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ABSTRACT 

 

Holoprosencephaly (HPE) is the most common congenital cerebral malformation, 

characterized by impaired forebrain cleavage and midline facial anomalies. Heterozygous 

mutations in 14 genes have been associated with HPE, and are often inherited from an 

unaffected parent underlying complex genetic bases. It is now emerging that HPE may result 

from a combination of multiple genetic events, rather than from a single heterozygous 

mutation. To explore this hypothesis, we undertook whole exome sequencing (WES) and 

targeted high-throughput sequencing approaches to identify mutations in HPE subjects. We 

report here two HPE families in which two mutations are implicated in the disease. In the first 

family presenting two fetuses with alobar and semi-lobar HPE, we found mutations in two 

genes involved in HPE, SHH and DISP1, inherited respectively from the father and the 

mother. The second reported case is a family with a 9-year old girl presenting lobar HPE, 

harbouring two compound heterozygous mutations in DISP1. Together, these cases of digenic 

inheritance SHH/DISP1 and autosomal recessive HPE suggest that in some families, several 

genetic events are necessary to cause HPE. This study highlights the complexity of HPE 

inheritance and has to be taken into account by clinicians to improve HPE genetic counseling.  
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INTRODUCTION 

 

Holoprosencephaly (HPE) is the most frequent cerebral malformation, with an occurrence of 

approximately 1 in 250 embryos and 1.31 in 10,000 births (1). HPE is characterized by a 

failure to define the midline of the forebrain and midface, with different degrees of severity 

from a lobar brain to alobar forms associated with cyclopia. Mild manifestations or 

microforms include ocular hypotelorism, microcephaly and a single central maxillary incisor 

(2). The mode of inheritance of HPE has been extensively discussed in the literature, and 

several genetic models have been proposed: autosomal dominant transmission, autosomal 

recessive transmission or association of mutations in multiple genes (2-5). All these studies 

point out a strong genetic heterogeneity, with several causative genes identified (Table 1). It 

mostly implicates heterozygous mutations in SHH, ZIC2, SIX3 and TGIF1, which are 

considered as the four major genes involved in HPE. Heterozygous mutations in the minor 

genes GLI2, PTCH1, DISP1, FOXH1, NODAL, TDGF1, CDON, GAS1, DLL1 and FGF8 

have been identified with a lower frequency (2, 6, 7). Recently, two recessive inheritance 

cases of HPE have been described, implicating mutations in the gene STIL (Table 1) (8, 9). 

Importantly, these genes are all involved in signalling pathways implicated in brain 

development (4, 9-16) and alteration of SHH signalling appears to be the most common cause 

of HPE (17). 

 

Although the major genes have been formally involved, their penetrance is usually incomplete 

with an intra-familial phenotypic variability. Actually, mutations located in these genes are 

inherited from a parent, asymptomatic or displaying a microform of HPE, in 70% of the cases 

(2). For example, the same SHH mutation can be found in individuals harbouring either alobar 

HPE or minor forms (18). Consequently, the clinical variability could be due to abnormalities 

in other genes that have a function in the same or interacting signalling pathways (19, 20). 

 

This is strongly supported by the description of mouse models carrying mutations in two 

genes of the same or different signalling pathways. For example, whereas Gas1-/- mutant 

mice exhibit partial fusion of the medial nasal processes and Shh+/- mice appear normal, 

Gas1-/-;Shh+/- mice embryos display complete fusion of the medial nasal processes (21), 

reminiscent of a HPE phenotype. Such examples of animal models are numerous and all 
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support the hypothesis that HPE could be due to a cumulative partial inhibition of signalling 

pathways implicated in forebrain development (6, 22). 

 

However, there are only a few examples in the literature that suggest that HPE could be 

related to combined failures of several HPE genes in human (Table 2), including patients with 

co-occurring mutations or deletions in SHH/TGIF1 and SHH/ZIC2 (23). Nevertheless, 

sequencing of the four major genes (SHH, ZIC2, TGIF1, SIX3) in large HPE cohorts has not 

allowed to validate this hypothesis (2, 5, 14). Thus, the mode of inheritance of HPE is still 

unclear. 

