E. Leoncini, G. Baranello, and I. Orioli, Frequency of holoprosencephaly in the International Clearinghouse Birth Defects Surveillance Systems: Searching for population variations, Birth Defects Research Part A: Clinical and Molecular Teratology, vol.33, issue.8, pp.585-591, 2008.
DOI : 10.1002/bdra.20479

S. Mercier, C. Dubourg, and N. Garcelon, New findings for phenotype-genotype correlations in a large European series of holoprosencephaly cases, Journal of Medical Genetics, vol.48, issue.11, pp.752-760, 2011.
DOI : 10.1136/jmedgenet-2011-100339

URL : https://hal.archives-ouvertes.fr/inserm-00626407

M. Barr, J. Cohen, and M. Jr, Autosomal recessive alobar holoprosencephaly with essentially normal faces, American Journal of Medical Genetics, vol.83, issue.1, pp.28-30, 2002.
DOI : 10.1002/ajmg.10587

J. Ming, M. Kaupas, and E. Roessler, Mutations in PATCHED-1, the receptor for SONIC HEDGEHOG, are associated with holoprosencephaly, Human Genetics, vol.110, issue.4, pp.297-301, 2002.
DOI : 10.1007/s00439-002-0695-5

E. Roessler, J. Velez, N. Zhou, and M. Muenke, Utilizing prospective sequence analysis of SHH, ZIC2, SIX3 and TGIF in holoprosencephaly probands to describe the parameters limiting the observed frequency of mutant gene??gene interactions, Molecular Genetics and Metabolism, vol.105, issue.4, pp.658-664, 2012.
DOI : 10.1016/j.ymgme.2012.01.005

S. Mercier, V. David, and L. Ratié, NODAL and SHH dose-dependent double inhibition promotes an HPE-like phenotype in chick embryos, Disease Models & Mechanisms, vol.6, issue.2, pp.537-543, 2013.
DOI : 10.1242/dmm.010132

URL : https://hal.archives-ouvertes.fr/inserm-00824979

N. Kakar, J. Ahmad, and D. Morris-rosendahl, STIL mutation causes autosomal recessive microcephalic lobar holoprosencephaly, Human Genetics, vol.289, issue.1, pp.45-51, 2015.
DOI : 10.1007/s00439-014-1487-4

C. Mouden, M. De-tayrac, and C. Dubourg, Homozygous STIL Mutation Causes Holoprosencephaly and Microcephaly in Two Siblings, PLOS ONE, vol.68, issue.2, p.10, 2015.
DOI : 10.1371/journal.pone.0117418.s001

URL : https://hal.archives-ouvertes.fr/hal-01116427

D. Cruz, J. Bamford, R. Burdine, and R. , A loss-of-function mutation in the CFC domain of TDGF1 is associated with human forebrain defects, Human Genetics, vol.110, issue.5, pp.422-428, 2002.
DOI : 10.1007/s00439-002-0709-3

R. Arauz, B. Solomon, and D. Pineda-alvarez, A Hypomorphic Allele in the <i>FGF8 </i>Gene Contributes to Holoprosencephaly and Is Allelic to Gonadotropin-Releasing Hormone Deficiency in Humans, Molecular Syndromology, vol.1, issue.2, pp.59-66, 2010.
DOI : 10.1159/000302285

L. Ribeiro, R. Quiezi, A. Nascimento, C. Bertolacini, and A. Richieri-costa, Holoprosencephaly and holoprosencephaly-like phenotype and GAS1 DNA sequence changes: Report of four Brazilian patients, American Journal of Medical Genetics Part A, vol.117, issue.7, pp.1688-1694, 2010.
DOI : 10.1002/ajmg.a.33466

G. Bae, S. Domené, and E. Roessler, Mutations in CDON, Encoding a Hedgehog Receptor, Result in Holoprosencephaly and Defective Interactions with Other Hedgehog Receptors, The American Journal of Human Genetics, vol.89, issue.2, pp.231-240, 2011.
DOI : 10.1016/j.ajhg.2011.07.001

C. Dubourg, V. David, and A. Gropman, Clinical utility gene card for: Holoprosencephaly, European Journal of Human Genetics, vol.19, issue.1, pp.19-118, 2011.
DOI : 10.1002/ajmg.c.30254

