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Abstract14

Objectives: To design a pharmacokinetic (PK) study using adult prior informa-15

tion and evaluate robustness of the recommended design, through a case-study on16

mefloquine.17

Methods: PK data for adults and children were available from two different18

randomised studies for treatment of malaria with the same artesunate-mefloquine19

combination regimen. A recommended design for paediatric study on mefloquine was20

optimised based on an extrapolated model built from adult data through the following21

approach: (i) a PK model was built in adults, and parameters were estimated using22

the SAEM algorithm; (ii) paediatric PK parameters were then obtained by adding23
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allometry and maturation to the adult model; (iii) a D-optimal design in children was24

obtained with PFIM assuming the extrapolated design. Finally, the robustness of the25

recommended design was evaluated in terms of the relative bias and relative standard26

errors (RSE) of the parameters in a simulation study with four different models, and27

was compared to the empirical design actually performed in the paediatric study.28

Results: Combining pharmacokinetic modelling, extrapolation and design optimi-29

sation led to a design for children with 5 sampling times. Pharmacokinetic parameters30

were well estimated with this design with low relative standard errors. Although the31

extrapolated model did not predict the observed mefloquine concentrations in chil-32

dren very accurately, it allowed precise and unbiased estimates across various model33

assumptions, contrary to the empirical design.34

Conclusion: Using prior adult information combined with allometry and matura-35

tion can help provide robust designs for paediatrics studies.36

1 Introduction37

Paediatrics have long been poorly investigated in drug development for ethical, practical38

and methodological reasons [1]. Given these limitations, the dose given in children is often39

mostly derived from the adult dose by a linear body weight adjustment. However, a number40

of studies have shown that this crude approach could be misleading, prompting scientists41

and physicians to consider children less as small adults [2, 3], and more as a specific42

population with different drug metabolism and sensitivity. Recognising this challenge,43

the regulatory authorities have sought to bolster the efforts of the industry through the44

paediatric investigation plan (PIP) [4], and drug development in children has now become45
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an independent field, creating new challenges in medicine. Nowadays, an increasing number46

of clinical trials are performed to allow proper evaluation of the drug pharmacokinetics (PK)47

in children, holding the promise that a better balance between toxicity and efficacy may be48

found for drugs in paediatrics [5]. However, the precise characterisation of a drug PK is49

a difficult task that requires carefully choosing the dose regimen and the time to sample50

observations, which together form the design of the study. This is particularly problematic51

in paediatrics, where ethical constraints dramatically reduce the number of measurements52

possible, making PK parameter estimation a particularly difficult endeavour and the choice53

of an appropriate design a decision even more critical than in adults [6]. Contrary to the54

first-in-man trials, where no prior clinical information is available, the first-in-children55

study is often performed after studies in adults are available. When properly leveraged, the56

data from adults could be used to build an appropriate design for the paediatric study, and57

it is often the only source of information available at this early stage [7]. Within the PIP,58

incorporating prior knowledge from adults is also a way of streamlining paediatric drug59

development in the global development program [8].60

In order to optimise the available information, PK are often analysed using non-61

linear mixed effect models, an approach which allows to handle sparse and heterogeneous62

designs [9]. In that framework, design optimisation based on the Fisher Information Matrix63

has become an increasingly popular tool to maximise the information collected in a study64

and determine the times for the sampling measurements which are most likely to provide a65

precise estimation of the PK parameters [10, 11].66

In the present work, we investigate the process of designing a paediatric study using67

adult prior information. Mefloquine, an antimalarial drug, serves as a case-study, with data68
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from two clinical trials, in adults and children [12]. We use the adult data to obtain the PK69

model of mefloquine in adults, and leverage this information for children through allometric70

and maturation functions taking into account changes in body size and metabolic processes71

with age [13]. We then use the extrapolated model to design a study for a paediatric72

population with different age groups. We show that this approach provides a framework73

that may dramatically improve the design of a PK study in children, allowing for a precise74

estimation of PK parameters while limiting the number of sampling measurements.75

2 Methods76

In the present work, we considered the following methodological workflow, summarised77

in Figure 1. First, based on data collected in an adult population, we built a PK model.78

Extrapolation using allometry and maturation was then applied to the resulting model in79

order to derive the PK model and parameters in children. The extrapolated model was80

then used to optimise the design in children. The performance of the optimised design was81

evaluated by assessing its ability to estimate correctly the population parameters through a82

simulation study, under different model assumptions to assess its robustness. The evaluation83

process is illustrated separately in Figure 2. The optimised design was compared to the84

design of the paediatric database, called empirical design. Simulations were performed85

for 4 different models to ensure robustness. An external evaluation was also performed,86

by fitting the paediatric data with the different models used for simulations and comparing87

their predictive ability.88

[Figure 1 about here.]89
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[Figure 2 about here.]90

Data91

The case-study involved two clinical trials.92

• Adult data: the first study included data from adults taking part in a phase I-II clinical93

trial in India [8]. This multicentre, single-arm clinical trial was carried out to assess94

the safety, efficacy and population pharmacokinetics of a fixed-dose combination of95

artesunate-mefloquine in Indian adults infected with acute uncomplicated plasmod-96

ium falciparum. Seventy-seven (77) patients were included. Subjects received orally97

two tablets, containing 100 mg of artesunate and 200 mg of mefloquine, once daily98

for three consecutive days. Blood samples for the analysis of mefloquine pharma-99

cokinetics and laboratory evaluation were collected before the first dose, within 72100

hours of first dose, and on study day 7, 28, 35 or 42.101

• Children data: the second study included children under 15 years old enrolled in102

a phase I-II clinical trial in Thailand [14]. This randomised trial was carried out103

to assess safety and efficacy of a new artesunate-mefloquine coformulation for the104

treatment of acute uncomplicated plasmodium falciparum malaria in children. A total105

of 101 children under 15 years old were included in this study. Paediatric patients106

were administered a weight-related dose, approximately 4 mg/kg/day of artesunate107

for 3 days of treatment, and 25 mg/kg of mefloquine split into 15 mg/kg on the108

second day and 10 mg/kg on the third day. The following PK samples were scheduled109

from the first day of administration and during follow-up: 3 to 4 samples randomly110
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selected from days 1, 2, 3 or 7-14 and 1 or 2 additional samples on days 21, 28, 35,111