 

Identifying more genes in families in which polygenic inheritance is suspected would be very 

beneficial to understand the pathogenic mechanism of this developmental disorder. This is 

now facilitated by the recent development of next generation sequencing technologies (20). In 

this study, we performed whole exome sequencing (WES) in a family where the father carries 

a mutation in SHH, transmitted to 3 fetuses with semi-lobar and alobar HPE. We 

hypothesized that the fetuses have all inherited a second mutation in another gene from the 

mother. This original strategy was powerful as it revealed a second mutation in DISP1 shared 

by the mother and the HPE fetuses. This family is the first one in which mutations in the two 

HPE-associated genes, SHH and DISP1, have been identified. Furthermore using a targeted 

NGS method, the involvement of DISP1 in HPE was reinforced by the observation of two 

DISP1 compound heterozygous mutations in another HPE family. These results support the 

complexity of HPE inheritance and raise important questions about how clinicians should 

consider the inheritance mode of HPE. 

 

MATERIALS AND METHODS 

 

Patients and samples 

Patients presenting midline abnormalities and suspicion of holoprosencephaly were referred 

from the Centre Hospitalier Universitaire of Rennes (France) and the Hôpital Cochin (Paris, 

France) through the network of reference centres for developmental anomalies and 

malformation syndromes (CLAD centres). Patients and parents blood and tissue samples were 

obtained from the processing of biological samples through the Centre de Ressources 

Biologiques (CRB) Santé of Rennes BB-0033-00056 (http://www.crbsante-rennes.com). The 

research protocol was conducted under French legal guidelines and fulfilled the requirements 
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of the local institutional ethics committee. The parents of the photographed patient assented to 

include photographs in a scientific publication. 

 

F1 family  

The mother II2 had three terminations of pregnancy with fetuses (III1, III2 and III3) 

harbouring semi-lobar or alobar HPE (Fig. 1a and Table 3a). The F1 family also includes two 

other healthy girls III4 and III5, being 12 and 11 years old respectively. The father II1, the 

grandfather I1 and the uncle II3 all present microcephaly. This latter had 4 children among 

which 3 (III6, III7 and III9) harbour microcephaly and minor facial midline malformations 

(hypotelorism). The father II1 also had two healthy siblings, II5 and II6 (Table 3a). DNA was 

available for all family members except II4. 

 

F2 family 

The F2 family includes three members, the two healthy parents I1 and I2 and their 9-year old 

girl II1 who displayed a lobar HPE (Fig. 2 and Table 3b). She has two healthy siblings but 

their DNA was not available. Pregnancy was normal. A wide cleft palate was observed at 

birth, which was surgically treated. II1 was then referred to genetic counselling at 5-and-half-

years old for psychomotor retardation (started walking at 21 months and had a language 

delay) and learning difficulties. On clinical examination, she weighed 16.5 kg (-1 standard 

deviation), was 109.5 cm tall, and had microcephaly (-2SD). She presented facial dysmorphy 

with flat face, short nose, small mouth and hypotelorism (Figs. 2c and 2d). At the sight of 

these clinical observations, we recommended a molecular diagnosis of HPE. Molecular 

testing of 18 HPE genes was performed on DNA of the daughter II1, revealing the presence of 

two compound heterozygous mutations in the minor HPE gene DISP1. Subsequently, to 

confirm the presence of HPE, MRI was performed and showed a mild form of lobar HPE with 

a very localized fusion of hemispheres in the forebrain (Fig. 2b).  

 

 

 

Whole Exome Sequencing  

WES was performed by the Genoscope on the DNA of the two parents II1 and II2 and one of 

the fetuses III2 in F1 family, using “SeqCap EZ Exome v3.0” capture (Roche) on 

HiSeqTM2000 platform (Illumina). Exomes were homogenously sequenced with a mean 

coverage of 93% of the targeted bases with read depth greater than 20X, and an overall mean 
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depth of coverage of 112X. Bioinformatic analyses were conducted with the Illumina pipeline 

analysis CASAVA 1.8. The sequenced reads were aligned on the reference human genome 19 

(hg19) with Eland v2.0 before variant calling (SNV and INDEL) with the CASAVA suite. 

