, A global reference for human genetic variation, Genomes Project Consortium, vol.526, pp.68-74, 2015.

I. A. Adzhubei, S. Schmidt, L. Peshkin, V. E. Ramensky, A. Gerasimova et al., A method and server for predicting damaging missense mutations, Nat Methods, vol.7, pp.248-249, 2010.
DOI : 10.1038/nmeth0410-248

URL : http://europepmc.org/articles/pmc2855889?pdf=render

E. C. Bailey, L. Zhou, and R. L. Johnson, Several human PATCHED1 mutations block protein maturation, Cancer Res, vol.63, pp.1636-1638, 2003.

P. Bakrania, M. Efthymiou, J. C. Klein, A. Salt, D. J. Bunyan et al., Mutations in BMP4 cause eye, brain, and digit developmental anomalies: overlap between the BMP4 and hedgehog signaling pathways, Am J Hum Genet, vol.82, pp.304-319, 2008.

P. Bakrania, U. Iseri, S. A. Wyatt, A. W. Bunyan, D. J. Lam et al., Sonic hedgehog mutations are an uncommon cause of developmental eye anomalies, Am J Med Genet A, vol.152, pp.1310-1313, 2010.

E. Bermejo and M. L. Martinez-frias, Congenital eye malformations: clinical-epidemiological analysis of 1,124,654 consecutive births in Spain, Am J Med Genet, vol.75, pp.497-504, 1998.

J. Bibliowicz and J. M. Gross, Expanded progenitor populations, vitreo-retinal abnormalities, and Müller glial reactivity in the zebrafish leprechaun/ patched2 retina, BMC Dev Biol, vol.9, p.52, 2009.

A. F. Bree and M. R. Shah, Consensus statement from the first international colloquium on basal cell nevus syndrome (BCNS), Am J Med Genet A, vol.155, pp.2091-2097, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00799445

D. A. Bumcrot and A. P. Mcmahon, Somite differentiation. Sonic signals somites, Curr Biol, vol.5, pp.612-614, 1995.

N. C. Butterfield, V. Metzis, E. Mcglinn, S. J. Bruce, B. J. Wainwright et al., Patched 1 is a crucial determinant of asymmetry and digit number in the vertebrate limb, Development, vol.136, pp.3515-3524, 2009.

N. Chassaing, A. Vigouroux, and P. Calvas, Mutations in the newly identified RAX regulatory sequence are not a frequent cause of micro/anophthalmia, Genet Test Mol Biomarkers, vol.13, pp.289-290, 2009.

N. Chassaing, A. Causse, A. Vigouroux, A. Delahaye, J. L. Alessandri et al.,

B. Dussardier, Molecular findings and clinical data in a cohort of 150 patients with anophthalmia/microphthalmia, Clin Genet, vol.86, pp.326-334, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01064928

C. Chiang, Y. Litingtung, E. Lee, K. E. Young, J. L. Corden et al., Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function, Nature, vol.383, pp.407-413, 1996.

A. Chotteau-lelievre, P. Dolle, and F. Gofflot, Expression analysis of murine genes using in situ hybridization with radioactive and nonradioactively labeled RNA probes, Methods Mol Biol, vol.326, pp.61-87, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00187860

A. E. Christiansen, T. Ding, and A. Bergmann, Ligand-independent activation of the Hedgehog pathway displays non-cell autonomous proliferation during eye development in Drosophila, Mech Dev, vol.129, pp.98-108, 2012.

H. Danno, T. Michiue, K. Hitachi, A. Yukita, S. Ishiura et al., Molecular links among the causative genes for ocular malformation: Otx2 and Sox2 coregulate Rax expression, Proc Natl Acad Sci, vol.105, pp.5408-5413, 2008.

D. Stefano, I. Tanno, B. Giardullo, P. Leonardi, S. Pasquali et al., The Patched 1 tumor-suppressor gene protects the mouse lens from spontaneous and radiation-induced cataract, Am J Pathol, vol.185, pp.85-95, 2015.

J. Fantes, N. K. Ragge, S. A. Lynch, N. I. Mcgill, J. R. Collin et al., Mutations in SOX2 cause anophthalmia, Nat Genet, vol.33, pp.461-463, 2003.

L. Fares-taie, S. Gerber, N. Chassaing, J. Clayton-smith, S. Hanein et al., ALDH1A3 mutations cause recessive anophthalmia and microphthalmia, Am J Hum Genet, vol.92, pp.265-270, 2013.

