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ABSTRACT:

This paper deals with area-based subpixel imagstragion under rotation-isometric scaling-
translation transformation hypothesis. Our appro&ctbased on a parametrical modeling of
geometrically transformed textural image fragmeatsd maximum likelihood estimation of
transformation vector between them. Due to the rpatacal approach based on the fractional
Brownian motion modeling of the local fragments tte®, the proposed estimator Mk
(ML stands for “Maximum Likelihood” and fBm for “lactal Brownian motion”) has the ability to
better adapt to real image texture content comparether methods relying on universal similarity
measures like mutual information or normalized elation. The main benefits are observed when
assumptions underlying the fBm model are fully S@d, e.g. for isotropic normally distributed
textures with stationary increments. Experimentshoth simulated and real images and for high
and weak correlation between registered images shatwthe Mlg, estimator offers significant

improvement compared to other state-of-the-art odsh It reduces translation vector, rotation



angle and scaling factor estimation errors by #ofagof about 1.75...2 and it decreases probability
of false match by up to 5 times. Besides, an atewenfidence interval for Mg, estimates can be
obtained from the Cramér—Rao lower bound on ratasicaling-translation parameters estimation
error. This bound depends on texture roughnessenevel in reference and template images,
correlation between these images and geometraradfiormation parameters.

Index Terms — area-based image registration, subpixel regjistratranslation, rotation, isometric
scaling, Cramér—Rao lower bound, Fisher informatijperformance limits, fractional Brownian

motion model, maximum likelihood estimation (MLHE)yperspectral imagery, Hyperion, Landsat 8.

1.INTRODUCTION

Image registration is a fundamental image procgsgioblem aiming at mapping two or more
images (reference and template ones) to a comnudioate system [1]. Registration enables joint
analysis of the information content of images aaxuiby different sensors at different time
instances and/or under different modalities. Suddctical and challenging use cases can be
frequently met in remote sensing (registration iffiecent spectral bands, images with large time-
base gap between each other or different spatiitsg) resolutions, registration of optical and
radar images) [2-4] or in medical imaging (regitna of computed tomography, magnetic
resonance, and photon emission tomography imaggs) [

A large number of image registration methods oftégtermine parameters of a global
geometrical transformation between reference antplee images using a set of linked control
fragments (CF). By CF, let us mean here a smalgeéfeagment with a practically similar content
recognizable in both images (for feature-based austifControl Points or Feature Points terms are
in use). In practice, these CFs have to be seldcstdn both images and they can be subsequently
registered either by feature-based or by area-bastllods [3, 4]. In the former case, a rather large
initial image registration error is tolerated pmed the time required for finding and linking the
CFs is limited and reasonable. On the contrarya-Besed algorithms put more emphasis on the

achievable CFs registration accuracy accepting thgser computational complexity [6]. As a
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result, feature-based methods have found a wideaudlee coarse registration stage whilst area-
based methods are often preferred at the fine trai;m stage, especially when subpixel
registration accuracy is required [7, 8].

Without loss of generality, the area-based redistmaproblem aims at obtaining an accurate
estimation of geometrical transformation parametaetveen two CFs (or a couple of small
reference and template image fragments) relyingctly on pixel intensities in these fragments.
Due to the rigorous positioning of modern sateliémsors on one hand and the local nature of the
problem at a CF level on the other hand, lineang&acal transform models between the two CFs
can be reasonably considered [2], such as purslatamn, rotation-scaling-translation (RST) or
affine transformation [9] to name the most commardgd. In some cases, a correction for the relief
influence might be required in addition to the poe¢ assumption on the geometrical transform
model. In this paper, we essentially concentrateRST transformation model with isometric
scaling between the two CFs.