URL : https://hal.archives-ouvertes.fr/inserm-00511701

V. Dupé, L. Rochard, and S. Mercier, NOTCH, a new signaling pathway implicated in holoprosencephaly, Human Molecular Genetics, vol.20, issue.6, pp.1122-1131, 2011.
DOI : 10.1093/hmg/ddq556

L. Ratié, M. Ware, and F. Barloy-hubler, Novel genes upregulated when NOTCH signalling is disrupted during hypothalamic development, Neural Development, vol.8, issue.1, p.25, 2013.
DOI : 10.1093/bioinformatics/bti473

M. Cohen and . Jr, Hedgehog signaling update, American Journal of Medical Genetics Part A, vol.2, issue.8, pp.1875-1914, 2010.
DOI : 10.1002/ajmg.a.32909

B. Solomon, B. Ka, and . Wyllie-a, Genotypic and phenotypic analysis of 396 individuals with mutations in Sonic Hedgehog, J Med Genet, vol.2012, issue.49, pp.473-479
URL : https://hal.archives-ouvertes.fr/inserm-00718148

A. Schaffer, Digenic inheritance in medical genetics, Journal of Medical Genetics, vol.132, issue.Suppl 1, pp.641-652
DOI : 10.1136/jmedgenet-2013-101713

A. Gazzo, D. Daneels, and E. Cilia, DIDA: A curated and annotated digenic diseases database, Nucleic Acids Research, vol.44, issue.D1, 2015.
DOI : 10.1093/nar/gkv1068

URL : http://doi.org/10.1093/nar/gkv1068

B. Allen, T. Tenzen, and A. Mcmahon, The Hedgehog-binding proteins Gas1 and Cdo cooperate to positively regulate Shh signaling during mouse development, Genes & Development, vol.21, issue.10, pp.1244-1257, 2007.
DOI : 10.1101/gad.1543607

R. Krauss, Holoprosencephaly: new models, new insights, Expert Reviews in Molecular Medicine, vol.124, issue.26, pp.1-17, 2007.
DOI : 10.1016/S0070-2153(05)69002-3

A. Article, L. Nanni, J. Ming, and M. Bocian, The mutational spectrum of the Sonic Hedgehog gene in holoprosencephaly: SHH mutations cause a significant proportion of autosomal dominant holoprosencephaly, Hum Mol Genet, vol.8, pp.2479-2488, 1999.

A. Siepel, G. Bejerano, and J. Pedersen, Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes, Genome Research, vol.15, issue.8, pp.1034-1050, 2005.
DOI : 10.1101/gr.3715005

M. Garber, M. Guttman, and M. Clamp, Identifying novel constrained elements by exploiting biased substitution patterns, Bioinformatics, vol.25, issue.12, pp.54-62, 2009.
DOI : 10.1093/bioinformatics/btp190

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2687944

E. Davydov, D. Goode, and M. Sirota, Identifying a High Fraction of the Human Genome to be under Selective Constraint Using GERP++, PLoS Computational Biology, vol.22, issue.12, p.6, 2010.
DOI : 10.1371/journal.pcbi.1001025.s003

K. Pollard, M. Hubisz, K. Rosenbloom, and A. Siepel, Detection of nonneutral substitution rates on mammalian phylogenies, Genome Research, vol.20, issue.1, pp.110-121, 2010.
DOI : 10.1101/gr.097857.109

P. Ng and S. Henikoff, Predicting Deleterious Amino Acid Substitutions, Genome Research, vol.11, issue.5, pp.863-874, 2001.
DOI : 10.1101/gr.176601

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC311071

S. Chun and J. Fay, Identification of deleterious mutations within three human genomes Identification of deleterious mutations within three human genomes, Genome Res, pp.1553-1561, 2009.

B. Reva, Y. Antipin, and C. Sander, Predicting the functional impact of protein mutations: application to cancer genomics, Nucleic Acids Research, vol.39, issue.17, pp.37-43, 2011.
DOI : 10.1093/nar/gkr407

I. Adzhubei, D. Jordan, and S. Sunyaev, Predicting Dunctional Effect of Human Missense Mutations Using PolyPhen-2, Curr Protoc Hum Genet, p.7, 2013.

S. Ha, J. Gough, and D. Cooper, Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models, Hum Mutat, vol.34, pp.57-65, 2013.

