Prospective evaluation of a new Aspergillus IgG EIA kit for the diagnosis of chronic and allergic pulmonary aspergillosis

To cite this version:

HAL Id: hal-01282328

https://hal-univ-rennes1.archives-ouvertes.fr/hal-01282328

Submitted on 28 Apr 2016
Prospective evaluation of a new Aspergillus IgG EIA kit for the diagnosis of chronic and allergic pulmonary aspergillosis

Dumollard C.1, Bailly S.1,2,3, Perriot S.1, Brenier-Pinchart M.P.1,4, Saint-Raymond C.5, Camara B.5, Gangneux J.P.6, Persat F.7, Valot S.8, Grenouillet F.9, Pelloux H.1,4, Pinel C.1, Cornet M.1,10#, Grenoble Aspergillus Committee.

1) Laboratoire de Parasitologie-Mycologie, Institut de Biologie et Pathologie, CHU de Grenoble, Grenoble, France.
2) U823, Université Grenoble Alpes, Grenoble, France.
3) UMR 1137-IAME Team 5-DeSCID, Inserm/Paris Diderot, Université de la Sorbonne Paris Cité, Paris, France.
4) UMR 5163 CNRS, Université Grenoble Alpes, Grenoble, France.
5) Clinique Universitaire de Pneumologie, CHU Grenoble, Grenoble, France.
6) Laboratoire de Parasitologie-Mycologie, CHU de Rennes, Rennes, France.
7) Hospices Civils de Lyon, Laboratoire de Parasitologie-Mycologie, Hôpital de la Croix-Rousse, Lyon, France.
8) Laboratoire de Parasitologie-Mycologie, CHU de Dijon, Dijon, France.
9) Laboratoire de Parasitologie-Mycologie, CHU de Besançon, Besançon, France.
10) Laboratoire TIMC-IMAG-TheREx, UMR 5525 CNRS, Université Grenoble Alpes, Grenoble, France.

Running title: Antibody test in aspergillosis

corresponding author: MCornet@chu-grenoble.fr
25 **Keywords:** Chronic pulmonary aspergillosis, allergic bronchopulmonary aspergillosis, enzyme immunoassay, IgG antibodies, precipitins

27
Abstract

Anti-Aspergillus IgG antibodies are important biomarkers for the diagnosis of chronic pulmonary aspergillosis (CPA) and allergic bronchopulmonary aspergillosis (ABPA). We compared the performance of a new commercial EIA (Bordier Affinity Products) with those of the Bio-Rad and Virion\Serion EIAs. This assay is novel in the association of two recombinant antigens with somatic and metabolic antigens of _A. fumigatus_. In a prospective multicentre study, 436 serum samples from 147 patients diagnosed with CPA (136 sera/104 patients) or ABPA (94 sera/43 patients) and from 205 controls (206 sera) were tested. We obtained sensitivities of 97%, 91.7%, and 86.1%, and specificities of 90.3%, 91.3%, and 81.5% for the Bordier, Bio-Rad and Virion\Serion tests, respectively. The Bordier kit was more sensitive than the Bio-Rad kit ($p<0.01$), which was itself more sensitive than the Virion\Serion kit ($p=0.04$). The Bordier and Bio-Rad kits had similar specificities ($p=0.8$), both higher than that of the Virion\Serion kit ($p=0.02$). The areas under the ROC curves confirmed the superiority of the Bordier kit over the Bio-Rad and the Virion\Serion kits (0.977, 0.951 and 0.897, respectively; $p<0.01$ for each comparison). In a subset analysis of 279 sera tested with the Bordier and Bio-Rad kits and an in-house immunoprecipitin assay (IPD), the Bordier kit had the highest sensitivity (97.7%), but the IPD tended to be more specific (71.2 and 84.7%, respectively; $p=0.10$)

The use of recombinant, somatic and metabolic antigens in a single EIA improved the balance between sensitivity and specificity, resulting in an assay highly suitable for use in the diagnosis of chronic and allergic aspergillosis.
Introduction

A. fumigatus is the species most frequently implicated in pulmonary aspergillosis (1, 2). Chronic pulmonary aspergillosis (CPA) and allergic bronchopulmonary aspergillosis (ABPA) occur in immunocompetent hosts (3–9). CPA usually affects patients with underlying lung disease, such as mycobacterial infections, chronic obstructive pulmonary disease (COPD), ABPA and emphysema (7, 9, 10). It has been estimated that over 4.8 million asthmatic patients worldwide suffer from ABPA and that about 240,000 people in Europe have CPA (11). Patients suffering from asthma or cystic fibrosis (CF) may become sensitized to *Aspergillus* antigens, resulting in ABPA, *Aspergillus*-related bronchitis or severe asthma (1, 12).

