Curve-Like Structure Extraction Using Minimal Path Propagation With Backtracking - Archive ouverte HAL Access content directly
Journal Articles IEEE Transactions on Image Processing Year : 2016

Curve-Like Structure Extraction Using Minimal Path Propagation With Backtracking

Abstract

Minimal path techniques can efficiently extract geometrically curve-like structures by finding the path with minimal accumulated cost between two given endpoints. Though having found wide practical applications (e.g., line identification, crack detection, and vascular centerline extraction), minimal path techniques suffer from some notable problems. The first one is that they require setting two endpoints for each line to be extracted (endpoint problem). The second one is that the connection might fail when the geodesic distance between the two points is much shorter than the desirable minimal path (shortcut problem). In addition, when connecting two distant points, the minimal path connection might become inefficient as the accumulated cost increases over the propagation and results in leakage into some non-feature regions near the starting point (accumulation problem). To address these problems, this paper proposes an approach termed minimal path propagation with backtracking. We found that the information in the process of backtracking from reached points can be well utilized to overcome the above problems and improve the extraction performance. The whole algorithm is robust to parameter setting and allows a coarse setting of the starting point. Extensive experiments with both simulated and realistic data are performed to validate the performance of the proposed method
Not file

Dates and versions

hal-01281519 , version 1 (02-03-2016)

Identifiers

Cite

Yang Chen, Yudong Zhang, Jian Yang, Qing Cao, Guanyu Yang, et al.. Curve-Like Structure Extraction Using Minimal Path Propagation With Backtracking. IEEE Transactions on Image Processing, 2016, 25 (2), pp.988--1003. ⟨10.1109/TIP.2015.2496279⟩. ⟨hal-01281519⟩
156 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More