42, 49, 56 or 63.112

Modelling the PK of mefloquine in adults113

The PK of mefloquine in adults was analysed using non-linear mixed effect models (NLME).114

Denoting yi = (yi1,yi2, ...,yini)
T the ni - vector of observations for individual i (i = 1, ...,N),115

collected at sampling times ti = (ti1, ti2, ..., tini)
T , we have the following statistical model:116

yi = f (φi, ti)+ εi (1)

where f is a mathematical function representing the evolution of the concentration with117

time. The vector φi is the vector of individual parameters for i and εi a ni-vector of random118

errors distributed as εi ∼ N (0,Σi). We assume that the distribution of the parameters can119

be described through a log-normal distribution. For the kth component of φ, k = 1...K, we120

write the individual parameter φ
(k)
i as a function of a fixed effect µ(k) and an individual121

random effect b(k)i :122

φ
(k)
i = µ(k)eb(k)i (2)

The distribution of the random effects was assumed to be multivariate normal, with a123

variance-covariance matrix denoted Ω2.124

The parameters of the NLME model were estimated using the stochastic approximation125

expectation-maximisation algorithm (SAEM) [15], implemented in the Monolix software126

(version 4.2.2) [16]. The likelihood was computed using importance sampling. Model127

building was based on the likelihood ratio test (LRT) for nested models, and the Bayesian128

6



information criteria (BIC) for non-nested models. We investigated first the structural129

model, comparing different compartment models, then the interindividual variability, testing130

whether Ω2 could be assumed to be diagonal or not, and finally the residual variability.131

Different residual error models were considered: a constant error model Var(εi j) = a2, a132

proportional error model Var(εi j) = b2 × f (φi, ti j)
2 and a combined error model Var(εi j) =133

(a+ b f (φi, ti j))
2. In order to evaluate the stability of the estimates, the run assessment134

feature in Monolix was used; this consists in performing the evaluation 5 times changing135

initial conditions and seed for the random number generators and comparing the estimates136

of the parameters and the log-likelihood across the 5 runs.137

The final PK model in adult was called (Mad), and the adult population PK param-138

eters µadult . It was evaluated through goodness-of-fit plots, including Visual Predictive139

Checks (VPC), predictions of individual concentration profiles, plots of observations versus140

predictions, and residual scatterplots involving normalised prediction distribution errors141

(NPDE) [17]. Empirical Bayesian Estimates (EBE) of the individual parameters were142

obtained for each subject as the conditional mean of the individual conditional distribution,143

and used for diagnostic plots. VPC and NPDE were obtained using 1000 datasets simulated144

under the tested model with the design of the original dataset [18]. Estimates of the standard145

errors and residual standard errors were obtained through a linear approximation of the146

Fisher information matrix. The predictive ability of (Mad) was evaluated by computing the147

bias and root mean square errors (RMSE) between predicted and observed concentrations:148

Bias =
N

∑
i=1

1
ni

ni

∑
j=1

(yi j − f (µ̂, ti j)) (3)

RMSE =
√

Bias2 +Var( f (µ̂, ti j)) (4)
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where µ̂ are the estimated population parameters and Var( f (µ̂, ti j)) = ∑
N
i=1

1
ni−1 ∑

ni
j=1(yi j −149

f (µ̂, ti j))
2 is the variance of the predicted concentrations.150

Extrapolation from adults to children151

Mad , the PK model developed in adults was then modified to adjust to the children pop-152

ulation. The same structural model was left unchanged, but we scaled the values of153

the parameters using either allometry alone (Mallo) or both allometry and maturation154

(Mallo+mat), as detailed in the rest of this section.155

Body size is a major determinant of metabolic rates, diffusion and transfer processes,156

as well as organ size, throughout the animal kingdom and beyond. Allometric theory157

models these processes throughout fractal geometry, and proposes a general scaling for158

many processes [19]. Denoting BW the body size, a parameter µ would vary as:159

µ = α×BW β (5)

where α is a constant characterising the type of organism, and β a scaling component.160

In particular, volumes of distribution tend to increase linearly with size (β = 1) while161

clearances, which are related to blood flow, increase non-linearly with a coefficient 3/4162

(β = 0.75) derived from geometric considerations.163

Model Mallo was derived from Mad by introducing allometry in the population value164

of the parameters to account for size, through the relationship:165

µchild,allo = µadult ×
(

BWchild

BWadult

)β

(6)
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where BWadult is the mean adult weight and BWchild is the mean body weight of a given166

child, β is 0.75 for clearances and 1 for volumes.167

However, size differences do not explain all the variations between adults and children.168

Many physiological processes evolve slowly towards adult functionality during childhood.169

Model Mallo+mat was developed from the allometric model Mallo, by introducing a matura-170

tion factor Kmat,child in the previous equation:171

µchild,allo+mat = µadult ×
(

BWchild

BWadult

)β

×Kmat,child (7)

Maturation is highly correlated with age, and has been studied for many physiological172

processes, including absorption, first-pass effect, metabolism and transport. We derived173

maturation equations for mefloquine, and used them to adjust individual clearances and174

volumes in each child. These equations are described in the Appendix.175

For both Mallo and Mallo+mat , we assumed the same interindividual variability for all176

parameters, as well as the same residual errors, as those estimated in the adult populations.177

Because in this work we had access to paediatric data, we used it as an external178

evaluation dataset to assess the extrapolation process for both Mallo and Mallo+mat . The179

predictive capacity of these two models was evaluated by computing bias and RMSE180

on the paediatric data. We also evaluated the predictive capacity of the model without181

extrapolation, Mad . For comparison purposes, we also performed a population PK analysis182

of the paediatric data alone, using the same approach as for the adults. This led to model183

Mch.184
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Optimal design for a paediatric population185

Design optimisation was performed for the model using both allometry and maturation186

Mallo+mat . Design optimisation consists in selecting the best dose regimen and sampling187

times, given constraints such as the total number of samples or the times when samples188

can be taken, in order to allow precise estimation of the parameters. In this work we will189

focus on sampling times only because the doses were fixed in children. This is generally190

achieved through D-optimality, which consists in maximising the determinant of the Fisher191

information matrix (FIM) [6]. Although the FIM in NLME has no closed form solution, it192

can be approximated using a first order linearisation around the mean of the random effects.193