The diagnosis of CPA and ABPA remains challenging and is based on a combination of clinical, radiological, biological and mycological criteria (8, 13, 14). The detection of anti-*Aspergillus* antibodies is considered to be an important criterion (1, 2, 6, 7, 12, 14–16). Several serological methods are available and those based on immunoprecipitin detection (IPD) are used for confirmation purposes, due to their high specificity (16). However, they have not been standardized and are not easy to perform. Thus, screening tests to detect anti-*Aspergillus* IgG by indirect hemagglutination, indirect immunofluorescence or enzyme immunoassay (EIA; also called enzyme-linked immunosorbent assay or ELISA), are often preferred (16–18). The use of EIAs also facilitates quantitative evaluation of the antibody response and automation, leading to rapid and easy routine selection (16–18).

We conducted a prospective multicentre study to evaluate the performance of a new commercial anti-*Aspergillus* IgG kit, the *Aspergillus fumigatus* IgG ELISA kit (Bordier Affinity Products). This assay is novel in terms of its antigen composition, because it...
combines two recombinant antigens with somatic and metabolic antigens from *A. fumigatus*. We compared this assay with two other commercial EIAs — the Platelia *Aspergillus* IgG (Bio-Rad), and the ELISA Classic *Aspergillus* IgG (Virion\Serion) — and an in-house IPD method (19).

Materials and Methods

Study design, patients and sera

This prospective study was conducted in the five French university hospitals of Grenoble, Rennes, Lyon, Dijon, and Besançon. Immunocompetent patients with suspected non-invasive aspergillosis were included between January 2013 and April 2015. Patients were assigned to one of six groups on the basis of clinical, radiological and biological criteria, in accordance with the classifications established by the international committees of experts available at the time of the study (Table 1) (6–8, 13, 20). Cystic fibrosis (CF) patients were excluded from the group of colonised patients (group 2), because their *Aspergillus* IgG levels have been reported to be high even in the absence of ABPA, and persistent colonisation may itself induce IgG responses in these patients (12, 21–23). CPA patients were assigned to groups 3, 4 or 5 and group 6 included patients with ABPA. Immunocompromised patients at risk of invasive aspergillosis were excluded.

Laboratory methods

All serum samples were stored at -20°C until processing. Each was tested at each centre with the three EIAs: Platelia *Aspergillus* IgG (Bio-Rad, Marnes-la-Coquette, France), ELISA Classic *Aspergillus fumigatus* IgG (Virion\Serion, Würzburg, Germany) and ELISA *Aspergillus fumigatus* IgG (Bordier Affinity Products, Crissier, Switzerland), according to the manufacturers’ recommendations. If the result of at least one test was positive or equivocal,
the serum sample was subjected to testing with an in-house IPD method (19). Testing by this last method was centralized at Grenoble University Hospital, to ensure standardisation.

Platelia Aspergillus IgG (Bio-Rad). This assay relies on one recombinant antigen that is coated on the ELISA microplate. Values ≥10 AU/ml were considered positive, values of 5-10 AU/ml were classified as equivocal and values <5 AU/ml were considered negative. Samples yielding >80 AU/ml were diluted and retested.

ELISA Classic Aspergillus fumigatus IgG (Virion\Serion). The antigenic composition of this assay is not available from the manufacturer. The OD measured was converted into concentration in AU/ml by reference to the standard curve equation provided in each batch. Values ≥70 AU/ml were considered positive, values of 50-70 AU/ml were classified as equivocal and values <50 AU/ml were considered negative.

ELISA Aspergillus fumigatus IgG (Bordier Affinity Products). The wells were coated with the two recombinant antigens, dipeptidyl peptidase type V (chymotrypsin) and ribonuclease (mitogillin), and the somatic and metabolic antigens (24). An OD index was calculated by OD of the sample / OD of a cut off provided in the kit. OD index values ≥1 were considered positive, values of 0.8-1 were considered equivocal, and values <0.8 were considered negative.