Area-based registration can be viewed as an otz problem of a suitable similarity
measure between reference and template CFs. Treefeva widespread similarity measures. The
simplest one is sum of squared differences (SSP)Tlds distance measure implicitly assumes that
the intensity values of the corresponding fragment&/o registered images are more or less witiin t
same magnitude order. The use of this distanceureeaan certainly provide correct results when the
aforementioned hypothesis is strictly satisfiedhedwise, the results may degrade, in particular for
multimodal images. The cross-correlation or leagtages similarity measure can be viewed as an
extension for handling linear dependence betweemetference and template images intensities [8]. In
multimodal settings, a standard solution is to wmrsa normalized version of the cross-correlation
(Normalized Cross-Correlation, NCC) [10]. NCC isguably, the most frequently used similarity
measure in image registration [11]. It is the bdsisthe Correlation- and Hough transform-based
method of Automatic Image Registration (CHAIR) a@mh recently proved to cope with complex

registration cases including synthetic aperturar&8AR) with optical images registration [2].



The mutual information (M) distance measure, sagkhe one introduced in [12, 13] for registration,
allows tackling with even more complex dependeretevéen the reference and template images. The
underlying idea is to measure the normalized egtaipjoint density of the reference and template
images. A Parzen-window estimator [14] with a srhoaimpactly supported kernel function can be
used for estimating the unknown joint density.

The normalized image intensity gradients (Normdligadient Fields, NGF) method [15] achieves
a compromise between the more restricted SSD @&ndeity general (and highly nonconvex) MI. This
measure assumes that intensity changes in imagdgfefent modalities appear at corresponding
positions. It is basically an L2-norm of a residumkasuring the alignment of the normalized grasien
of reference and template images at a given posidormalization of the gradient allows focusing on
locations of changes rather than on the strengtieathanges.

Within this framework, subpixel registration acaya@an be usually achieved using interpolation of
reference or/and template images [11]. This additistage might have negative effect on geometrical
transformation parameters estimation accuracy €k@mple, introducing bias) as it is discussed in
[16, 17]. All the abovementioned similarity measuweere adopted in the past quite successfully to
measure either pure translation [11], or RST pat@amme[18], or more complex geometrical
transformations model parameters [8, 19] with sxdd@ccuracy.

In multitemporal and /or multimodal case, it happehat correlation between reference and
template CFs may tend to be moderate or even vetrakigly correlated CFs could be rather rare in
a pair of images to register. In such specific domas, a registration method should be able to use
available data as effectively as possible. Moréctstr it should be characterized by a high
probability of positive match and high registrat@accuracy in a wide range of correlation between
reference and template images — from strong to weawever, despite the research efforts devoted
towards achieving this goal, design of registratoethods with such wide application spectrum is
still an open problem.

In particular, the methods based on universal nreassuch as SSD, NCC, MI or NGF cannot



meet the abovementioned requirement easily. Th@pse only general requirements on registered
images like smoothness or statistical dependenicey To not implicitly take into account image
content and/or noise statistics. Such drawbackteiay reduces registration efficiency.

Additionally, in multitemporal and/or multimodalgistration cases, it is a difficult problem to
precisely quantify the final accuracy of estimgpaglameters for a given geometrical transformation.
The two main reasons for this lie in a rather camtructure of similarity measures in general and
the often negative influence of interpolation stage Cramér—Rao lower bound (CRLB) on
translation estimation error based on SSD measaseobtained by D. Robinson and P. Milanfar in
[20]. This work was further extended for 2D rotatidRST transformation, 2D and 3D affine
transformations [21] and 2D projective transformat{22]. As it has been shown in [23], this
bound can be rather inaccurate in describing rstnators’ performance. Besides, it cannot be
directly applied to multitemporal and/or multimodalses.

In a recent paper [23], we proposed and studiearigimmal CRLB on pure translation estimation
error STD. This bound was experimentally compacedther similar bounds of the literature. The
performance of standard translation estimators eeaspared against these set of bounds based on
simulated and real data. The obtained results sth@@ed accuracy and adequateness of the newly
proposed bound in a variety of settings includingltitemporal and/or multimodal cases. A
significant gap between theoretically predicted uaacy and performance of real registration
methods has thus been filled to a certain extetitarcase of simple translation transformation.

In this paper, we move forward and prove it is gaesto reduce further this gap, that is, to
derive a new registration method that performseside the theoretically predicted accuracy for
both a restricted but wide enough class of imagesnare complex geometrical transformations. A
new and very efficient area-based registration ok thus proposed and its accuracy is precisely
guantified.

First of all, we upgrade the geometrical transfdramamodel considered in our approach, from a

simple translation to a more complex and more s8alRST transformation model, better suited for



many remote sensing applications.