This method is implemented in PFIM, which we used here (PFIM version 4.0, running in R194

version 3.0) [20], and in most softwares performing design optimisation.195

Because the design may be different depending on age, optimisation was performed in196

four different age-groups that were represented in the Thai study: an infant-toddler group197

(up to 3 years), which included only one infant in the actual study, a pre-school children198

group (4-5 years), a school-age group (6-11 years) and an adolescent group (12-15 years).199

We therefore first performed optimisation on these 4 different groups, using the200

parameters µchild,allo+mat with the average weight and age observed in the real paediatric201

study for each group. For each group the dose was set to the average dose in the group,202

yielding fixed parameters for Mallo+mat for each group. We used the Fedorov-Wynn203

algorithm [21], which optimises over a discrete set of times, using the sampling times from204

the original paediatric protocol (0.1, 0.5, 1, 2, 5, 10, 15, 25, 35, 55, 65) in a first step. We205

also set a constraint on the number of sampling points, performing several optimisations206

with 3 to 6 samples per subject. We refined this first design by running the Simplex207
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algorithm, adjusting the set of possible times to include more informative time points,208

and running the Fedorov-Wynn algorithm again. This led to an optimal design for each209

age-group, from which we derived the final optimal design by choosing the closest sample210

times across groups.211

The resulting optimal design is exact, with fixed days, which may be difficult to212

implement. We can relax this assumption by using sampling windows, to add flexibility213

to the practical implementation. As this cannot be implemented prospectively in PFIM,214

we derived sensible windows for the optimised design assuming the patients can come in215

anytime during daytime, and for several days on later visits.216

Evaluation of paediatric design217

To illustrate the expected performance and the robustness of the optimal paediatric design,218

we evaluated its ability to estimate the PK parameters in children across a range of scenarios219

corresponding to different models and model parameters, through a simulation study.220

Figure 2 summarises the different stages of the evaluation.221

We evaluated the design over the 4 different models previously introduced: (i) the222

extrapolated model with maturation (Mallo+mat), which was used to optimise the design;223

(ii) the adult model (Mad) without extrapolation; (iii) a model derived from Mad , called224

(Mad,abs), with a rate constant of absorption modified to the value ka = 1 to mimick a much225

slower absorption in children; (iv) the PK model obtained in the analysis of the paediatric226

data alone (Mch).227

In each scenario, we simulated L =100 data sets under the related model, for sampling228

times corresponding to the optimised design. The covariate distributions, the doses and the229
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number of subjects were kept identical to those of the real paediatric study. Therefore, the230

simulated population was identical to the paediatric population in the database. We then231

re-estimated model parameters using Monolix for each simulation. Finally, we computed232

the relative bias and empirical relative standard errors (RSE) for each estimated parameter233

compared to the theorical model value over the 100 simulations:234

Bias(θk,th) =
1
L

L

∑
l=1

(θ̂
(l)
k −θk,th)

θk,th

RSE(θk,th) =
1
L

L

∑
l=1

√√√√( θ̂
(l)
k −θk,th

θk,th

)2

where θ̂
(l)
k is the estimate of the kth parameter in simulation l = 1, ...,L and θk,th the235

theoretical value.236

The same simulations were also performed for the empirical design, to compare the237

performance of the optimal design with the design that was in fact implemented in the238

children study. The same parameters were used to simulate the concentrations in both239

designs (optimal and empirical).240

We also evaluated the performance of the design when relaxing the fixed times through241

sampling windows. We again simulated 100 data sets, but this time the sampling times242

for each visit were drawn according to a uniform distribution from the chosen sampling243

windows. Evaluation was performed in a similar manner as for the optimal design.244
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3 Results245

Characteristics of both populations246

Table 1 shows the demographic characteristics and biological measurements in the247

adult (left) and paediatric (right) datasets used in the present analysis. The adult population248

was almost exclusively male (1 woman), while the recruitment was more balanced in the249

paediatric study (51 girls and 60 boys, 59% male).250

[Table 1 about here.]251

Figure 3 shows the evolution of mefloquine concentrations with time in the two252

populations. Most adults were sampled 4 to 5 times during the study. On average, the253

first sample was taken 4 hours after the first dose, and the next at days 2, 3, 11, 36 and 56,254

with a few concentrations measured up to 62 days after the first dose. Four patients had255

only one sample. Concentration profiles show accumulation over the first three days, when256

mefloquine is administered once daily, followed by a slow bi-phasic decline.257

In children, the design was more sparse and variable (Figure 3b), and fewer samples258

were collected. Most children contributed three concentrations (51%) and 37% had only 2259

concentrations taken. The first sample was usually taken at day 8, long after the end of the260

absorption phase. The second sample was around day 23, then at day 35 and 45.261

[Figure 3 about here.]262
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Modelling the PK of mefloquine in adults263

The final PK model was found to be a two compartment model with first-order absorp-264

tion, due to significant tissular distribution. Absorption and elimination were found to be lin-265

ear. The parameters in this model are the rate of absorption, the central and intercompartmen-266

tal clearances, and the volumes of the two compartments, so that φi = (kai,Cli,V1i,Qi,V2i).267

The residual error was best described as a combined error model. We found that we could268

remove the variability in V2 from the model. This may be due to either a low interindi-269

vidual variability for that parameter, or more likely, a lack of information to estimate that270

parameter.271

Table 2 shows the population parameters estimated for the adult model Mad . The resid-272

ual variability was low, indicating that the model explained most of the variability. Estimates273

were well estimated, with low standard errors. Absorption ka and inter-compartimental274

clearance Q had the highest interindividual variability.275

There was no bias in predicting the adult concentrations (bias=0.06), showing no276

systematic model misspecification, and the RMSE was estimated to be 1.14.277

[Table 2 about here.]278

Extrapolation from adults to children279

Mad was then used as a basis for individual extrapolation to the paediatric population,280

yielding model Mallo+mat .281

Extrapolation was assessed using the paediatric data as an external evaluation dataset282

on models Mallo+mat , Mallo, Mad and Mch. VPC are shown in Figure 4. Mallo+mat (Fig. 4a)283
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clearly overpredicts the observed concentrations in children during the first days of the trial,284

suggesting some discrepancy in absorption between the adult and the children population,285

either in the rate of absorption, in the bioavailability, or both. On the other hand, the286

elimination and distribution phases are not inconsistent with the prediction ranges, and the287

variability, shown by the breadth of the shaded areas, appears similar in children compared288

to adults.289

To assess the impact of the different extrapolations involved in Mallo+mat , we compared290

the predictive abilities of the other models. The model Mch was obtained using a similar291