Immunoprecipitin detection. We used a double-diffusion gel-electrophoresis technique with in-house metabolic and somatic antigens different from those used in the Bordier EIA (19). Briefly, we dispensed 10µl of antigen solution into the agarose wells (1%) (Agarose NA, Amersham Biosciences). After migration, we added 200µl of serum to the troughs. After
incubation, catalase activity was detected by adding 20% hydrogen peroxide. The precipitin bands were stained with Amidoschwarz (Merck, USA). The result of the test was considered positive if ≥2 precipitin bands were detected and equivocal if only one precipitin band was detected (19). If catalase activity was detected, the result was considered positive regardless of the number of precipitin bands (25).

Statistical analysis

The baseline characteristics of the groups of patients were compared in Fisher’s exact tests and Wilcoxon tests for qualitative and quantitative variables, respectively. We used the Cochran Q test followed by McNemar post-hoc tests with Holm correction for multiple comparisons to compare the sensitivities and specificities of the assays. We calculated that a sample size of 223 serum samples from patients and 192 from controls would be sufficient to detect a significant difference with a power of 0.9. We calculated the Youden’s index (sensitivity+specificity–1) and the diagnostic odds ratio (DOR) as previously described (26).

We carried out two secondary analyses. One after the exclusion of patients diagnosed solely on the basis of the presence of anti-Aspergillus-specific IgG and/or precipitins, to prevent overestimation and the other after the exclusion of the sera showing equivocal results. The EIAs were compared by calculating the area under the ROC curve (ROC AUC). The inter-assay reproducibility (coefficient of variation (CV) and standard deviation (SD)) of the Bordier test was evaluated on the basis of 39 measurement on the same sample, as an internal quality control. A p value <0.05 was considered significant. Statistical analyses were performed with SAS 9.3 (SAS Institute Inc., Cary, NC, USA).

Results

Patients and sera
We included 352 patients in total. They had a median age of 58.9 years [47.0-71.5], 5% were minors (age<18), and 55% were male. Serum samples were collected at the university hospitals of Grenoble, Rennes, Lyon, Dijon, and Besançon (n= 239, 74, 70, 31 and 22, respectively). The commonest underlying lung conditions in the controls and patients are shown in Table 2. The distributions of the 352 patients and the 436 sera are detailed in Tables 1 and 3.

Test performances

The performances of the three EIAs when equivocal results were treated as positive are shown in Table 3A. Overall, the sensitivity of the Bordier assay (97%) was significantly higher than that of the Bio-Rad assay (91.7%), which was itself higher than that of the Virion\Serion assay (86.1%) (McNemar $p<0.05$). The specificities of the Bordier and Bio-Rad tests were similar (90.3% and 91.3%, respectively; McNemar $p=0.8$) but significantly higher than that of the Virion\Serion assay (81.5%; McNemar $p=0.02$ for both comparison). According to Youden’s index, the Bordier assay provided the best balance between sensitivity and specificity. Bordier showed the best DOR and Bio-Rad had a greater DOR than Serion. The 95% confidence intervals (CIs) confirm that Bio-Rad and Bordier are more discriminatory than Serion. These results were confirmed by the area under the ROC curve (AUC) analysis, which showed that the performances of the Bordier and Bio-Rad assays were excellent, with AUCs exceeding 0.9. The AUC of the Bordier assay (0.977; 95%CI [0.962; 0.991]) was even greater than those of the Bio-Rad and Virion\Serion assays (0.951 [0.928; 0.974] and 0.897 [0.863; 0.931]) respectively ($p<0.01$) (Figure 2). Based on these results, we decided to compare the performances of the best two EIAs (Bordier and Bio-Rad) with that of the IPD assay, for the 279 sera for which one of the three EIAs gave a positive or equivocal result and for which a sufficiently large volume of the
sample remained for additional testing. The Bordier assay was again found to be the most sensitive (McNemar $p<0.05$) (Table 3B). The Bio-Rad assay was more sensitive than the IPD assay only if equivocal results were considered to be negative (McNemar $p=0.049$; data not shown). The IPD tended to be more specific than the Bordier assay (84.7% and 71.2%, respectively; $p=0.10$). Youden’s index favoured the IPD assay but Bordier had the better DOR compared to Bio-Rad and IPD.