Resulting variants were annotated using ANNOVAR v2.0 

(http://www.openbioinformatics.org/annovar/annovar_filter.html). Variants population 

frequencies were extracted from three different public databases (the Exome Sequencing 

Project (ESP6500), the 1000 Genomes Project (1000g, 2014) and the Exome Aggregation 

Consortium (ExAC02)). Several bioinformatics predictions tools were used to predict 

conservation (GERP++, PhyloP, SiPhy, and PhastCons Elements 46-way) (24-27) and 

deleterious effect of SNVs and INDELs (SIFT, PolyPhen-2 HDIV and HVAR, LRT, 

Mutation Taster, Mutation Assessor, FATHMM, Radial SVM, LR and CADD) (28-34). 

Visual inspection of candidate variants was performed with Integrative Genome Viewer 

(IGV, Broad Institute). 

 

Targeted high-throughput sequencing  

Targeted NGS was performed using Ion Torrent technology (Life Technologies) on DNA 

from the girl II1 in F2 family. Two pools of 711 primer pairs were designed (Ion Ampliseq 

technology, Life Technologies) to sequence all the exons of a panel of 18 genes involved in 

HPE or candidates (SHH, ZIC2, TGIF1, SIX3, DISP1, CDON, GAS1, SUFU, FGF8, FGFR1, 

NODAL, HHAT, SUFU, TDGF1, PTCH1, FOXH1, SOX2, DLL1) and 2 SHH expression 

regulatory regions, spanning 111kb. Libraries were sequenced with Ion PGMTM System (Life 

Technologies). A PGM-specific pipeline incorporated in the Ion Torrent server (Torrent Suite 

version 4.0.2; Life Technologies) was used to perform the following steps: reads alignment on 

hg19, targeted regions coverage analysis, filtering and removal of poor signal reads. Variant 

calling was performed with the Ion Torrent Variant Caller version 4.0. Mutations were 

annotated using ANNOVAR v2.0 as described for WES analysis and with Alamut software 

(Interactive Biosoftware). 

 

 

Sanger sequencing 

Sanger sequencing in F1 and F2 families assessed the intrafamilial segregation of the 

candidate mutations found by NGS. This was done using the BigDye terminator cycle 

sequencing kit (Applied Biosystems) on an ABI3130xl sequencer (Applied Biosystems) and 

analysed using SeqScape software v2.6 (Life Technologies).  
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Functional validation of the SHH p.Pro347Gln mutation 

The human SHH cDNA (RefSeq NM_000193) was cloned in a pMSCVneo (Clontech) vector. 

A mutated plasmid containing the SHH p.Pro347Gln mutation was obtained by site-directed 

mutagenesis using the QuikChange XL Site-directed Mutagenesis Kit (Stratagene, La Jolla, 

USA). Plasmids containing cDNA of SHH WT or SHH p.Pro347Gln were transfected in 

C3H10T1/2 cells using Transfast (Promega). Six days later, the alkaline phosphatase activity 

was measured as previously described (35), reliable to the differentiation of C3H10T1/2 into 

osteoblasts under SHH action.  

 

RESULTS 

 

F1 family 

In the F1 family, we showed by Sanger sequencing that a p.Pro347Gln mutation in SHH 

(c.1040C>A of RefSeq NM_000193) was present in fetuses III1, III2 and III3 inherited from 

the father II1 (Fig. 1a). It was inherited from the grandfather I1, and was also transmitted to 

the uncle II3, displaying microcephaly and hypotelorism. This uncle transmitted the SHH 

mutation to 3 children (III6, III7 and III9), also harbouring microcephaly and hypotelorism. 

WES analysis validated the known heterozygous SHH mutation in the father II1 presenting 

microcephaly and hypotelorism, and in the HPE fetus III2.  

 

The deleterious effect of the SHH p.Pro347Gln mutation was evaluated using an adaptation of 

a cell-based assay previously described (35). The efficiency of SHH signalisation in presence 

of the mutation was evaluated by quantifying the SHH-dependent differentiation of 

mesenchymal cells (C3H10T1/2) into osteoblasts. This was assessed by measuring the 

activity of the alkaline phosphatase (ALP) in C3H10T1/2 cells, 6 days after transfection with 

the pMSCVneo plasmids containing either cDNA of SHH WT or cDNA of SHH 

p.Pro347Gln. The ALP activity of the cells expressing the mutated SHH was 0,04 µU by µg 

of protein extract, while it was 1.31 µU/µg in the protein extract from cells expressing SHH 

WT, meaning that C3H10T1/2 cells failed to undergo osteoblastic differentiation under action 

of mutated SHH. This strongly reflects the deleteriousness of the p.Pro347Gln mutation (Fig. 