PK analysis as for the adults, and constitutes the best possible fit to the data. In our analysis,292

it served as a gold standard to assess the accuracy of model predictions, as it was the293

only model directly derived from the paediatric data. In children, we could not identify a294

distribution phase, therefore Mch was a one-compartment model. The absorption phase was295

unidentifiable and the estimates of ka were unstable. Therefore, the absorption rate constant296

ka was fixed to the value obtained in the adult population, without interindividual variability.297

As expected, there was no bias for Mch (0.06); the precision measured by RMSE was 0.89.298

The bias was significant for the three other models; the model with allometry Mallo has in299

fact a slightly lower bias (-0.15) than the model with maturation Mallo+mat (-0.27). Both300

these models tended to underpredict children concentrations, while the adult model Mad301

systematically overpredicted concentrations in children (bias=0.34), as apparent in Figure 4.302

The RMSE for the two extrapolated models was quite high (respectively 1.2 and 1.1 with303

and without maturation). It was lower for Mad (0.8) than for Mch (0.9).304

[Figure 4 about here.]305

15



Optimal design for the paediatric population306

Mallo+mat was then used to design a sampling schedule for the paediatric population.307

We first attempted to optimise designs with 3 or 4 sampling times, as this was close to the308

design in the paediatric database, which we call empirical design. But optimisation failed,309

indicating the model was not identifiable with so few samples. We therefore increased310

the number of samples to 5 or 6. Table 3 shows the optimal times found for each group311

for designs with 5 sampling points; several sampling times were found to be quite similar312

across designs, with three samples in the first 4 days and two after 65 days. The parameters313

were well estimated in each group, according to the RSE predicted by PFIM, with RSE314

around 5% for Cl, V1 and V2, and around 10% for ka and Q. Inter-subject random effects315

should have somewhat higher RSE, between 20% and 30%, but the designs would still316

allow proper estimation of the variabilities. Designs with 6 sampling times gave similar317

results in terms of RSE, suggesting that 5 sampling times were sufficient in our case.318

The optimal design merged the 4 designs, and the corresponding times are given in the319

last row of Table 3.320

[Table 3 about here.]321

Design evaluation322

In order to assess robustness, we performed a set of simulations under different model323

assumptions.324

Table 4 summarises the results of the evaluation for each combination of model (rows)325

and design (columns). For each model, we recall the values of the parameters used in326
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the simulation, and for each design we give the relative bias and the empirical relative327

standard errors (RSE), expressed in percentages. Simulated patients had the same covariate328

distribution than in the real study. For the datasets simulated with the optimal design,329

parameter estimation was successful for all 100 datasets. The design in the paediatric330

database, or empirical design, on the other hand, generated a few simulations for which we331

were unable to estimate all the standard errors, mostly for absorption, inter-compartmental332

clearance and their respective random effects. Because only the estimated values, not their333

RSE, were used to compute the relative bias and empirical RSE, all the figures in Table 4334

were computed over all the corresponding runs. As seen in the table, there was no bias335

in the parameter estimates when the data was simulated according to the optimal design,336

regardless of the actual model. For the first model, Mallo+mat , this only shows that the337

estimation algorithm provides unbiased estimates, as expected. For the other models, it338

reflects that there is enough information in this design to estimate the parameters under339

different model misspecifications. The empirical RSE were also in line with predictions340

from PFIM, ranging from 3 to 15% for model Mallo+mat , the model used to establish341

the optimal design. More interestingly, precision of parameters was also similar for the342

other models, showing that the optimal design allows unbiased and precise estimates to be343

obtained over a range of model changes.344

We can contrast this behaviour with the performance of the empirical design. Across all345

four models, we found that this design had relatively high bias for either ka or its variability346

ωka or both, even when the true model was the much simpler one-compartment model that347

was estimated to best describe the real data collected in children. In addition, this design348

was less robust to changes in the model assumptions, as other parameters such as ωQ and349
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ωV1 proved difficult to estimate, yielding very large and implausible values or very large350

RSE.351

[Table 4 about here.]352

Although the optimal design gives good results, actually respecting the exact sampling353

times may be difficult to implement in practice. We therefore also evaluated a design with354

the following sampling windows, which relaxes the exact optimised design: the first sample355

time was taken between 1 and 5 hours after the first dose, the second between 1 hour before356

and 12 hours after the second dose. For the third to fifth sampling time, we allowed for357

12 hours sampling windows over several days, as the concentrations changed more slowly358

over this period: the third time was assumed to be in daytime during days 4 or 5, the fourth359

during days 13 to 16, and the final sampling window was from day 55 to 60. The evaluation360

over 100 simulated datasets of this design gave similar results for every model compared to361

the optimal design, in terms of empirical RSE and relative bias. Full numerical results for362

simulations on the sampling windows design can be found in Appendix, Table 5.363

4 Discussion364

The objective of the present work was to design a pharmacokinetic paediatric study365

using adult information in malaria. To this end, we investigated the impact of design on the366

information gained from the children study, exploring models taking into account prior adult367

information through extrapolation by allometry and maturation. We used the paediatric368

data both as an external evaluation dataset and to suggest alternative models to test the369
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robustness of both the empirical design actually performed in children and the optimised370

design. We assessed their performance with regard to changes in parameter assumptions.371

In the pharmacokinetic analysis in adults, a two-compartment model was found to best372

describe the pharmacokinetics of mefloquine. In previous studies [22, 23, 24, 25], both one373

and two-compartment models have been used to describe its pharmacokinetics. However,374

a more appropriate sampling schedule shows evidence of tissular distribution [26, 27],375

both in patients [28] and in a large population of healthy military personnel administered376

with mefloquine for malaria prophylaxis [29]. The parameter estimates we obtained in the377

present analysis were consistent with the estimates from these two studies. In particular,378

we found a slow elimination for mefloquine, with a terminal half-life of 17 days, in line379

with previous estimates of 14 to 16 days.380

In our study, we derived the PK parameters in children from the parameters in adults381

by using simple methods combining allometry and maturation functions. Allometric scaling382

to predict structural and functional properties of vertebrate cardiovascular and respiratory383

system was formally introduced by West et al. in 1997 [19]. As the etymology underlines,384

the purpose of allometry was initially to find measurements working across and within385

species. The allometric coefficients (e.g. 0.75 for clearances or 1 for volumes [19]) have386

been estimated in human populations and found to be compatible with the theory [30].387