In a secondary analysis performed after the exclusion of the 20 patients diagnosed solely on the basis of the presence of anti-Aspergillus antibodies, the comparisons of the three EIAs and of the AUCs were unchanged and the same differences were observed ($p<0.01$ for the Cochran Q test and $p<0.05$ for the McNemar tests in all the comparisons). In the comparison of the IPD assay with the best two EIAs, we observed a difference in the results obtained from the pattern described above. The sensitivity of the Bordier assay tended to be higher than that of the Bio-Rad one, however the difference did not reached statistical significance (98% and 94.5%, respectively; McNemar $p=0.06$) but both were more sensitive than the IPD assay (88%; McNemar $p<0.01$ and $p=0.01$, respectively).

An analysis after exclusion of the equivocal results showed the same trend in the differences between the three EIAs. The sensitivity of Bordier (96.1%) tended to be higher than the one of Bio-Rad (91.7%) (McNemar $p=0.07$) and was significantly superior to the one of Virion\:Serion (85.6%) (McNemar $p<0.01$). The specificity of the Bordier and the Bio-Rad assays were comparable (94.4% and 95.5%, respectively; McNemar $p=0.68$) and tended to be higher than that of Virion\:Serion (88.2%; McNemar $p=0.06$).

An analysis of test performances by patient category, and after correction for multiple comparisons, indicated that the new Bordier EIA was more sensitive than the Bio-Rad, Virion\:Serion and IPD tests for group 5 of the CNPA with a sensitivity at 100% (Table 3A, 3B and Figure2). In the other groups of patients, the only differences between sensitivities
remaining significant after correction for multiple comparisons were those for group 4, with the Bordier assay being more sensitive than the Virion\Serion and IPD assays (McNemar $p<0.01$ and $p=0.01$, respectively). The per-group analysis of group 1 revealed similar specificity results as for the total control group. The sample size for group 2 was insufficiently large for a separate analysis.

The inter-assay CV of the Bordier EIA was 20\% (SD=0.366). Quantitative results of the assays are detailed in Figure 2. Bordier EIA provided significantly fewer equivocal results (2.8\%) than the Bio-Rad (6.7\%), and the Virion\Serion (10.1\%) ($p<0.01$ for each comparison with Bordier).

Discussion

We show here that the new commercially available Bordier EIA for the detection of anti-*Aspergillus* IgG antibodies is suitable for the diagnosis of CPA and ABPA in immunocompetent patients. In this large prospective multicentre cohort of 352 patients providing 436 sera, this assay had a high sensitivity (97\%) and specificity (90.3\%) and its AUC value of 0.977 was excellent. This new assay was more sensitive than the other two EIAs used in routine clinical practice and the IPD assay used for confirmation. The sensitivity of the Bordier assay was remarkably high, at 100\%, in the group of patients with chronic necrotizing pulmonary aspergillosis. Its specificity was similar to that of the Bio-Rad assay and higher than that of the Virion\Serion assay, but tended to be lower than that of the IPD assay. Overall, the best Youden’s index (indicating the trade-off between sensitivity and specificity) and the best DOR (indicating the discriminatory power) were obtained with the Bordier assay.

The Bio-Rad and Virion\Serion EIAs have already been compared in a large retrospective study (17). The sensitivity and specificity obtained were 93.8\% and 87.3\% respectively, for
Our findings confirm the superiority of the Bio-Rad assay over the Virion/Serion assay. Another recent study compared two EIAs, including the Bio-Rad EIA, and an IPD method based on commercial antigens in a prospective cohort (18). Again, the Bio-Rad assay had high sensitivity (93%), but its reproducibility was low, with an inter-assay CV of 33% which, according to the authors, precludes its use for the monitoring of patients. Another drawback of this test is the need to dilute and retest all samples yielding values greater than 80 AU/ml. Furthermore, one recent study evaluated a commercial western blot kit for the detection of anti-Aspergillus IgG (27). The authors reported a sensitivity of 90.0%-93.8% in CPA and ABPA patients, the specificity (94%) being estimated solely on the basis of the results for healthy blood donors as controls. Further studies are required to compare the EIAs and western-blot assay for the detection of anti-Aspergillus IgG.