C. Dong, P. Wei, and X. Jian, Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies, Human Molecular Genetics, vol.24, issue.8, pp.2125-2137, 2014.
DOI : 10.1093/hmg/ddu733

M. Kircher, D. Witten, and P. Jain, A general framework for estimating the relative pathogenicity of human genetic variants, Nature Genetics, vol.17, issue.3, pp.310-315, 2014.
DOI : 10.1002/humu.21517

E. Traiffort, C. Dubourg, and H. Faure, Functional Characterization of Sonic Hedgehog Mutations Associated with Holoprosencephaly, Journal of Biological Chemistry, vol.279, issue.41, pp.42889-42897, 2004.
DOI : 10.1074/jbc.M405161200

URL : https://hal.archives-ouvertes.fr/hal-00169857

P. Kuwabara and M. Labouesse, The sterol-sensing domain: multiple families, a unique role?, Trends in Genetics, vol.18, issue.4, pp.193-201, 2002.
DOI : 10.1016/S0168-9525(02)02640-9

Y. Nakano, H. Kim, and . Kawakami-a, Inactivation of dispatched 1 by the chameleon mutation disrupts Hedgehog signalling in the zebrafish embryo, Developmental Biology, vol.269, issue.2, pp.381-392, 2004.
DOI : 10.1016/j.ydbio.2004.01.022

E. Roessler, Y. Ma, and M. Ouspenskaia, Truncating loss-of-function mutations of DISP1 contribute to holoprosencephaly-like microform features in humans, Human Genetics, vol.279, issue.26, pp.393-400, 2009.
DOI : 10.1007/s00439-009-0628-7

URL : https://hal.archives-ouvertes.fr/inserm-00366120

S. Kantarci, K. Ackerman, and M. Russel, Characterization of the chromosome 1q41q42.12 region, and the candidate gene DISP1, in patients with CDH, American Journal of Medical Genetics Part A, vol.78, issue.10, pp.2493-2504, 2010.
DOI : 10.1002/ajmg.a.33618

H. Tian, J. Jeong, B. Harfe, C. Tabin, and A. Mcmahon, Mouse Disp1 is required in sonic hedgehog-expressing cells for paracrine activity of the cholesterol-modified ligand, Development, vol.132, issue.1, pp.133-142, 2005.
DOI : 10.1242/dev.01563

T. Kawakami, T. Kawcak, and Y. Li, Mouse dispatched mutants fail to distribute hedgehog proteins and are defective in hedgehog signaling, Development, vol.129, issue.24, pp.5753-5765, 2002.
DOI : 10.1242/dev.00178

T. Caspary, M. Garcia-garcia, and D. Huangfu, Mouse Dispatched homolog1 Is Required for Long-Range, but Not Juxtacrine, Hh Signaling, Current Biology, vol.12, issue.18, pp.1628-1632, 2002.
DOI : 10.1016/S0960-9822(02)01147-8

A. Article-43, T. Kawakami, T. Kawcak, and Y. Li, Mouse dispatched mutants fail to distribute hedgehog proteins and are defective in hedgehog signaling, Development, vol.129, pp.5753-5765, 2002.

M. Cohen and . Jr, Holoprosencephaly: Clinical, anatomic, and molecular dimensions, Birth Defects Research Part A: Clinical and Molecular Teratology, vol.2, issue.9, pp.658-673, 2006.
DOI : 10.1002/bdra.20295

C. Dubourg, L. Lazaro, and L. Pasquier, Molecular screening ofSHH,ZIC2,SIX3, andTGIF genes in patients with features of holoprosencephaly spectrum: Mutation review and genotype-phenotype correlations, Human Mutation, vol.97, issue.1, pp.43-51, 2004.
DOI : 10.1002/humu.20056

K. El-jaick, S. Powers, and L. Bartholin, Functional analysis of mutations in TGIF associated with holoprosencephaly, Molecular Genetics and Metabolism, vol.90, issue.1, pp.97-111, 2007.
DOI : 10.1016/j.ymgme.2006.07.011

M. Mccabe, C. Gaston-massuet, and V. Tziaferi, Novel FGF8 mutations associated with recessive holoprosencephaly, craniofacial defects, and hypothalamo-pituitary dysfunction, J Clin Endocrinol Metab, pp.96-1709, 2011.