1b). 
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Based on the assumption that HPE observed in the fetus III2 resulted from the association of 

the SHH mutation with another mutation, variants were filtered according to this inheritance 

pattern. Only mutations inherited from the mother II2 were selected in the child III2. Intronic 

variants were filtered out, as well as synonymous variants and those that had a population 

allele frequency over 1% in any of the three public databases 1000g, ESP6500, and ExAC02. 

Thirty-four variants were selected, and a prioritization was performed using the cumulative 

predictions of ten bioinformatics tools. The 10 first-ranked candidate mutations are presented 

in supplementary data (Fig. S1). Most of these genes were already associated with genetic 

syndromes without any obvious link with forebrain development. We thus focused on a 

mutation in DISP1, known to be involved in HPE. This mutation is a substitution of a thymine 

in cytosine at location c.3287 of DISP1 (NM_032890), leading to the change of a methionine 

in threonine at location p.1096. This mutation was listed as rs144673025 in dbSNP database, 

and has a minor allele frequency of 0,55% in ESP6500, 0,1398% in 1000g, and 0,6189% in 

ExAC02. Three bioinformatics prediction tools classified this mutation as deleterious (LRT, 

Mutation Taster, and FATHMM) while other tools predicted it as tolerated (PolyPhen-2, 

SIFT, radial SVM, LR, and Mutation Assessor) (Table 4).  

 

We used Sanger sequencing to search for the DISP1 c.3287T>C mutation in individuals III3, 

III4 and III5 (Fig. 1). DNA was no longer available to look for this DISP1 mutation in fetus 

III1. A perfect co-segregation of the two mutations, SHH p.Pro347Gln and DISP1 

p.Met1096Thr was observed in HPE fetuses III2 and III3. Among the two healthy sisters, III4 

has no mutation whereas III5 carries the DISP1 mutation only. 

 

F2 family 

The F2 family was screened for 18 HPE candidate genes using targeted NGS for molecular 

diagnosis on the DNA of the daughter II1. Two heterozygous mutations were identified in the 

exon 10 of DISP1: the c.1087A>G transition leading to a missense mutation p.Asn363Asp 

and the c.1657G>A transition leading to a missense mutation p.Glu553Lys. Sanger 

sequencing on DNA of the parents showed that the p.Asn363Asp mutation was inherited from 

the father I1, and the p.Glu553Lys mutation was inherited from the mother I2 (Fig. 2a).  

The DISP1 p.Asn363Asp mutation was absent from public databases, and was predicted 

deleterious by 7 out of 10 of the prediction tools employed. The second mutation, 

p.Glu553Lys, was also predicted deleterious by the majority of the prediction tools, and was 

also absent from public sequencing databases (Table 4). According to the Alamut software 
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and the other conservation scores used, these two mutations were in highly conserved regions 

at both the nucleotide and the amino acid level. 

 

DISCUSSION 

 

The genetic heterogeneity of HPE is supported by reduced penetrance and the absence of 

obvious genotype-phenotype correlation. This is especially true for patients carrying 

heterozygous SHH mutations, as 45% harbor microforms, 45% present severe HPE and 10% 

are apparently asymptomatic (18).  Using WES, we report here the first co-segregation of 

mutations in SHH and DISP1 with severe HPE. Our results suggest that these mutations are 

combining to give a severe phenotype and provide strong evidence that digenic inheritance is 

a significant genetic model for HPE. 

 

Relationships between SHH and DISP1 in HPE 

In this study, we have investigated one family carrying a deleterious mutation in SHH and 

displaying variable expressivity of the disease. This mutation causes the change of proline in 

glutamine, which results in a severe reduction of SHH activity. Although microcephaly is not 

a typical sign of HPE, we can consider that the SHH mutation is responsible for this mild 

form of HPE in the present family (2). SHH mutation shows full penetrance with 

microcephaly whereas a second mutation in DISP1 seems to be necessary to obtain a more 

severe HPE in 3 fetuses. This is also supported by the finding that the mother and a clinically 

normal sister carried only the mutation in DISP1.  