E. Ferda-percin, L. A. Ploder, J. J. Yu, K. Arici, D. J. Horsford et al., Human microphthalmia associated with mutations in the retinal homeobox gene CHX10, Nat Genet, vol.25, pp.397-401, 2000.

W. Fu, O. Connor, T. D. Jun, G. Kang, H. M. Abecasis et al., Analysis of 6,515 exomes reveals the recent origin of most human protein-coding variants, Nature, vol.493, pp.216-220, 2013.

L. V. Goodrich, R. L. Johnson, L. Milenkovic, J. A. Mcmahon, and M. P. Scott, Conservation of the hedgehog/patched signaling pathway from flies to mice: induction of a mouse patched gene by Hedgehog, Genes Dev, vol.10, pp.301-312, 1996.

H. Hahn, L. Wojnowski, A. M. Zimmer, J. Hall, G. Miller et al., Rhabdomyosarcomas and radiation hypersensitivity in a mouse model of Gorlin syndrome, Nat Med, vol.4, pp.619-622, 1998.

A. M. Hever, K. A. Williamson, and V. Van-heyningen, Developmental malformations of the eye: the role of PAX6, SOX2 and OTX2, Clin Genet, vol.69, pp.459-470, 2006.

G. R. Hime, H. Lada, M. J. Fietz, S. Gillies, A. Passmore et al., Functional analysis in Drosophila indicates that the NBCCS/ PTCH1 mutation G509V results in activation of smoothened through a dominant-negative mechanism, Dev Dyn, vol.229, pp.780-790, 2004.

D. M. Altshuler, R. A. Gibbs, L. Peltonen, D. M. Altshuler, R. A. Gibbs et al., Integrating common and rare genetic variation in diverse human populations, The International HapMap 3 Consortium, vol.467, pp.52-58, 2010.

J. Jeong and A. P. Mcmahon, Growth and pattern of the mammalian neural tube are governed by partially overlapping feedback activities of the hedgehog antagonists patched 1 and Hhip1, Development, vol.132, pp.143-154, 2005.

Y. Kamachi, M. Uchikawa, A. Tanouchi, R. Sekido, and H. Kondoh, Pax6 and SOX2 form a co-DNA-binding partner complex that regulates initiation of lens development, Genes Dev, vol.15, pp.1272-1286, 2001.

Y. Kamachi, Y. Okuda, and H. Kondoh, Quantitative assessment of the knockdown efficiency of morpholino antisense oligonucleotides in zebrafish embryos using a luciferase assay, Genesis, vol.46, pp.1-7, 2008.

R. O. Karlstrom, T. Trowe, S. Klostermann, H. Baier, M. Brand et al., Zebrafish mutations affecting retinotectal axon pathfinding, Development, vol.123, pp.427-438, 1996.

B. S. Ko, T. C. Chang, S. K. Shyue, Y. C. Chen, and J. Y. Liou, An efficient transfection method for mouse embryonic stem cells, Gene Ther, vol.16, pp.154-158, 2009.

M. J. Koudijs, M. J. Broeder, A. Keijser, E. Wienholds, S. Houwing et al., The zebrafish mutants dre, uki, and lep encode negative regulators of the hedgehog signaling pathway, PLoS Genetics, vol.1, p.19, 2005.

M. J. Koudijs, M. J. Broeder, E. Groot, and F. J. Van-eeden, Genetic analysis of the two zebrafish patched homologues identifies novel roles for the hedgehog signaling pathway, BMC Dev Biol, vol.8, p.15, 2008.

P. Kumar, S. Henikoff, and P. C. Ng, Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm, Nat Protoc, vol.4, pp.1073-1081, 2009.

M. J. Landrum, J. M. Lee, M. Benson, G. Brown, C. Chao et al., ClinVar: public archive of interpretations of clinically relevant variants, Nucleic Acids Res, vol.44, pp.862-868, 2016.

J. Lee, J. R. Willer, G. B. Willer, K. Smith, R. G. Gregg et al., Zebrafish blowout provides genetic evidence for Patched1-mediated negative regulation of Hedgehog signaling within the proximal optic vesicle of the vertebrate eye, Dev Biol, vol.319, pp.10-22, 2008.