We found that the new Bordier EIA outperformed the Bio-Rad and Virion/Serion EIAs. This better performance may be explained by the association of two selected recombinant proteins with metabolic and somatic custom produced antigens. The chosen recombinants yielded the best performances in tests carried out with eight proteins and the purified galactomannan antigen (24). Preliminary results obtained through separate analyses of the two set of antigens, recombinant versus the metabolic/somatic custom-produced, suggested that the combination of these antigens was beneficial in terms of both sensitivity and specificity (data not shown). The gain in sensitivity and the parallel loss of specificity are counterbalanced by the use of the metabolic and somatic antigens of A. fumigatus included in this kit. This could also explain the greater discrimination of the Bordier test, which provided less equivocal results than the other tests (Figure 2).

Our study confirmed the high specificity (84.7%) of the IPD based on in-house antigens that we have been using for more than 20 years which was even greater (96.6%)
when equivocal results were treated as negative (19). However, it was not significantly higher than that of the Bordier assay or the Bio-Rad assay, probably due to the loss of statistical power in the smaller sample size. Our selection of serum samples giving positive or equivocal results with one of the three EIAs for the analysis of IPD assay may have resulted in a slight overestimation of the sensitivity.

Our results suggest that the Bordier EIA is suitable for use as a screening test in a two-step strategy for the detection of anti-Aspergillus antibodies. Our findings confirm that the IPD assay is an appropriate specific method for precipitin detection and confirmation of the EIA results. In this case, equivocal results in the IPD assay should be considered negative, to increase specificity. If a one-step strategy is preferred, our results suggest that the Bordier EIA would be the best choice, as it gave the best compromise between sensitivity and specificity (Youden’s index = 0.873, Table 3A).

The classification of colonised patients remains challenging. We decided to consider them as controls, as a diagnosis of infection had been ruled out in these patients. Conversely, Aspergillus spp. colonisation may be considered a prerequisite or initial stage of infection, accounting for the grouping together of colonised and infected patients in other studies (27). We also performed an analysis in which colonised individuals were grouped with the patients. The only modification to the results concerned the relative specificities of the Bordier, Bio-Rad and IPD assays which became comparable when equivocal results were considered negative (data not shown).

In conclusion, given its high Youden’s index and diagnostic odds ratio, indicating a good balance between sensitivity and specificity, this new Bordier EIA is suitable for the detection of anti-Aspergillus IgG for the diagnosis of chronic and allergic pulmonary aspergillosis. Further studies are required to confirm its use for monitoring clinical status in
patients. Finally, our results confirmed that immunoprecipitin detection was an appropriate method for confirming EIA results.
Acknowledgments

We thank Prof. Renée Grillot for her support and advice, which were very helpful in the development of the in-house antigens and ELISA leading to the creation of the Bordier EIA. We thank M. Monod for producing the recombinant antigens of *A. fumigatus*. We thank all the technicians of the Parasitology-Mycology Laboratory of Grenoble Hospital for technical assistance.

Transparency declaration

Muriel Cornet has received travel grants from Gilead, Pfizer and Merck and received remuneration for talks on behalf of Pfizer.

The Parasitology and Mycology Laboratory of Grenoble University Hospital, where M. Cornet, M.P. Brenier-Pinchart, and H. Pelloux currently work, produces and sells *A. fumigatus* somatic and metabolic antigens to Bordier Affinity Products.

Bordier Affinity Products provided the kits for the three EIAs analysed here but did not participate in any phase of the study, from its design to the analysis of the results and conclusions reported here and the writing of the manuscript.

H. Pelloux and M. Cornet report having received research grants for the Parasitology and Mycology Laboratory of Grenoble University Hospital from Virion/Serion Immundiagnostica GmbH and from Bordier Affinity Products.

Author contribution

C. Dumollard, S. Perriot contributed to the design of the study, performed the assays, collected the data, analysed the results and contributed to the writing of the manuscript. Dr S. Bailly performed the statistical analysis and contributed to the writing of the manuscript. Dr M.P Brenier-Pinchart and H. Pelloux contributed to the classification and diagnosis of patients, co-ordinated the Grenoble *Aspergillus* Committee, and contributed to the writing of the manuscript. C. Saint-Raymond, B. Camara J.P. Gangneux, F. Persat, S. Valot, and F.
Grenouillet contributed to the recruitment of the patients and their clinical management and
topatient classification and diagnosis and the writing of the manuscript. Dr C. Pinel and M.
Cornet contributed to the development of the antigens used in both the Bordier EIA and the
in-house IPD method, and to the study design and the writing of the manuscript. Collaborators
of the Grenoble Aspergillus Committee contributed to the recruitment, management, diagnosis
and classification of the patients.