 

In this study we also describe the first HPE case with compound heterozygous mutations in 

DISP1. Altogether, we find 3 different mutations (Fig. 3) in conserved regions of DISP1, 

including one in the Sterol Sensing Domain (SSD). The exact role of the SSD remains 

unclear, although most SSD containing proteins have been implicated in intracellular 

trafficking (36, 37). These 3 missense mutations in DISP1 provide new arguments for the 

implication of this gene in HPE. Few other mutations in DISP1 have been previously 

described in patient only harbouring microforms of HPE (38, 39). Noteworthy, all these 

DISP1 mutations were inherited from clinically unaffected parents. This gives evidence that 

additional factors are necessary to potentiate these mutations of DISP1 and to lead to HPE. As 

DISP1 mediates the secretion of SHH from producing cells, and allows consequent paracrine 

signalling (40), we hypothesized that these mutations have an impact on SHH signalling. 
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Mice data also strongly reveal the implication of Disp1 in HPE (40-42). Heterozygous 

knockout for Disp1 are undistinguishable from the wildtype whereas Disp1-/- embryos do not 

survive beyond E9.5 because of heart development defects. They also display cyclopia 

reminiscent to severe HPE (43). Further analysis of these mutants permitted to show that Shh 

signalling was disrupted in Disp1-/- embryos, indicating that Disp1 is essential for proper Shh 

signalling. Thus, Disp1 is most probably critical for ventral forebrain induction through its 

interaction with Shh pathway. Consequently, the co-segregation of a mutation in SHH and a 

mutation in DISP1 with severe HPE strongly suggests that cumulative effects lead to severe 

impairment of forebrain development. 

 

Inheritance in HPE 

Some authors have proposed autosomal recessive inheritance in HPE (3, 44). However, 

despite systematic sequencing, homozygous mutations in the major HPE genes SHH, ZIC2 

and SIX3, were never described in HPE cohorts (2, 5, 45). Nonetheless some autosomal 

recessive cases implicating minor HPE genes (Table 1) have been reported.  In 2007, a first 

case of recessive inheritance of TGIF1 mutations was described, with the finding of two 

compound heterozygous mutations (46). A loss of function homozygous mutation in FGF8 

has also been identified in one consanguineous HPE family (47). More recently, hypomorphic 

alleles of STIL were implicated in two cases of autosomal recessive inheritance in HPE 

patients (8, 9). It was proposed that STIL had a function during early brain development 

linked to SHH signalling (9, 48). Here, we describe a first HPE patient displaying two 

mutated DISP1 alleles whereas the two clinically normal parents carry only one mutated 

allele. This strongly supports that the presence of two mutations in a minor HPE gene 

exacerbates the risk of developing a HPE phenotype. Furthermore, the mild phenotype of the 

HPE patient described in this manuscript suggests that DISP1 activity is decreased such that it 

leads to a significant impairing of SHH pathway responsible for mild HPE, but above the 

threshold that would result in severe HPE and early lethality, as indicated by the mice model 

(43). 

 

Currently, single heterozygous mutations are mainly reported in HPE cases (Table 1) and 

believed to account for the HPE phenotype (5). But still, it cannot be excluded that a mutation 

in another gene may underlie the observed forebrain defects.  However, double heterozygous 

mutations for two HPE genes were rarely reported (Table 2). This is not really surprising 

because HPE genes are key developmental genes, and strong deleterious mutations in two of 
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these genes are probably not viable (44, 49). Thus, it is important to design the pipeline of 

WES analysis in order to avoid discarding mutations predicted to have a mildly deleterious 

effect in development genes. This strategy has enabled us to identify a new DISP1 mutation in 

a family presenting two fetuses with alobar and semi-lobar HPE associated to a deleterious 

mutation in SHH. The identification of these two altered genes that have functional 

relationships in multiple affected individuals in one family strongly supports a digenic 

inheritance (19). 