J. Lee, B. D. Cox, C. M. Daly, C. Lee, R. J. Nuckels et al., An ENU mutagenesis screen in zebrafish for visual system mutants identifies a novel splice-acceptor site mutation in patched2 that results in Colobomas, Invest Ophthalmol Vis Sci, vol.53, pp.8214-8221, 2013.

W. H. Li, C. I. Wu, and C. C. Luo, Nonrandomness of point mutation as reflected in nucleotide substitutions in pseudogenes and its evolutionary implications, J Mol Evol, vol.21, pp.58-71, 1984.

R. Macdonald, K. A. Barth, Q. Xu, N. Holder, I. Mikkola et al., Midline signalling is required for Pax gene regulation and patterning of the eyes, Development, vol.121, pp.3267-3278, 1995.

A. Mathelier, X. Zhao, A. W. Zhang, F. Parcy, R. Worsley-hunt et al., JASPAR 2014: an extensively expanded and updated open-access database of transcription factor binding profiles, Nucleic Acids Res, vol.42, pp.142-147, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00943558

J. E. Ming, M. E. Kaupas, E. Roessler, H. G. Brunner, M. Golabi et al., Mutations in PATCHED-1, the receptor for SONIC HEDGEHOG, are associated with holoprosencephaly, Hum Genet, vol.110, pp.297-301, 2002.

I. Nasrallah and J. A. Golden, Brain, eye, and face defects as a result of ectopic localization of Sonic hedgehog protein in the developing rostral neural tube, Teratology, vol.64, pp.107-113, 2001.

F. Pasutto, H. Sticht, G. Hammersen, G. Gillessen-kaesbach, D. R. Fitzpatrick et al., Mutations in STRA6 cause a broad spectrum of malformations including anophthalmia, congenital heart defects, diaphragmatic hernia, alveolar capillary dysplasia, lung hypoplasia, and mental retardation, Am J Hum Genet, vol.80, pp.550-560, 2007.

F. Pasutto, L. Mauri, B. Popp, H. Sticht, A. Ekici et al., Whole exome sequencing reveals a novel de novo FOXC1 mutation in a patient with unrecognized Axenfeld-Rieger syndrome and glaucoma, Gene, vol.568, pp.76-80, 2015.
DOI : 10.1016/j.gene.2015.05.015

L. Pillai-kastoori, W. Wen, S. G. Wilson, E. Strachan, A. Lo-castro et al., Sox11 is required to maintain proper levels of Hedgehog signaling during vertebrate ocular morphogenesis, PLoS Genet, vol.10, p.1004491, 2014.

D. E. Pineda-alvarez, B. D. Solomon, E. Roessler, J. Z. Balog, D. W. Hadley et al., A broad range of ophthalmologic anomalies is part of the holoprosencephaly spectrum, Am J Med Genet A, vol.155, pp.2713-2720, 2011.

A. Putoux, S. Thomas, K. L. Coene, E. E. Davis, Y. Alanay et al., KIF7 mutations cause fetal hydrolethalus and acrocallosal syndromes, Nat Genet, vol.43, pp.601-606, 2011.
DOI : 10.1038/ng.826

URL : http://europepmc.org/articles/pmc3674836?pdf=render

N. K. Ragge, A. G. Brown, C. M. Poloschek, B. Lorenz, R. A. Henderson et al., Heterozygous mutations of OTX2 cause severe ocular malformations, Am J Hum Genet, vol.76, pp.1008-1022, 2005.
DOI : 10.1086/430721

URL : https://doi.org/10.1086/430721

N. K. Ragge, A. Salt, J. R. Collin, A. Michalski, and P. A. Farndon, Gorlin syndrome: The PTCH gene links ocular developmental defects and tumour formation, Br J Ophthalmol, vol.89, pp.988-991, 2005.
DOI : 10.1136/bjo.2004.061390

URL : https://bjo.bmj.com/content/89/8/988.full.pdf

L. M. Reis and E. V. Semina, Genetics of anterior segment dysgenesis disorders, Curr Opin Ophthalmol, vol.22, pp.314-324, 2011.
DOI : 10.1097/icu.0b013e328349412b

URL : http://europepmc.org/articles/pmc3558283?pdf=render

L. A. Ribeiro, J. C. Murray, and A. Richieri-costa, PTCH mutations in four Brazilian patients with holoprosencephaly and in one with holoprosencephaly-like features and normal MRI, Am J Med Genet A, vol.140, pp.2584-2586, 2006.
DOI : 10.1002/ajmg.a.31369

E. Roessler, Y. Z. Du, J. L. Mullor, E. Casas, W. P. Allen et al., Loss-of-function mutations in the human GLI2 gene are associated with pituitary anomalies and holoprosencephaly-like features, Proc Natl Acad Sci, vol.100, pp.13424-13429, 2003.