Collaborators of the Grenoble Aspergillus Committee are Thiebaut-Bertrand A., Maubon
D., Bosseray A., Hamidfar R., Epaullard O., Cognet O., Dard C., Garnaud C., El-Zeenni N.,
Murat J.B., Bartoli M., Saviue P., Wintenberger C., Tonini J., Honnorat E.
References

TABLE 1. Classification and distribution of the patients (adapted from (7, 8, 13, 20)).

<table>
<thead>
<tr>
<th>Control groups (n=205)</th>
<th>Inclusion criteria</th>
<th>Radiological criteria</th>
<th>Clinical manifestation</th>
<th>Aspergillus sp. evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1 (n=191; 54.1%)</td>
<td>Patients with respiratory symptoms in whom an Aspergillus-related disease had been ruled out</td>
<td>One “fungus ball”: mass within a lung cavity surrounded by the “air crescent” on CT scan or X-ray with no progression over ≥ 3 months</td>
<td>No alteration of the general condition and no haemoptysis</td>
<td>Aspergillus sp isolated from a respiratory sample AND/OR Histological evidence of Aspergillus sp hyphae AND/OR Positive anti-Aspergillus serum precipitins</td>
</tr>
<tr>
<td>Group 2 Colonised patients (n=14; 4%)</td>
<td>Patients with colonisation defined as the recovery of Aspergillus spp. from respiratory specimens at least twice within a period from 10 days to one year and who did not match the criteria for CPA or ABPA diagnosis and had no major respiratory symptoms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 3 simple aspergilloma (n=17; 4.8%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPA (n=104)</td>
<td>Group 4 CCPA or CFPA (n=62; 17.6%)</td>
<td>At least one cavitary lesion (CCPA) in the lung, with or without a “fungus ball”, with progression over ≥ 3 months. CFPA = fibrotic destruction after CCPA</td>
<td>Alteration of the general condition (fever, weight loss, asthenia), chronic cough and/or haemoptysis progressing for ≥ 3 months</td>
<td>Aspergillus sp isolated from a respiratory sample AND/OR Histological evidence of Aspergillus sp hyphae AND/OR Positive anti-Aspergillus serum precipitins</td>
</tr>
<tr>
<td>Group 5</td>
<td>CNPA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n=25; 7.1%)</td>
<td>Expanding cavities, nodules, consolidations with progression over ≥1 month. Mild immunodeficiency (diabetes, alcoholism, immunosuppressive drugs). Alteration of the general condition (fever, weight loss, asthenia), chronic cough and/or haemoptysis progression ≥1 month. Aspergillus sp isolated from a respiratory sample AND/OR Histological evidence on a biopsy or surgical resection showing Aspergillus sp hyphae AND/OR Positive anti-Aspergillus serum precipitins and/or Aspergillus antigen detected in serum</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inclusion criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABPA (n=43; 12.2%)</td>
</tr>
</tbody>
</table>