Second, in contrast to our previous work, we fobhaseafter more properly on the efficient
estimation of RST parameters in multitemporal antiaild” multimodal settings (registering, in
particular, real images acquired by VNIR and SWiRaal sensors in the experimental part of this
paper). We consequently propose a new estimatbimatihe same approach as in [23] but extended
to RST transformation hypothesis between the tws ©OFegister. It is called Mg, due to its two
distinctive features: it is derived within the Mexum Likelihood framework and the local texture
in both CFs is still assumed to be well modeledhsy fractal Brownian motion model (in Ngs
“ML” stands for “Maximum Likelihood” and “fBm” for“fractal Brownian motion”). The Mlgm
estimator is proposed along with a refined optitzascheme assuring its global convergence.

More, the observation model considered in this ndWs, estimator relies on a signal-
dependent noise model for both Rl and TI. This rhqueved to be more adequate for new
generation of multispectral and hyperspectral sengs, 25]. At the CF level, we approximate the
assumed signal-dependent noise by an additive naitle signal-dependent variance. This
distinctive feature of the Mk, method is worth noticing as other area-based tragjisn methods
cannot implicitly take such noise properties intz@unt. We show a quite large tolerance of the
MLy estimator to errors in the noise variance. Th@pprty allows using a possibly inaccurate
noise variance directly estimated from noisy imagathout facing a decrease of the proposed
method efficiency (meaning that @opriori information on noise variance is required to ofgera
safely the method).

Besides, we show that the M}, estimator is able to reduce RST parameters estimatror by
a factor of 1.75...2 as compared to state-of-thesathods. The Mfg, method is also characterized
by a significantly lower probability of false CFegistration (outlier occurrence among CFs). Itdaal
in practice with large temporal and spectral déferes, different spatial resolutions of referenug a
template images, weak correlation between regétéfes (normalized correlation coefficient down to

0.4 is acceptable). Effects of relief influence adso be taken into account with the jl-using digital



elevation model (DEM).

An extra outcome of the work performed in this pagea CRLB describing the potential
accuracy of parameters estimation for RST transéition hypothesis between couples of CPs. This
CRLB is used here to assign a confidence intergaltlie obtained RST parameters estimates
(confidence ellipsoid based on a CRLB estimate) tiieo best of our knowledge, this is the only
bound of this kind suitable for multitemporal armdioultimodal registration cases. This bound can
be especially useful to assign weights to each R&Bmeter estimate depending on its actual
accuracy. Such weights can be later used eitheodtiier detection or for obtaining an adequate
weighted estimate of the global geometrical trams&dion parameters.

Finally, we investigate experimentally the rangeapplicability of the proposed parametrical
approach to real data and demonstrate that foerattde image class including isotropic textures
with normal increments, the proposed method is nedfieient than state-of-the-art methods and
perform very close to the corresponding CRLB.

The paper is organized as follows. Section 2 intced the parametric statistical model chosen
for describing translated, mutually rotated andlestamage textures and it details the #i
estimator developed accordingly. In Section 3, peeformance of the newly proposed M-
estimator is comparatively assessed against thdbwf other alternative estimators based on
experiments on simulated pure fBm data. The pefoce of this Mkg,, estimator is analyzed in
Section 4 for real-life Hyperion and Landsat 8 d&iaally, discussion and conclusions are given in

Sections 5 and 6.

2.JOINT MAXIMUM LIKELIHOOD ESTIMATION OF RSTTRANSFORMATION AND IMAGE

TEXTURE PARAMETERS

This Section formally defines the newly derived #l estimator of RST transformation
parameter vector between reference and templagesr@ontrol fragments. Its potential performance

characteristics are analyzed and convergence issaekscussed.

2.1. Problem statement



By reference/template CF we mean image fragmerdmall size (from 7 by 7 to about 25 by 25
pixels) cut out from the full size reference/tentiplamages. They are defined at two local

reference/template coordinate systems with axegsA@v, where (t,s) and (u,v) denote

respective pixel coordinates, and origing @nd Q, are placed in the center of the corresponding
CFs. In what follows, we use subscripts “RI” and™fbr reference and template CFs, respectively.
“XX” stands for either “RI” or “TI” according to th context.