H. E. Schauerte, F. J. Van-eeden, C. Fricke, J. Odenthal, U. Strahle et al., Sonic hedgehog is not required for the induction of medial floor plate cells in the zebrafish, Development, vol.125, pp.2983-2993, 1998.

S. T. Sherry, M. H. Ward, M. Kholodov, J. Baker, L. Phan et al., dbSNP: the NCBI database of genetic variation, Nucleic Acids Res, vol.29, pp.308-311, 2001.

A. M. Slavotinek, Eye development genes and known syndromes, Mol Genet Metab, vol.104, pp.448-456, 2011.
DOI : 10.1016/j.ymgme.2011.09.029

URL : http://europepmc.org/articles/pmc3224152?pdf=render

M. Srour, D. Chitayat, V. Caron, N. Chassaing, P. Bitoun et al., Recessive and dominant mutations in retinoic acid receptor ? in cases with microphthalmia and diaphragmatic hernia, Am J Hum Genet, vol.93, pp.765-772, 2013.
DOI : 10.1016/j.ajhg.2013.10.010

URL : https://doi.org/10.1016/j.ajhg.2013.10.010

Y. Tabata, Y. Ouchi, H. Kamiya, T. Manabe, K. Arai et al., Specification of the retinal fate of mouse embryonic stem cells by ectopic expression of Rx/rax, a homeobox gene, Mol Cell Biol, vol.24, pp.4513-4521, 2004.

Y. Takabatake, T. Takabatake, S. Sasagawa, and K. Takeshima, Conserved expression control and shared activity between cognate T-box genes Tbx2 and Tbx3 in connection with Sonic hedgehog signaling during Xenopus eye development, Dev Growth Differ, vol.44, pp.257-271, 2002.
DOI : 10.1046/j.1440-169x.2002.00640.x

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1046/j.1440-169X.2002.00640.x

S. Y. Tay, P. W. Ingham, and S. Roy, A homologue of the Drosophila kinesinlike protein Costal2 regulates Hedgehog signal transduction in the vertebrate embryo, Development, vol.132, pp.625-634, 2005.

Z. M. Varga, A. Amores, K. E. Lewis, Y. L. Yan, J. H. Postlethwait et al., Zebrafish smoothened functions in ventral neural tube specification and axon tract formation, Development, vol.128, pp.3497-3509, 2001.

A. S. Verma and D. R. Fitzpatrick, Anophthalmia and microphthalmia, Orphanet J Rare Dis, vol.2, p.47, 2007.

E. H. Villavicencio, D. O. Walterhouse, and P. M. Iannaccone, The Sonic hedgehog-Patched-Gli pathway in human development and disease, Am J Hum Genet, vol.67, pp.1047-1054, 2000.

E. Weh, L. M. Reis, H. C. Happ, A. V. Levin, P. G. Wheeler et al., Whole exome sequence analysis of Peters anomaly, Hum Genet, vol.133, pp.1497-1511, 2014.

A. H. Weiss, B. G. Kousseff, E. A. Ross, and J. Longbottom, Simple microphthalmos, Arch Ophthalmol, vol.107, pp.1625-1630, 1989.

C. Wolff, S. Roy, and P. W. Ingham, Multiple muscle cell identities induced by distinct levels and timing of hedgehog activity in the zebrafish embryo, Curr Biol, vol.13, pp.1169-1181, 2003.

Y. Yamamoto, D. W. Stock, and W. R. Jeffery, Hedgehog signalling controls eye degeneration in blind cavefish, Nature, vol.431, pp.844-847, 2004.

R. Zhang, H. Huang, P. Cao, Z. Wang, Y. Chen et al., Sma-and Mad-related protein 7 (Smad7) is required for embryonic eye development in the mouse, J Biol Chem, vol.288, pp.10275-10285, 2013.

L. Zhao, S. E. Zevallos, K. Rizzoti, Y. Jeong, R. Lovell-badge et al., Disruption of SoxB1-dependent Sonic hedgehog expression in the hypothalamus causes septo-optic dysplasia, Dev Cell, vol.22, pp.585-596, 2012.