Allometric coefficients can also be estimated in specific PK studies, although conclusive388

evidence that they differ from the theoretical values is questionable and may in fact reflect389

model misspecification. On the other hand, there is mounting evidence that allometric390

relationships may need to be adjusted in early childhood. For example, Peeters et al.391

found differences of clearance exponents in a study including 98 subjects from neonates392
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to adults, and suggested to use an exponent varying with weight [3]. This discrepancy393

between size-based scaling and effective changes in model parameters in neonates and394

very young children can partially be explained by additional maturational changes in395

physiological processes during this period. Maturation functions have been proposed for396

several drugs [31, 32], and we adapted them to the characteristics of mefloquine, such as397

binding properties and first-pass metabolism. A similar approach was used by Anderson398

and Holford in several studies [33, 34, 30, 35]. In particular, their work on paracetamol399

involved different physiological processes such as renal and hepatic clearance [13]. In the400

present work, we applied their methods with formulae specific to mefloquine by considering401

the maturation of the cytochromes and of albumin concentrations.402

The extrapolated models were evaluated using the data collected in the paediatric403

study as an external evaluation dataset, to assess how well the children data could be404

predicted considering only prior information in adults. The results were not particularly405

good, as the model was found to systematically underpredict the early concentrations in406

children. Using the adult parameters directly was of course also not appropriate, as not407

taking into account the body size factor led to a systematic overprediction. Compared to408

the impact of allometry, the contribution of maturational changes here was small and even409

slightly increased the prediction bias. This may be due to the fact that the major impact of410

maturation for mefloquine occurs in neonatal and infants, and our population included only411

6 very young children (less than 2 years old).412

Other methods could be used to extrapolate from adults to children. A physiological ap-413

proach, describing the intricacies of biological processes, is provided by the physiologically414

based pharmacokinetic models (PBPK). The model equations rely on principles of mass415
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transport, fluid dynamics and require knowing the exact drug process. Although very rich,416

the PBPK models often contain a large number of unknown parameters, the determination417

of which requires many specific studies. PBPK models have not yet been established for418

mefloquine. Knibbe et al. [36] proposed an alternative model combining both PBPK models419

and maturation with the development of semi-physiological functions for specific processes.420

They applied this method on glomerular filtration rate in a study of gentamicin, tobramycin421

and vancomycin including 1,760 patients from preterm to adults. The present work could422

benefit from such an approach, using biological system-specific rather than drug specific423

informations. Approaching a physiological process such as maturation of cytochrome, in424

particular CYP3A, in childhood would give more precise results. However, it would require425

more covariates which were not available in our paediatric study.426

Despite the lacklustre performance of the maturation model in terms of predictive427

ability, in the present work, we used the full extrapolated model, including both maturation428

and allometry, to produce the optimal design. We wanted to reproduce the actual clinical429

process, where the children data would not be available to assess which model performs430

best, and to take into account all the prior knowledge on the drug. The recommended431

design, blending the 4 age-group specific optimal designs, performed very well in our432

simulations, yielding low RSE for all parameters, confirming that the blended recommended433

design is appropriate for the entire paediatric dataset. Even in this complex study with a434

distribution of ages and weights, PFIM predicted quite well the range of standard errors435

found in the simulation study. Optimising the design of a clinical trial for mefloquine has436

already been addressed in adults [37, 24], and our results here are in agreement with these437

previous studies. In particular, Jamsen et al. [24] considered optimal designs for various438
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combinations of mefloquine and another malaria drug, but for a mixed population including439

adults, pregnant women and children. The optimal designs consisted of two groups of440

subjects with 5 samples each, including an early sample (2 or 3 hours after dosing), a441

sample at day 2 and day 7, and 2 additional samples different among the two groups. In our442

own work, we focused only on the paediatric population, but the results over the different443

age-groups in the study, including adolescents, suggested that there is not much difference444

in the sampling schedule recommended over a large span of ages. Indeed, the similar RSE445

found in study [24] suggest that their design would also be quite robust.446

We assessed the performance of the optimal design in a simulation study including four447

different sets of model assumptions, designed to test model departures from the predicted448

PK in children. Of course, we cannot expect a design to perform well when the PK changes449

completely, but the range of scenarios we simulated reflected changes that could be expected450

when moving from adults to children. Overall, the optimal design performed much better451

than the empirical design from the real paediatric study in all scenarios. With the empirical452

design, absorption parameters were always poorly estimated, because of the lack of early453

time points, and this seemed to have an impact also on the distribution parameters. If we454

were then performing a real analysis of the paediatric data, we would need to simplify the455

model, to fix some parameters to the adult value, or to perform a joint analysis of adult and456

children data together, risking biased estimates if populations are in fact different. Here,457

in the analysis of the paediatric data alone, we had to use a simplified one-compartment458

model with fixed absorption (Mch), illustrating the choices that poor designs will lead to.459

In this particular case, the empirical design also reflected logistic and practical con-460

straints. Indeed, most children did not have as many measurements as was originally461

22



planned per protocol, which specified that 3 or 4 samples were supposed to be randomly462

collected during the first three days and during the second week, with an additional 1 or463

2 samples taken on different days between the 21st and the 63rd. In the empirical design,464

most patients only had 3 samples and the first sample was usually after 5 days, yielding465

no information about the absorption phase. Because mefloquine has a long half-life, late466

follow-up requires additional visits to the treating centres which may not be convenient or467

cheap enough for the families to afford. However these late time-points are crucial for a468

good estimation of the distribution and terminal phases.469

A few studies on the PK of mefloquine included children [22], but there has been no470

specific paediatric study of mefloquine with an informative design. Here, when we analysed471

separately the paediatric data, we could not identify a two-compartment model. But the472

poor performance of the empirical design in the simulations also suggested that a more473

informative design could have been obtained if the available adult information had been474

taken into account, even if the paediatric PK differed substantially from the adult PK.475