We assume the RST transformation model betweeys ttnd u@v coordinate systems that

includes rotation by an angke, isometric scaling with a factakr and translation by a vector

(At,As) , WhereAt and As are vertical and horizontal translation components

(u] ( cosa sim](tj (Atj
=Ar| + : (1)
Vv -sing coxr )l s) \As

The RST model parameter vectO. =(At,As,a,Ar) is to be estimated with accuracy

allowing subpixel alignment of reference and tertelaFs.

The referenceyg, (t,s), and templatey,, (u,v), CFs are of siz N, x N, and N, X N, pixels

respectively. They are defined according to thiowahg additive observation model:

Yri(6,9) = % (1 94775 (19, t==Ny g s Ni g, 5= = Nigi v Nogy»

Y (U ) =06 (U Y70 (U Y, U= =Nogyes No s V== N 0Ny
where N, =(NXX—1)/2, X (1, 9) and x;,(u,v) are pixel samples of the RI and TI noise-free
CFs, respectivelyrp,, (t,s) andn,, (u,v) are the corresponding noise processes viewe@asnsiry,
spatially uncorrelated, zero-mean, Gaussian digtib fields with variances’, and o> ,
respectively, and independent of each other. Wigis¢ definitionsN,, and N,, are considered as
odd values in our work. To deal with a signal-dejeent noise hypothesigi’, and o>, are

allowed to vary from CF to CF as this situationlw& described in subsection 4.1. Other choices of

CF shape (non-symmetrical arbitrary shape) areilplessithout modifying the proposed method.



Both vy, (t,s and y,(u,v) are transformed intd\3, x1 column vectorsY, and Y in

Y
column-major order and they compose sam@e{ R'J of size (N2, + NZ2)x1. Let us define
TI

coordinates of &th element ofY, vector as(t,,s,), and arl-th element ofY,, vector as(u,, V).

We adopt fBm model [26] to locally describe imaggttire or, more precisely, obtain correlation
matrix of the samplé/;. A great advantage of considering the fBm modelcfwaracterizing local
texture is that it allows describing complex shapéh only two parameters [27]: texture roughness

parameterized by Hurst exponert and texture amplitude parameterized dyy. Here H J[0,1]

(values less than 0.5 corresponds to rough andegré@an 0.5 - to smooth textures) amgd is

standard deviation (STD) of texture increments oit distance. We additionally assume the same
value of the parametdd for both reference and template images (lateubyssction 4.5, we have
checked that this assumption is justified for a&th). Thusthe registration problem is parameterized
with only eight parameters (low order models areviem to be preferable when estimating parameters

from small samples [28, 29]) forming the full paeter vecto® = (0, ,,0, 1, H Kz At AS,0 AT),
whereo, .,,0,, areog, values for reference and template CFs, respegtig| is the correlation
coefficient between these pair of CFs. Noise vaearo’,, are supposed to be known and,

accordingly, they are not included ® (in practice,a”,, can be found either using a sensor
calibration dataset or estimated directly basedhenimage data, as suggested in our recent works

[30, 31]). The full parameter vector can be repmes® as 0=(0texture,9RST) , Where

0 =(0, g0, vH Kgy) is the texture parameter vector é0.., is the RST parameter vector

texture —
defined above. Within the framework introduced ahownage registration problem amounts to
estimating the vectod .
By using a local parametric approach for solving tigistration problem, we seek to increase the
final registration efficiency by a better adaptatal the whole approach to image texture. Howeter,

fBm model is suitable for describing isotropic naity distributed textures with stationary
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increments. Thus, the proposed method needs tedokoautiously when Gaussian hypothesis (single-
look SAR images with fully developed speckle istsan example) and/or isotropy hypothesis on local
texture or noise model violates. We consider g8ge more in detail later in Section 4.