A. David, F. Liu, and A. Tibelius, mouse embryos, Cell Cycle, vol.105, issue.18, pp.2859-2868, 2014.
DOI : 10.1073/pnas.1400568111

E. Roessler and M. Muenke, The molecular genetics of holoprosencephaly, American Journal of Medical Genetics Part C: Seminars in Medical Genetics, vol.129, issue.1, pp.52-61, 2010.
DOI : 10.1002/ajmg.c.30236

V. Klein, J. Friedman, G. Brookshire, O. Brown, and C. Edman, Kallmann syndrome associated with choanal atresia, Clinical Genetics, vol.15, issue.6, pp.224-227, 1987.
DOI : 10.1111/j.1399-0004.1987.tb02800.x

P. Canto, P. Munguia, D. Soderlund, J. Castro, and J. Mendez, Genetic Analysis in Patients With Kallmann Syndrome: Coexistence of Mutations in Prokineticin Receptor 2 and KAL1, Journal of Andrology, vol.30, issue.1, pp.41-45, 2009.
DOI : 10.2164/jandrol.108.005314

C. Dode and J. Hardelin, Clinical genetics of Kallmann syndrome, Annales d'Endocrinologie, vol.71, issue.3, pp.149-157, 2010.
DOI : 10.1016/j.ando.2010.02.005

M. Ma, L. Heidet, and H. Storey, Evidence of digenic inheritance in Alport syndrome, J Med Genet, vol.2015, issue.52, pp.163-174

A. Koziell, V. Grech, and S. Hussain, Genotype/phenotype correlations of NPHS1 and NPHS2 mutations in nephrotic syndrome advocate a functional inter-relationship in glomerular filtration, Human Molecular Genetics, vol.11, issue.4, pp.379-388, 2002.
DOI : 10.1093/hmg/11.4.379

N. Katsanis, E. Eichers, and S. Ansley, BBS4 Is a Minor Contributor to Bardet-Biedl Syndrome and May Also Participate in Triallelic Inheritance, The American Journal of Human Genetics, vol.71, issue.1, pp.22-29, 2002.
DOI : 10.1086/341031

E. Roessler, E. Belloni, and K. Gaudenz, Mutations in the human Sonic Hedgehog gene cause holoprosencephaly, Nature Genetics, vol.34, issue.3, pp.357-360, 1996.
DOI : 10.1038/ng0995-93

E. Roessler, E. Belloni, and K. Gaudenz, Mutations in the C-Terminal Domain of Sonic Hedgehog Cause Holoprosencephaly, Human Molecular Genetics, vol.6, issue.11, pp.1847-1853, 1997.
DOI : 10.1093/hmg/6.11.1847

H. Heussler, M. Suri, I. Young, and M. Muenke, Extreme variability of expression of a Sonic Hedgehog mutation: attention difficulties and holoprosencephaly, Archives of Disease in Childhood, vol.86, issue.4, pp.293-296, 2002.
DOI : 10.1136/adc.86.4.293

S. Brown, D. Warburton, and L. Brown, Holoprosencephaly due to mutations in ZIC2, a homologue of Drosophila odd-paired, Nature Genetics, vol.20, issue.2, pp.180-183, 1998.
DOI : 10.1038/2484

I. Orioli, E. Castilla, and J. Ming, Identification of novel mutations in SHH and ZIC2 in a South American (ECLAMC) population with holoprosencephaly, Human Genetics, vol.109, issue.1, pp.1-6, 2001.
DOI : 10.1007/s004390100537

B. Solomon, F. Lacbawan, and S. Mercier, Mutations in ZIC2 in human holoprosencephaly: description of a Novel ZIC2 specific phenotype and comprehensive analysis of 157 individuals, Journal of Medical Genetics, vol.47, issue.8, pp.513-524, 2010.
DOI : 10.1136/jmg.2009.073049

URL : https://hal.archives-ouvertes.fr/inserm-00439659

M. Ramocki, F. Scaglia, and P. Stankiewicz, Recurrent partial rhombencephalosynapsis and holoprosencephaly in siblings with a mutation of ZIC2, American Journal of Medical Genetics Part A, vol.40, issue.7, pp.155-1574, 2011.
DOI : 10.1002/ajmg.a.34029

A. Article, D. Wallis, E. Roessler, and U. Hehr, Mutations in the homeodomain of the human SIX3 gene cause holoprosencephaly, Nat Genet, vol.22, pp.196-198, 1999.