In order to get around some of the logistic and practical constraints of a fixed design,476

a solution is to propose time windows around the sampling times found for the optimal477

design. In the present study, we evaluated a relaxed design with the same simulation478

setting as for the optimal and empirical designs, and found similar performances. The479

windows were chosen empirically, with sensible assumptions, and a similar approach could480

be implemented in practice with the physicians of the trial, who are generally aware of the481

logistic constraints they need to respect. Evaluating relaxed designs through simulations482

like we did in the present study is possible for a limited number of designs, but this approach483

can also be implemented prospectively. Sampling windows can be specified for instance in484
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the software PopED, which could be used instead of PFIM to further develop the presented485

method [38]. Here however, we found good results with sensible sampling windows derived486

from the optimal design.487

An interesting finding of our work is the message that the design need not be perfect,488

as long as it is robust enough. As is always the case in optimal design, the model we are489

trying to estimate is unknown prior to performing the study, but needs to be specified to490

design that study, and the design will only be appropriate if the model is correct. A way491

to enhance robustness is to ensure that the design performs well across different model492

and parameter assumptions. Here, we show how a cycle of simulation-evaluation can be493

integrated in the decision process to safeguard against reasonable departures from candidate494

model assumptions, by comparing the performance of the optimised design for different495

models. In the case of mefloquine, the optimised design performed well both for the496

extrapolated model Mallo+mat and for the real model derived from children data (Mch).497

Here, we used D-optimality, which relies on prior knowledge of the parameters, but we498

could enhance robustness through ED-optimality, which allows to incorporate uncertainty499

in the prior parameter specifications [39]. These methods could be investigated in order to500

obtain more robust design in paediatrics studies, where parameters are usually unknown501

and the inter-individual variability very high.502

In our study, we used data from an adult population and extrapolated the estimated503

parameters to the children through allometric and maturation considerations. A similar504

method could be applied to estimates obtained from the literature. Another interesting505

approach in this context is adaptive designs, where the initial design is refined through one506

or several intermediate analysis. Dumont et al. [7] applied optimal two-stage designs in a507
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paediatric context and showed that such designs can correct initial model misspecifications.508

In their work, the prior information on children was obtained by extrapolating to a children509

population a PBPK model developed in adults and performing a population PK analysis on510

simulated data from a virtual paediatric population, an alternative to extrapolation models.511

In the present study we use repeated optimisation and simulation to evaluate the512

optimised and alternative designs before implementation, chalking them across different513

model assumptions. The framework presented in Figure 2 can therefore be implemented in514

the clinical development process as a way of qualifying prospective designs to gauge the515

probability of success of a future trial, as well as convey to clinical teams the importance of516

implementing the designs in a rigorous way. Because logistic constraints can be elicited517

prior to the study to be taken into account both at the design stage and at the implementation518

stage, it is a powerful way of ensuring that the constraints are well accepted and that the519

design is applicable in practice.520

In conclusion, the present work supports using adult prior information for design521

optimisation in paediatrics. Optimal design methodology combined with allometry and522

maturation allowed determination of sampling schedules appropriate for children. The opti-523

mal design was more robust and provided better estimates for pharmacokinetic parameters524

for paediatrics, taking into account age specificities.525

526
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A Appendix - Maturation and Allometry536

Mechanisms of absorption, distribution and elimination of mefloquine during treatment in-537

volve different physiological processes. Mefloquine is well absorbed, with a bioavailability538

estimated around 85% [40], but little is known about the exact mechanism of absorption.539

Molecules of mefloquine bind strongly with albumin (98% in adults), resulting in a slow540

diffusion. The unbound molecules of mefloquine are metabolised by cytochrome CYP3A4.541

Afterwards, mefloquine is eliminated through renal clearance.542

These processes are slightly modified for children, due to ongoing maturation. Indeed,543

in parallel of the size differences warranting a first adjustment from adults, metabolism544

functions are not fully developed until a certain age. Therefore, drug metabolism has545

a distinct evolution which is characterised by differences of value for pharmacokinetic546

parameters. Analysing metabolism processes makes it possible to identify those which547
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induce a difference with adults values and to adjust pharmacokinetic parameters with a548

maturation factor.549

During absorption, bioavailability is the first process susceptible of maturation. As a550

substrate of CYP3A, mefloquine bioavailability will decrease with the available quantity of551

CYP3A during intestinal and hepatic first-pass effects. Each first-pass is characterised by552

its own extraction coefficient, Egut for intestinal and Ehepa for hepatic. Consequently, the553

overall bioavailability F represents the amount of mefloquine that, once absorbed, is not554

metabolised during intestinal and hepatic first-passes and reaches the systematic circulation.555

Adult bioavailability is Fad = (1−Egut)(1−Ehepa). However, in children both processes556

are modulated by the quantity of CYP3A. Indeed, depending on age, CYP3A are not557

produced in the same amount in children compared to adults. Gut and hepatic CYP3A558

abundance are characterised by their own maturation function [32]. Denoting KCY P3A the559

maturation of CYP3A and KCY P3A4/5 the maturation of CYP3A4/5, the bioavailability for560

children can be written:561

Fch = (1−EgutKCY P3A)(1−EhepaKCY P3A4/5) (8)

With oral drugs, bioavailability is a key value in estimation of pharmacokinetic pa-562

rameters, which are estimated as apparent, that is relative to the bioavailability. Therefore,563

it has an impact on all clearance and volume parameters. Let Clad the apparent adult564

clearance related to the real clearance Clad,real through Clad = Clad,real/Fad where Fad565

is the adult bioavailability. Likewise, we express the apparent clearance for children566

Clch =Clch,real/Fch.567

As for volume, we have Vad = Vad,real/Fad with Vad the apparent volume, Vad,real the real568
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volume. Likewise, for children, we have Vch =Vch,real/Fch.569

In the blood stream, mefloquine binds strongly to albumin, leaving only a small570

fraction of mefloquine unbound. Let fu,ch this fraction in children. While bound to albumin,571

mefloquine can not be eliminated from the blood stream and only the unbound fraction can572

be eliminated. Let Clch,u the clearance of the unbound fraction of mefloquine in the blood.573