2.2. The ML tgm estimator

Let us now introduce the maximum likelihood estionaMLE) of the vectom = (0., 0 xs1) -

According to the definition of fBm process, it takeero value at the origin. To assure this, conside

AY Y. — 1
new sampIeAYz:( R'Jz( R~ Xriodri

, where X, =X (0,0) denotes true values of
AY, Yo = Xnoly j o0 < (0.0)
reference/template CFs central pix&|, are unit vectors of sizé\3, x1, respectively. The

correlation matrixR, of the sample\Y; is given by [23]:

Rz :( RRI + Rn.RI kRT EIRRT (BRST)] , (2)

kRT DRLT (HRST) R nt R n.TI
where R,, are correlation matrices of noise-fr&’,, sample,k,,R,,; is the cross-correlation
matrix betweenAY,, and AY, , R, , =0>,l, are correlation matrices of noise for
reference/template CFs,, are N,, x N,, identity matrices, respectively.
Let R, be expanded aR., =0, .0, R - Here elements of the matrik, ., describe

covariance between elements®®f,, andAY;, whenao, , =0, =1 andk,, =1. For the fBm model,

elementsR,, (k, k), Ry (1,1,), andR ., (k 1) take the following form (see Appendix A for desil
Rl ) =000 (€ +5) +(£+ 8)"~((1- 1) (5= o)) |

ot zo'ﬁi'T'{(“'f”'f)H () =((w-w) +(n- V)H

R (k)= A {((Q_%)a(sk_ %)2)” +(F+§) -(E+ §)" —(( N (s .#2”,

2

where t':Ar‘l(cosa(u—At)—sim(v—As)) , s':Ar‘l(sina(u—At)+cosa(v—As)) ,
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t, = —Ar (At cosa - As simr), s, =-Ar*(Atsing +Ascosy) .
Omitting a constant that does not depend orthe logarithmic likelihood function (log-LF) ofe¢
sampleAY, can be written as:

logL (AY; ,0) = —%(AYZTR;AYZ +logR,|). 3)

With these notations, the MLE of the parameterarefetis obtained as:

0= argema{ lod(AY; 0) ], (4)

(5)

A

()A(RI-OJ — (eTRlR;em e;R;en j_l(e; R;AYzj
eL R;eRl eL R;eﬂ e; R;AYZ

XTI.O
subject to constraints, ., = 0; 0, 2 0; 0 H < 1 |Ke,| < - Hereey, =(1,,,0;,) ande;, =(04.1;,),
0,, are Nz, x1 zero vectors. MLE of unknown values, , in (5) are obtained by equating to zero

the first derivatives ofogL(AY,,0) w.r.t. X, ,.We will later refer to the estimator in (4) as the

newly proposed Mlgm, estimator for RST geometrical transformation hypsts.
The ML, estimator in (4) optimizes the similarity meas(8§ It is important to note that the
log-LF in (3) is a continuous function w.r.t. tharameters vectod and does not involve any

transformation of the input dat&Y, . Therefore, subpixel registration accuracy candaehed with

MLy estimator without interpolating either image datasimilarity measure. This is a positive
feature of the Mlgy, worth noticing as it has been repeatedly emphdsiz¢he literature that such
interpolation stage might alter accuracy of sublpiggistration algorithms [16, 17, 20].

By using the Mkg, estimator, the lower bound on estimation error S¥[Pparameter vectc

can be calculated as:
6, =+/diag(C,) , (6)

wherediag([) returns the diagonal elements of a mat@y,= Igl is the CRLB on estimation errors

covariance], is the Fisher Information Matrix (FIM) of the pamater vecto® with ij-th entry [28]:
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.. 1 oR 4 OR,
|e('aJ):|e(i)e(i)zat{ae(iz)R160(J)R J j=1.8 (7)

Derivatives ofR; w.r.t. e(i) are given in Appendix A. We denote by (Cy_ ) the part of
6, (C,y) related to RST parametefs, As, a and Ar defined above.

Given matrixC,, a confidence interval on the MLE can be represented by the scattering

ellipse in the parameters space. Therefore, thgMéstimator can be also viewed as an interval
estimator of the RST parameters. Accuracy of therwal estimates provided by the Mk
estimator depends on the actual adequacYpfbound. A detailed analysis @&, for pure
translation model [23] proved it to be a very tigound even when dealing with real data. We will
show in the next two Sections that this statementlze also extended to the RST model. To the
best of our knowledge, our bound is the only onat tban be applied at the moment to
multitemporal and/or multimodal registration prahle

2.3. ML¢gm estimator initialization and implementation

The problem defined in (4) is a nonlinear consediptimization problem and it is solved here
using Han-Powell optimization method [32]. Advamsagf this quasi-Newton method are superlinear
convergence speed and availability of efficientlengentations.