L. Pasquier, C. Dubourg, and M. Blayau, A new mutation in the six-domain of SIX3 gene causes holoprosencephaly, European Journal of Human Genetics, vol.8, issue.10, pp.797-800, 2000.
DOI : 10.1038/sj.ejhg.5200540

L. Ribeiro, K. El-jaick, M. Muenke, and A. Richieri-costa, SIX3 mutations with holoprosencephaly, American Journal of Medical Genetics Part A, vol.22, issue.23, pp.2577-2583, 2006.
DOI : 10.1002/ajmg.a.31377

F. Lacbawan, B. Solomon, and E. Roessler, Clinical spectrum of SIX3-associated mutations in holoprosencephaly: correlation between genotype, phenotype and function, Journal of Medical Genetics, vol.46, issue.6, pp.389-398, 2009.
DOI : 10.1136/jmg.2008.063818

U. Hehr, D. Pineda-alvarez, and G. Uyanik, Heterozygous mutations in SIX3 and SHH are associated with schizencephaly and further expand the clinical spectrum of holoprosencephaly, Human Genetics, vol.33, issue.5, pp.555-561, 2010.
DOI : 10.1007/s00439-010-0797-4

K. Gripp, D. Wotton, and M. Edwards, Mutations in TGIF cause holoprosencephaly and link NODAL signalling to human neural axis determination, Nat Genet, vol.25, pp.205-208, 2000.

C. Aguilella, C. Dubourg, and J. Attia-sobol, Molecular screening of the TGIF gene in holoprosencephaly: identification of two novel mutations, Hum Genet, vol.112, pp.131-134, 2003.

F. Rahimov, L. Ribeiro, E. De-miranda, A. Richieri-costa, and J. Murray, GLI2 mutations in four Brazilian patients: How wide is the phenotypic spectrum?, American Journal of Medical Genetics Part A, vol.14, issue.23, pp.2571-2576, 2006.
DOI : 10.1002/ajmg.a.31370

L. Ribeiro, J. Murray, and A. Richieri-costa, PTCH mutations in four Brazilian patients with holoprosencephaly and in one with holoprosencephaly-like features and normal MRI, American Journal of Medical Genetics Part A, vol.10, issue.23, pp.2584-2586, 2006.
DOI : 10.1002/ajmg.a.31369

E. Roessler, Y. Du, and J. Mullor, Loss-of-function mutations in the human GLI2 gene are associated with pituitary anomalies and holoprosencephaly-like features, Proceedings of the National Academy of Sciences, vol.100, issue.23, pp.13424-13429, 2003.
DOI : 10.1073/pnas.2235734100

C. Bertolacini, L. Ribeiro-bicudo, A. Petrin, A. Richieri-costa, and J. Murray, Clinical findings in patients with GLI2 mutations - phenotypic variability, Clinical Genetics, vol.149, issue.1, pp.70-75, 2012.
DOI : 10.1111/j.1399-0004.2010.01606.x

E. Roessler, M. Ouspenskaia, and J. Karkera, Reduced NODAL Signaling Strength via Mutation of Several Pathway Members Including FOXH1 Is Linked to Human Heart Defects and Holoprosencephaly, The American Journal of Human Genetics, vol.83, issue.1, pp.18-29, 2008.
DOI : 10.1016/j.ajhg.2008.05.012

E. Roessler, P. W. Ouspenskaia, and M. , Cumulative ligand activity of NODAL mutations and modifiers are linked to human heart defects and holoprosencephaly, Molecular Genetics and Metabolism, vol.98, issue.1-2, pp.225-234, 2009.
DOI : 10.1016/j.ymgme.2009.05.005

H. Bennett, A. Presti, and D. Adams, A Prenatal Presentation of Severe Microcephaly and Brain Anomalies in a Patient With Novel Compound Heterozygous Mutations in the STIL Gene Found Postnatally With Exome??Analysis, Pediatric Neurology, vol.51, issue.3, pp.1-3, 2014.
DOI : 10.1016/j.pediatrneurol.2014.05.023

F. Lacbawan, B. Solomon, and E. Roessler, Clinical spectrum of SIX3-associated mutations in holoprosencephaly: correlation between genotype, phenotype and function, Journal of Medical Genetics, vol.46, issue.6, pp.389-398, 2009.
DOI : 10.1136/jmg.2008.063818