Therefore, we have:574

Clch,real =Clch,u × fu,ch (9)

leading to:575

Clch =
fu,chClch,u

Fch
(10)

In adults, 98% of mefloquine is bound to albumin, such that the adult unbound fraction576

is fu,ad = 0.02. In children, the fraction of unbound mefloquine can be related to adult577

unbound fraction of mefloquine fu,ad and to albumin concentration, which varies from Cad578

(40 g/L on average) and the corresponding value in children, Cch, respectively [32]. The579

following relationship links the unbound fraction of mefloquine in children to the albumin580

concentration:581

fu,ch =
1

1+ 1− fu,ad
fu,ad

Cch
Cad

(11)
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Moreover, albumin concentration in children can be expressed as a function of age [32]:582

Cch = 1.1287ln(age)+33.746 (12)

Therefore, we have:583

Clch =
Clch,u

Fch(1.383ln(age)+42.339)
(13)

Unbound mefloquine is metabolised by CYP3A4/5. Again, the quantity of CYP3A4/5584

influences the extent of metabolism and its lower value in children needs to be taken into585

account. Moreover, clearance is also related to weight and an allometric factor needs to be586

introduced. Therefore, clearance of children unbound fraction of mefloquine is related to587

the adult value Clad,u according to588

Clch,u =Clad,u ×KCY P3A4/5 ×
(

W
70

)0.75

(14)

As previously stated, we deduce from equation 9 that clearance of unbound fraction in589

adults is Clad,u =Clad,real/0.02 =Clad ×Fad/0.02. Therefore:590

Clch =
Clad

0.02(1.383ln(age)+42.339)
× Fad

Fch
×KCY P3A4/5 ×

(
W
70

)0.75

(15)

with591

Fad

Fch
=

(1−Egut)(1−Ehepa)

(1−EgutKCY P3A)(1−EhepaKCY P3A4/5)
(16)
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As extraction coefficient are unknown for mefloquine, we arbitrary chose Egut =592

Ehepa = 0.5.593

We then need to evaluate maturation of the cytochrome. Their maturation have been594

characterised by T. Johnson et al [32] with:595

KCY P3A4/5 =
age0.83

0.31+age0.83 (17)

KCY P3A = 0.42+
0.639 age
2.35+age

(18)

Contrary to clearance, no maturation process interferes with volume in the blood. How-596

ever, as previously stated, estimated volumes are apparent volumes. Therefore, adjustment597

with bioavailability is appropriate. Although there is no maturation, size adjustment is still598

warranted and we have Vch,real =Vad,real × (W/70). Therefore:599

Vch =Vad ×
Fad

Fch
×
(

W
70

)
(19)

where Fad/Fch is given by in Equation 16.600

B Appendix - Evaluation of the sampling windows design601

Table 4 presents the results of the evaluation for the design with sampling windows that602

were derived empirically from the optimised design. It shows the same evaluation metrics603

presented in the main text for the optimised and empirical designs.604

[Table 5 about here.]605
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Adults Children
(N=77) (N=101)

Weight (kg) 53.2 (7.3) - 52.0 [48.0; 58.0] 24.6 (10.8) - 23.0 [15.0; 35.0]
Age (year) 28.2 (8.8) - 25.0 [21.0; 35.0] 8.8 (4.2) - 10.0 [5.0; 13.0]
Haemoglobin (g/dL) 13.1 (2.14) - 13.3 [11.7; 14.9] 10.9 (1.9) - 11.0 [9.7; 12.4]
ASAT (UI/L) 34.4 (14.1) - 21.0 [25.0; 41.0] 34.9 (38.6) - 22.0 [18.0; 29.0]
ALAT (UI/L) 26.2 (17.1) - 21.0 [15.0; 31.0] 17.3 (27.0) - 8.0 [6.0 ;12.8]

Table 1 – Summary of demographic and covariate data. The values are the mean of
the variables, with standard deviation in parentheses, followed by the median and the
interquartile interval ([Q1; Q3]).
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Parameters Population values (RSE %) Variability % (RSE %)
ka (Day−1) 4.2 (12) 81 (12)
Cl (L/Day−1) 26.0 (5) 34 (11)
V1 (L) 248.0 (5) 25 (17)
Q (L.Day−1) 41.6 (15) 70 (18)
V2 (L) 282.0 (7) -
a 0.07 (24) -
b 0.14 (11) -

Table 2 – Estimates of the parameters in model Mad along with the relative standard errors
of estimation (RSE) given in brackets. The first column shows the value of the fixed effect,
while the second column gives the variabilities expressed as %.
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Group Age Dose (ml/day) Optimised times (days)
Infants-Toddlers < 3 y.o. 87 0.1, 0.9, 4.5, 12, 57
Pre-School 4 - 5 y.o. 113 0.1, 0.9, 4.5, 13, 55
School age 5 - 11 y.o. 178 0.1, 2, 5, 14, 57
Adolescent 12 - 15 y.o. 342 0.2, 2, 6, 16, 66
Overall (optimal design) 0.1, 1, 5, 14, 57

Table 3 – Optimal sampling times for each age-group (first four rows), and for the optimal
design across groups (last row). The four age groups correspond to an infant-toddler group
including only one infant (13%), a pre-school children group (17%), a school-age group
(37%) and an adolescent group (33%). Dose indicates the average quantity of mefloquine
given per day.
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Model Parameter Value Optimal design Empirical design
Relative bias (%) Empiric RSE (%) Relative bias (%) Empiric RSE (%)

Mallo+mat ka (Day−1) 4.16 -1.29 7.90 469.43 486.60
Cl (L.Day−1) 26.00 0.58 2.67 -0.73 3.72
V1 (L) 248.00 -2.33 4.39 -6.85 10.82
Q (L.Day−1) 41.60 4.21 9.86 6.56 21.78
V2 (L) 282.00 2.30 4.98 0.91 7.13
ωka (-) 0.81 -2.22 8.10 16.11 34.97
ωCl (-) 0.34 -0.31 5.66 -2.37 8.11
ωV1 (-) 0.25 -1.71 11.45 18.02 29.94
ωQ (-) 0.70 -0.03 15.37 -1.24 20.71
a (mg.kg−1) 0.07 -1.32 7.47 1.16 11.16
b (-) 0.14 -2.07 9.48 -8.63 14.01