However, the log-LF given in (3) exhibits multiptxtrema (see subsection 4.4). Therefore, a

proper selection of an initial guess fris needed to prevent numerical optimization predesm

possible convergence to a local extremum. By didimi o7 is the variance of fBm-field
increments on unit distance. Then, reasonable ligtiasses foo, ., and o, ,, can be obtained as

standard deviation (STD) of,, first-order increments:

G2 = D(Ya(t9) = Ya(t+ 1. 9)+ D w( t3- w( £82)]/2 8)
G =[D(Yn(uV) = W (w1 9)+ Oy (uy- y(uvd)]/2 9)

where the operath([)] returns argument variance. We fix the initial gufes the Hurst parameter to
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H =0.5, i.e. in the middle of the Hurst exponent rangepossible values. The sample correlation

coefficient between reference and template imagesad as initial guess fég; .
Setting initial guess fc@.4; vector depends on a particular application. Oocomenendation for

satisfying global convergence will be discusse8éation 4.

3. COMPARATIVE ANALYSIS OF THEML gy ESTIMATOR AGAINST STATEOF-THE-ART

ALTERNATIVES ON SIMULATED FBM DATA

To better analyze the Md., ability to improve RST parameters estimation aacyr let us first
compare it against the most commonly used areaitsagelarity measures introduced above, such as
the SSD [3], NCC [33], MI [12, 13], and NGF [15] this Section, comparison is carried out in
controlled conditions based on simulated noisy f@xiure. All estimators are compared in terms of

bias, efficiency (closeness to tlgy bound), and distribution of RST parameters estsat

Experimental results presented in this Section eesn obtained based on the Flexible Algorithms
for Image Registration (FAIR) software [34], a pag& written in MATLAB.

3.1. Test points

The following analysis is based on ten differerdt tpoints (TP) numbered from 1 to 10 in
Table 1. Among these test points (sets of paras)et€P #1 is treated as a basic parameter vector.
The nine other TPs are obtained by changing onesemeral parameter value(s) of TP #1
components (those marked by bold in Table 1). T#®k..#10 cover situations with rough and
smooth texture, low and high noise level, weak atrdng correlation between reference and
template CFs (see the column Description).

We would like to stress that values of fBm moded &ET parameters for tiselected set of TPs
in Table 1 are typical ones estimated for Landdat8Hyperion images registration problem
discussed later in the experimental Section of plser. The most frequently met value of the ratio

o, | o, for both Hyperion and Landsat8 bands is aboutcbittioan drop down to 1 for noisy areas.
The average of the Hurst exponent is about 0.6cdutbe as low as 0.3 for some C|R§,| varies

from O to 0.95 and we sét, =0.95and0.5 as the strong and weak correlation cases, resplycti
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(At,As) pairs cover subpixel shifts from no translationhtif-pixel translation cases (integer shifts

were removed from consideration here as they daffiett estimators performance). Rotation angle

between Hyperion and Landsat8 images was ab8urt’the scaling factor was about 1.025.

Table 1. Test points parameter valueg{ =0, =1, 0,5 =5, N;, = N;, +8)

Test . At As, a,

point Description Txn H Ker Nn pixels | pixels | degrees Ar
1 Basic 5 0.65 0.95 15 0.25 0.25 17 1.025
2 Weak correlation 5 0.6% 05 15 0.25 0.25 17 1.02b
3 Small template CF size 5 0.65| 0.95 9 0.25 0.25 17 1.02%
4 High noise level 1 0.65| 0.95 15 0.25 0.25 17 1.025
5 Rough texture 5|03 | 0.95 15 0.25 0.25 17 1.02%
6 Pure translation 5 0.65 0.95 15 05 0.5 0 1
7 Pure translation 5 0.65 0.95 15 05 0 0 1
8 Pure rotation 5 0.61 0.95 15 0 0 5 1
9 Pure scaling 5 0.6% 0.95 15 0 0 0.8

Zero geometrical

10 transformation 5 065| 095| 15 0 0 1

CRLBs on RST parameters estimation error STD fo##P...10 are given in Table 2. These values

are calculated by substituting the correspondimgmaters into Eq. (6) and (7). The lowest estimatio

accuracy is observed for TP #2 due to weakelation between reference and template CFs, the

highest — for TP #9. Mean theoretical estimatiororeSTD is about 0.067 pixels for translation,

0.67° for rotation angle and about 0.012 for sgdiattor.