395 CPA. Chronic pulmonary aspergillosis

397 CCPA. Chronic cavitary pulmonary aspergillosis

398 CPFA. Chronic fibrosing pulmonary aspergillosis

399 CNPA. Chronic necrotizing pulmonary aspergillosis

400 ABPA. Allergic bronchopulmonary aspergillosis
TABLE 2. Underlying lung conditions

<table>
<thead>
<tr>
<th>Previous pulmonary history</th>
<th>Controls (n=167)</th>
<th>Diseased patients (n=85)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allergic bronchopulmonary aspergillosis</td>
<td>0 (0)</td>
<td>25 (29.4)*</td>
</tr>
<tr>
<td>Asthma</td>
<td>36 (21.6)</td>
<td>9 (10.6)†</td>
</tr>
<tr>
<td>No previous respiratory history</td>
<td>30 (18)</td>
<td>1 (1.2)</td>
</tr>
<tr>
<td>Cystic fibrosis</td>
<td>11 (6.6)</td>
<td>30 (35.3)</td>
</tr>
<tr>
<td>Bronchiectasis</td>
<td>4 (2.4)</td>
<td>7 (8.2)</td>
</tr>
<tr>
<td>Aspergillus sinusitis</td>
<td>1 (0.6)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Previous pulmonary aspergillosis</td>
<td>1 (0.6)</td>
<td>15 (17.6)</td>
</tr>
<tr>
<td>Previous Aspergillus colonisation</td>
<td>0 (0)</td>
<td>5 (5.9)</td>
</tr>
<tr>
<td>Previous aspergilloma</td>
<td>0 (0)</td>
<td>9 (10.6)</td>
</tr>
<tr>
<td>Emphysema</td>
<td>23 (13.8)</td>
<td>8 (9.4)</td>
</tr>
<tr>
<td>Chronic obstructive pulmonary disease</td>
<td>45 (26.9)</td>
<td>19 (22.4)</td>
</tr>
<tr>
<td>Respiratory deficiency</td>
<td>18 (10.8)</td>
<td>7 (8.2)</td>
</tr>
<tr>
<td>Previous mycobacterial infection</td>
<td>12 (7.2)</td>
<td>9 (10.6)</td>
</tr>
<tr>
<td>Assessment of respiratory symptoms†</td>
<td>20 (12)</td>
<td>2 (2.4)</td>
</tr>
<tr>
<td>Previous cancer history</td>
<td>1 (0.6)</td>
<td>8 (9.4)</td>
</tr>
<tr>
<td>Assessment before immunosuppression‡</td>
<td>17 (10.2)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Others §</td>
<td>16 (9.6)</td>
<td>6 (7.1)</td>
</tr>
</tbody>
</table>

Missing previous pulmonary history: n=100 (38 controls and 62 diseased patients)

Patients and controls may have more than one underlying condition.

* 20 patients also had cystic fibrosis.
† No patient had CF
‡ Respiratory symptoms, such as shortness of breath, cough, wheezing rhonchi
† Including before treatment with biotherapy or before a transplantation (lung, heart, liver or kidney)
§ Others: pneumothorax, asbestosis or solvent exposure, sarcoidosis, pulmonary hypertension, sleep apnoea, pulmonary embolism, previous haemoptysis.
TABLE 3:
(A) Performances of three anti-Aspergillus IgG enzyme immunoassays for the diagnosis of chronic pulmonary aspergillosis and allergic bronchopulmonary aspergillosis and
(B) Performances of two anti-Aspergillus IgG enzyme immunoassays and the immunoprecipitation method

<table>
<thead>
<tr>
<th>A</th>
<th>p-value*</th>
<th>McNemar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bordier</td>
<td>Bio-Rad</td>
</tr>
<tr>
<td>Se % [95% CI]</td>
<td>All sera n=230</td>
<td>97.0 [94.7 ; 99.2]</td>
</tr>
<tr>
<td>Group 3 n=23</td>
<td>95.6 [78.0 ; 99.9]</td>
<td>95.6 [78.0 ; 99.9]</td>
</tr>
<tr>
<td>Group 4 n=78</td>
<td>97.4 [91.0 ; 99.7]</td>
<td>92.3 [84.0 ; 97.1]</td>
</tr>
<tr>
<td>Group 5 n=35</td>
<td>100 [90.0 ; 100]</td>
<td>91.4 [76.9 ; 98.2]</td>
</tr>
<tr>
<td>Group 6 n=94</td>
<td>95.7 [89.4 ; 98.8]</td>
<td>90.4 [82.6 ; 95.5]</td>
</tr>
</tbody>
</table>

Sp % [95% CI]	All sera n=206	90.3 [86.2 ; 94.3]	91.3 [87.4 ; 95.1]	81.5 [76.3 ; 86.9]	<0.01	0.8	0.02	0.02
Group 1 n=192	91.7 [86.8 ; 95.2]	92.7 [88.1 ; 96.0]	81.8 [75.6 ; 87.0]	<0.01	0.79	<0.01	<0.01	
Group 2 n=14	71.4 [41.9 ; 91.6]	71.4 [41.9 ; 91.6]	78.6 [49.2 ; 95.3]	0.87	NA	0.65	0.71	