 

Polygenic inheritance has now been established for more and more other complex inheritance 

diseases among which digenic inheritance is the simplest form (19, 20). This mode of 

inheritance was reported in Kallmann syndrome (KS) (50), characterized by a defective 

hormonal reproductive axis and sense of smell. This developmental pathology was firstly 

described as autosomal dominant or X chromosome-linked. Further studies permitted to refine 

the genetics of KS syndrome by describing several patients harbouring two mutations in 

different genes (51, 52), combining major and minor KS genes, and giving evidence of a 

digenic inheritance of KS syndrome. This was also reported in patients with Alport syndrome, 

presenting mutations in two different collagen IV genes (COL4A3 and COL4A4) (53). In 

some nephropathies, mutations in two genes encoding glomerular proteins nephrin and 

podocin (NPHS1 and NPHS2) were identified in several patients (54). Such a multigenic 

inheritance is also well described in ciliopathies like Bardet-Biedl syndrome (BBS) with 

many patients harbouring mutations in two or more BBS genes (55). These cases illustrate 

how, in complex syndromes with variable severity, polygenic inheritance plays a role in the 

clinical expression of the disease. This is particularly relevant when there is functional 

relationships between mutated genes, as this is the case for HPE genes (44). A first online 

database dedicated to digenic diseases (DIDA, http://dida.ibsquare.be/) is now available (20). 

The cases described in our manuscript fully meet the required criteria to be included in DIDA 

database (20). 

 

By describing new HPE families with no classical autosomal dominant inheritance, our work 

refines the genetic bases of HPE. This discovery has significant implications for genetic 

counseling especially for risk assessment of patient relatives. Clinical geneticists have to be 

aware of such different patterns of heritability, and WES or at least sequencing of a large 

panel of HPE genes, should be performed to establish a molecular diagnosis.  
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Table 1. Characteristics of genes and mutations implicated in holoprosencephaly. 

The mutation frequencies are given in qualitative terms: “High” is for genes mutated in more 

than 10% of HPE cases, “Medium” for genes mutated between 10% and 1%, and “Low” for 

genes mutated in less than 1% of HPE cases. Mutation frequencies were calculated based on 

our local HPE cohort (>1000 cases). Mainly inherited: inherited mutations from a parent are 

predominant among the reported cases; inherited: All reported mutations are inherited from a 

parent; NA: inheritance information was not available. CNV or large indels encompassing 

whole genes are not included in this table. 

 

Table 2. Digenic inheritance in human HPE cases 

Mutations are given in proteic nomenclature, except the del18p11 which carries the TGIF1 

gene off. 

 

Tables 3. Phenotypic description of families F1 and F2 members. 

(a) Phenotypic description of family F1 members. The head circumferences of individuals 

harboring microcephaly are given in standard deviation (SD). Facial description of fetus III3 

was not available (NA). The dash means that the phenotype is normal. (b) Phenotypic 

description of family F2 members. M=Male, and F=Female. 

 

Table 4. Characteristics of DISP1 and SHH mutations found in F1 and F2 families 

Mutations reported in F1 family (DISP1 p.Met1096Thr; SHH p.Pro347Gln) and in F2 family 

(DISP1 p.Asn363Asp; DISP1 p.Glu553Lys) were annotated using ANNOVAR. Minor alleles 

frequencies were extracted from dbSNP build 138, in the Exome Sequencing Project 

containing sequencing data from 6500 exomes (ESP6500), in the 1000 Genome Project 

release of 2014 (1000G), and in the Exome Annotation Consortium (ExAC) containing 

sequencing data from 60700 exomes. Bioinformatic predictions were given by 10 predictions 

tools (SIFT, PolyPhen-2 HDIV and HVAR, LRT, Mutation Taster, Mutation Assessor, 

FATHMM, Radial SVM, LR and CADD). The cumulated predictions were given here, 

D=Deleterious, P=Possibly Deleterious, T=Tolerated.  
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TABLES 

 

Gene Chromosomal 
Locus 

Mutation frequency 
in nonsyndromic 

HPE 

Percentage of  
Inherited mutations 

from a parent 
Zygosity state References 

SHH 7q36 High (12%) 70% Heterozygous         (5, 23, 45, 56-58)  

ZIC2 13q32 Medium (9%) 30% Heterozygous         (5, 45, 59-62) 