Table 2. CRLB on RST parameters estimation ernoff ®##1...10 (STD values)

Grsr(d) Orsr(2) 5 Grsr(3)
™ pixels (At) | pixels (As) | degrees ) orsr(4) (A1)
1 0.048 0.049 0.447 0.008
2 0.130 0.133 1.208 0.023
3 0.082 0.083 1.236 0.024
4 0.107 0.109 0.990 0.019
5 0.058 0.062 0.569 0.010
6 0.056 0.056 0.509 0.009
7 0.043 0.068 0.476 0.009
8 0.049 0.049 0.45 0.010
9 0.039 0.034 0.373 0.003
10 0.049 0.049 0.454 0.008

3.2. Numerical resultsanalysis

For each test point, the reference and templatea@abtained via Cholesky decomposition of the

correlation matrixR, [35]. A total number of 1000 samples is used ttecb statistics for each

estimator compared. Note that the reference CFisiget larger than the template CF size to ensure
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full overlapping of control fragments.

Several quantitative criteria are considered faseasing the estimation accuracy. We have
decided to use median and median of absolute @msa{(MAD) measures to account for possible
outliers among estimates. For eath component of the RST parameter vector, the ¢a#uae

criteria  are defined by the following expressionstobust analogs of bias

Q:ORST(i)—meo(éRST( )) and standard deviatiors = 1H8ADL , the statistical efficiency

measure € =100%[6é .., (¥ /MSE(i)) , i=1..4 . Here med([)] denotes median operator,

MAD, = med|0xsr()- med® s N)|) is median absolute deviatioMSE()= ¢+ B is mean
square error (for biased estimatess)reflects efficiency of each estimator w.r.t. #g (i) bound. For
an efficient estimatore =100%. A value g [] 100% relates to a non efficient estimator.

Comparative results are presented in Fig. 1, 2Tainde 3. Recall first that all four parameters are
jointly estimated by the proposed methBdy. 1 displays experimental probability densitpdtions

(pdf) of estimates of eadh.,, component for TP #1. These pdfs are shown fothree estimators
(MLtsm, NGF, and MI) proved to be the best in our congmari In addition, Gaussian pdfs
N(ORST(i),oRST(i)Z) are shown as dashed curves for comparison witkigtebution predicted by
theory. Table 3 compares the Mk, NGF, ML, NCC, and SSD estimators in terms ofreates
bias. Fig. 2 presents data in terms of robust stahdeviations just defined above.

The following observations can be drawn:

1. The mean percentage of outlying estimates roughleterchined as

°

and 7% for the SSD estimator. For the pilestimator, this value is only about 0.1%, i.e.dhmllest.

éRST(i)_eRST(i)‘ >4s,) is about 1% for the NGF estimator, 2.5% for theON&hd MI estimators,

2. The close proximity of experimental pdbr the MLp, estimator with the Gaussian
distribution can be clearly stressed (see pdfs imlF More in detail, according to Lilliefors

goodness-of-fit test [36], the hypothesis of noitydor At, As, a andAr estimate distributions
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can be accepted for the M}, estimator at significance level 5% for all TPseapicfor TP #2. The
rest of estimators pass the normality test (aéisraving the abovementioned outliers) only for TP #5

(the MI method has also passed the normality tesEP #10; NGF method for TP #10 and #8).