Mad ka (Day−1) 4.16 -2.75 8.33 219.15 240.32
Cl (L.Day−1) 26.00 -0.52 3.73 -1.69 3.98
V1 (L) 248.00 -1.46 4.08 -11.27 13.39
Q (L.Day−1) 41.60 5.54 14.08 22.60 31.75
V2 (L) 282.00 2.78 5.34 5.79 9.30
ωka (-) 0.81 -2.61 8.38 15.17 33.64
ωCl (-) 0.34 -1.12 7.89 -2.43 8.93
ωV1 (-) 0.25 0.59 14.18 14.58 30.73
ωQ (-) 0.70 3.74 17.12 5.95 23.87
a (mg.kg−1) 0.07 -1.73 6.10 0.14 7.38
b (-) 0.14 -4.15 12.62 -15.82 23.08

Mad,abs ka (Day−1) 1.00 -1.67 12.11 319.11 337.19
Cl (L.Day−1) 26.00 -0.28 3.58 -1.60 4.15
V1 (L) 248.00 -2.35 8.70 -3.54 14.92
Q (L.Day−1) 41.60 2.45 15.95 40.62 53.55
V2 (L) 282.00 3.03 7.08 2.44 11.33
ωka (-) 0.81 -2.93 9.09 1.63 32.17
ωCl (-) 0.34 0.17 8.68 -1.65 10.18
ωV1 (-) 0.25 4.68 19.47 31.07 39.23
ωQ (-) 0.70 0.72 21.54 30.07 42.85
a (mg.kg−1) 0.07 -0.53 4.55 -0.88 7.99
b (-) 0.14 -8.68 15.15 -13.45 26.38

Mch ka (Day−1) 4.16 3.77 10.23 13.51 50.28
Cl (L.Day−1) 14.30 1.82 5.54 1.92 7.32
V (L) 263.00 0.64 5.43 -0.62 7.81
ωka (-) 0.81 -1.74 14.36 52.26 53.87
ωCl (-) 0.63 -2.33 8.69 -0.41 8.80
ωV (-) 0.66 0.18 6.93 -4.48 10.43
a (mg.kg−1) 0.08 -0.84 7.66 3.05 11.80
b (-) 0.35 -0.04 5.32 -4.18 9.98

Table 4 – Validation of optimal design on different models. Models are Mallo+mat based the
adult model Mad with allometry and maturation; Mad the adult model; Mad,abs the adult
model with a different absorption; Mch the model built from the children data. Relative
bias and empiric RSE are expressed in pourcentages.
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Model Parameter Value sampling windows
Relative bias Empiric RSE

Mallo+mat ka (Day−1) 4.16 -1.23 9.12
Cl (L.Day−1) 26.00 -0.39 3.08
V1 (L) 248.00 -1.61 3.93
Q (L.Day−1) 41.60 4.28 11.19
V2 (L) 282.00 1.28 4.12
ωka (-) 0.81 0.51 7.81
ωCl (-) 0.34 -0.08 6.66
ωV1 (-) 0.25 -1.79 10.39
ωQ (-) 0.70 -0.71 14.87
a (mg.kg−1) 0.07 -2.45 8.81
b (-) 0.14 -2.08 7.75

Mad ka (Day−1) 4.16 -3.01 9.26
Cl (L.Day−1) 26.00 0.67 3.57
V1 (L) 248.00 -1.34 4.37
Q (L.Day−1) 41.60 2.27 12.50
V2 (L) 282.00 1.36 5.62
ωka (-) 0.81 -2.58 7.25
ωCl (-) 0.34 -0.48 7.12
ωV1 (-) 0.25 0.09 15.32
ωQ (-) 0.70 0.69 17.64
a (mg.kg−1) 0.07 -1.94 6.30
b (-) 0.14 -3.05 10.99

Mad,abs ka (Day−1) 1.00 -0.72 11.57
Cl (L.Day−1) 26.00 -0.48 3.78
V1 (L) 248.00 -1.28 7.92
Q (L.Day−1) 41.60 1.21 16.88
V2 (L) 282.00 2.71 7.95
ωka (-) 0.81 -1.17 8.01
ωCl (-) 0.34 0.36 8.19
ωV1 (-) 0.25 1.69 20.19
ωQ (-) 0.70 -0.15 21.64
a (mg.kg−1) 0.07 -0.83 4.88
b (-) 0.14 -5.86 13.53

Mch ka (Day−1) 4.16 0.48 9.45
Cl (L.Day−1) 14.30 0.53 5.60
V (L) 263.00 1.43 5.15
ωka (-) 0.81 -0.29 12.86
ωCl (-) 0.63 -0.91 6.75
ωV (-) 0.66 -1.13 6.98
a (mg.kg−1) 0.08 -0.84 8.31
b (-) 0.35 -0.10 5.10

Table 5 – Evaluation of the design with sampling windows derived from the optimised
design. Models are Mallo+mat based the adult model Mad with allometry and maturation;
Mad the adult model; Mad,abs the adult model with a different absorption; Mch the model
built from the children data.
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Figure 1 – Framework used to design the paediatric study using adult information.

42



Figure 2 – Schema of simulation study. For both the optimal design and the empirical
design from the paediatric database, and for each model tested, 100 datasets are simulated.
For each dataset, PK parameters are estimated and then compared to the theoretical value
of the original model with bias and RMSE. Models are Mad the adult model; Mallo+mat the
maturation model using the adult model with allometry and maturation; Mad,abs the adult
model with a modified absorption at 1; Mch model resulting of the pharmacokinetic of the
paediatric data
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(a) (b)

Figure 3 – Concentrations of mefloquine in blood (in mg/L), shown in log-scale: (a) adults;
(b) children.
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(a) Mallo+mat (b) Mallo

(c) Mad (d) Mch

Figure 4 – Visual predictive check for extrapolation models on paediatric data
The 95% confidence interval for the median of the model is in pink, the blue area correspond to the 95%
prediction band for the upper and lower limit of the 80% predictive interval, the red area characterize outliners
data points. (a) extrapolation Mallo+mat from the adult model with allometry and maturation; (b) extrapolation
Mallo from the adult model with allometry; (c) extrapolation from the adult model Mad ; (d) model Mch

constructed from the children database.
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