Youden’s index* All sera n= 436 0.873 0.830 0.676
DOR All sera n= 436 296 [122 ; 715] 116 [59 ; 228] 27 [16 ; 45]

Equivocal results were considered positive.
<table>
<thead>
<tr>
<th>Group</th>
<th>n</th>
<th>Se % [95% CI]</th>
<th>Sp % [95% CI]</th>
<th>Youden’s index×</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Bordier Bio-Rad IPD</td>
<td>Bordier IPD</td>
<td>Bio-Rad IPD</td>
</tr>
<tr>
<td>All sera n=220</td>
<td>97.7 [95.8 ; 99.7]</td>
<td>93.2 [89.8 ; 96.5]</td>
<td>89.1 [85.0 ; 93.2]</td>
<td><0.01</td>
</tr>
<tr>
<td>Group 3 n=23</td>
<td>95.6 [78.0 ; 99.9]</td>
<td>95.6 [78.0 ; 99.9]</td>
<td>91.3 [72.0 ; 98.9]</td>
<td>0.16</td>
</tr>
<tr>
<td>Group 4 n=72</td>
<td>98.6 [92.5 ; 99.9]</td>
<td>95.8 [88.3 ; 99.1]</td>
<td>86.1 [75.9 ; 93.1]</td>
<td><0.01</td>
</tr>
<tr>
<td>Group 5 n=34</td>
<td>100 [90.0 ; 100]</td>
<td>91.2 [76.3 ; 98.1]</td>
<td>85.2 [68.9 ; 95.1]</td>
<td><0.01</td>
</tr>
<tr>
<td>Group 6 n=91</td>
<td>96.7 [90.7 ; 99.3]</td>
<td>91.2 [83.4 ; 96.1]</td>
<td>92.3 [84.8 ; 96.9]</td>
<td>0.25</td>
</tr>
<tr>
<td>All sera n=59</td>
<td>71.2 [59.6 ; 82.7]</td>
<td>76.3 [65.4 ; 87.1]</td>
<td>84.7 [75.6 ; 93.9]</td>
<td>0.14</td>
</tr>
<tr>
<td>Group 1 n=52</td>
<td>75.0 [61.0 ; 86.0]</td>
<td>78.9 [65.3 ; 88.9]</td>
<td>86.5 [74.2 ; 94.4]</td>
<td>0.28</td>
</tr>
<tr>
<td>Group 2 n=7</td>
<td>42.9 [9.9 ; 81.6]</td>
<td>57.1 [18.4 ; 90.1]</td>
<td>71.4 [29.0 ; 96.3]</td>
<td>0.37</td>
</tr>
</tbody>
</table>

Se: Sensitivity Sp: specificity

*Cochran Q test
†Equivocal results were considered positive
¥McNemar post-hoc tests showed no significant difference
ǁYouden’s index = sensitivity + specificity – 1
NA = not applicable
Figure Legends

Figure 1. Receiver operating characteristic (ROC) curves of Platelia *Aspergillus* IgG (Bio-Rad), ELISA Classic *Aspergillus fumigatus* IgG (Virion\Serion) and ELISA *Aspergillus fumigatus* IgG (Bordier Affinity Products) assays.

Blue curve Platelia *Aspergillus* IgG (Bio-Rad)

Green curve. ELISA Classic *Aspergillus fumigatus* IgG (Virion\Serion)

Red curve ELISA *Aspergillus fumigatus* IgG (Bordier Affinity Products)

Figure 2. Quantitative results and distribution of antibodies obtained with three anti-*Aspergillus* IgG enzyme immunoassays for the diagnosis of chronic pulmonary aspergillosis and allergic bronchopulmonary aspergillosis.

* Indicates the number of values higher than 200 AU/ml for the Bio-Rad and Virion\Serion assays

The Y scale is logarithmic

dotted line: positive and negative cut-offs

R package beeswarm was used to perform the graph.

Blue square. Platelia *Aspergillus* IgG (Bio-Rad)

Green triangle. ELISA Classic *Aspergillus fumigatus* IgG (Virion\Serion)

Red circles. ELISA *Aspergillus fumigatus* IgG (Bordier Affinity Products)

Controls: groups 1 and 2

Cases: Patients with chronic or allergic aspergillosis (groups 3 to 6)