonenal on Insulin Signaling in 3T3-L1 Adipocytes, Diabetes, vol.57, issue.5, pp.1216-1226, 2008.
DOI : 10.2337/db07-0389

T. Nomiyama, Y. Igarashi, H. Taka, R. Mineki, T. Uchida et al., Reduction of insulin-stimulated glucose uptake by peroxynitrite is concurrent with tyrosine nitration of insulin receptor substrate-1, Biochemical and Biophysical Research Communications, vol.320, issue.3, pp.639-647, 2004.
DOI : 10.1016/j.bbrc.2004.06.019

A. Ceriello and R. Testa, Antioxidant Anti-Inflammatory Treatment in Type 2 Diabetes, Diabetes Care, vol.32, issue.suppl_2, pp.232-236, 2009.
DOI : 10.2337/dc09-S316

M. Ristow, K. Zarse, A. Oberbach, N. Kloting, M. Birringer et al., Antioxidants prevent health-promoting effects of physical exercise in humans, Proceedings of the National Academy of Sciences, vol.106, issue.21, pp.8665-8670, 2009.
DOI : 10.1073/pnas.0903485106