SIX3 2p21 Medium (5%) 70% Heterozygous         (5, 45, 63-67) 

TGIF1 18p11.3 Medium (1,7%) Mainly inherited Heterozygous         (5, 68, 69) 

PTCH1 9q22.3 Low Mainly inherited Heterozygous         (4, 70, 71)  

TDGF1 3p23-p21 Low NA Heterozygous (10) 

GLI2 2q14 Low Mainly inherited Heterozygous (70, 72, 73)  

DISP1 1q42 Low Mainly inherited Heterozygous (38, 39) 

FGF8 10q24 Low Mainly  inherited Heterozygous         
Homozygous (11, 47)  

FOXH1 8q24.3 Low NA Heterozygous (74) 

NODAL 10q22.1 Low NA Heterozygous (75) 

GAS1 9q21.33 Low Mainly inherited Heterozygous         (12) 

DLL1 6q27 Low Inherited Heterozygous (15) 

CDON 11q24.2 Low NA Heterozygous (13) 

STIL 1p33 Low Inherited Heterozygous 
Homozygous (8, 9, 76)  

 

Table 1. Characteristics of genes and mutations implicated in holoprosencephaly. 
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Gene Mutation References 

SHH p.Gly290Asp (23) 
ZIC2 p.Ala461_Ala470dup 
SHH p.Pro424Ala (23) 
TGIF1 del18p11 
SHH p.del378_380 (23) 
TGIF1 p.Thr151Ala 
GLI2 p.Arg151Gly (70) 
PTCH1 p.Thr328Ala 
SIX3 p.Ala93Asp (4) 
PTCH1 p.Ala393Thr 
SIX3 p.Ala284Pro (77) 
ZIC2 p.Trp304Arg 
SHH p.Leu218Pro 

(12) 
GAS1 p.Asp270Tyr 
SHH p.Cys363Tyr 

(12) 
GAS1 p.Asp288Gly 

SHH p.Pro347Gln In this report 
DISP1 p.Met1096Thr  
 

Table 2. Digenic inheritance in human HPE cases 
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(a) 

  Sex Age Brain MRI Face 

I1 M 81 Microcephaly (-5SD) - 
I2 F 79 - - 
II1 M 48 Microcephaly (-5SD) - 

II2 F 48 - - 

II3 M 46 Microcephaly (-4,5SD) Hypotelorism 

II5 M 42 - - 

II6 F 35 - - 

III1 M (fetus) - Semi-lobar HPE Proboscis                   
Macroglossy 

III2 F (fetus) - Alobar HPE 

Flat face                    
hypotelorism              

Premaxillary agenesia         
Cleft lip/palate 

III3 F (fetus) - Severe HPE NA 

III4 F 12 - - 

III5 F 11 - - 

III6 M 12 Microcephaly (-4SD) Hypotelorism                
Cleft lip/palate 

III7 M 11 Microcephaly (-3SD) - 

III8 F 9 - - 

III9 F 6 Microcephaly (-4SD) - 
 
(b)  

  Sex Age Brain MRI Face 

I1 M 34 - - 

I2 F 33 - - 

II1 F 9 Lobar HPE  
Microcephaly (-2SD)            

Flat face                    
Short nose 

Hypotelorism                
Arched palate                
Cleft palate                  
Microstomia                 

Narrow palpebral fissures      
 
Tables 3. Phenotypic description of families F1 and F2 members. 
 
 
 
 
 



A
cc

ep
te

d 
A

rti
cl

e
 

Minor Allele Frequencies 

Gene 
Nucleic 

acid 
change 

Amino acid 
change dbSNP ESP6500 1000G ExAC Bioinformatic 

predictions 

DISP1 c.T3287C p.Met1096Thr rs144673025 0,005 0,001 0,006 D:3 P:1 T:6 

SHH c.C1040A p.Pro347Gln - 0 0 0 D:9 P:1 T:0 

DISP1 c.A1087G p.Asn363Asp - 0 0 0 D:7 P:2 T:1 

DISP1 c.G1657A p.Glu553Lys - 0 0 0 D:5 P:1 T:4 

 
Table 4. Characteristics of DISP1 and SHH mutations found in F1 and F2 families 
 
 

 

 

 

 

 