T8 g
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X 6 o
o
é‘ 306 ....
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DSf ; ; | ; = = = N(0gsr(i),0rsr (i)°)
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0.9 1 1.05 1.1
Ar,dimensionless quantity

c
Fig. 1. Experimental pdfs of the RST parametenesisfor TP #1: horizontal translation (a), rotation

angle (b) and scaling factor (c). The Ml.data are shown as red curves, the NGF data eas gurves, the

Ml data - as blue curves and the theoretical ptH(QRST(i),cRST(i )2) - as dashed black curves

3. For each estimator compared and each RST paranieble 3 shows minimum,
maximum, MAD, and STD bias values obtained overl@ll TPs. The proposed Mk, always
shows the best results (ranked in the second positr MAD measure in only one case for
translationAt ) in terms of bias maximum deviation interval (dince between max and min
values), MAD and STD measures. For both NCC and $Stnators, large errors are possible
(they are responsible for increasing significaritlg difference between max and min values and
STD). We have found TP #2 (weak correlation betweeand TI) to be the worst case for efficacy
of the MI, NCC and SSD estimators. In terms of MAIe MLy, reduces bias by a factor of about 2

for translation estimates, by 4...7 times for rotatangle and about 10 times for the scaling factor
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compared to the NGF, MIl, NCC and SSD.

Table 3. Min, max, MAD and STD values of bias (riplited by 10) of translation (measured in pixels), of

rotation angle (measured in degrees) and of sciotgr estimates obtained by the five methods

Estimator (| - min max MAD STD (|- min max MAD STD
ML 85 2.9 2.8 3.9 838 3.7 0.8 3.2
NGF At, 26 10.4 1.8 3.9 As 19.4 6.1 2.8 7.3
M el 35 228 | 4.2 9.2 el 7.0 9.2 45 5.3
NCC pixe -32.0 4.4 5.8 108 | P*€ -78.8 7.4 5.7 25.7
SSD -46.0 2.3 0.1 13.9 2578 | 141 8.0 80.3
ML o 40.8 165 | 155| 201 16 0.4 0.3 0.6
NGF a, 2659 | 484 | 604 | 1082 0.9 275 3.0 8.4
M d 1782 | 1712 | 1140| 1263 Ar 45 78.0 4.0 23.6
NCC €0r€€ | 9271 | 623 | 64.4| 2944 2275 74 4.2 71.0
SSD 1827.5| 442 | 741 | 567.6 2467 | 138 3.5 76.3

4. In graphical form, estimation errors of the RSTapageters are presented in Fig.2. For all

estimators, interval{sh —3$,b+3§] are shown as bars of specific colors. In additiotervals

[~30sr(i). 36 xs:( )] are given as semi-transparent bars. It is seanattwrding tdb-3s, b+ 34

intervals, the estimators can again be roughlyedras follows: Mkgn, NGF, MI, NCC, and SSD. In

4
efficiency terms, the average efficiency (defineobas:llz e) of the proposed Mk, estimator is
i=1

about 90%, about 23% for the NGF estimator, 12-18%he MI and NCC estimatorand, finally,
about 6% for the SSD estimator. The behavior ofMh&s,, estimator for TP #10 differs from the
behavior observed for the rest of TPs and this elldiscussed later in this Section. The NGF, Ml
and NCC estimators are less effective (by 20-50R@stimatinca and Ar parameter as compared to
translation parameters. TP #2 is the most chaltgnigst point for all estimators, except thedL

5. For TP #2, the average efficieneys about 85% for the Mk, 3.5% for the NGF, 5.3%
for the MI, 0.5% for the NCC and 0.25% for the SSMis result is essential as TP #2 corresponds
to the multitemporal and/or multimodal registratioase (modeled by weak correlation between
reference and template CFs). In this specific easksupported by experiment carried out on real
data, the Mlgn, estimator significantly outperforms even the Mithoal specially designed to cope
with multimodal data.

6. For TP #10 (illustrating no geometrical transforimatbetween reference and template

CFs), the estimation error obtained with thedLestimator is significantly lower than the value of
17



the CRLBo,,(i) for all components of the., vector (efficiency exceeds 100%). We mainly

attribute this effect to a specific non-quadratiae of log-LF (3) at this point.

Translation
Estimation error, pixel

Rotation
Estimation error, degree
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Fig. 2. Characteristics of RST parameters estimatimrs for horizontal translation (a), rotationgle (b) and

scaling factor (c) obtained by the figlgorithms retained in the comparative study for Bk #1-10

To better illustrate this, Fig. 3 displays a sattad the mean log-LF w.rAr parameter and

its approximation by the second-ordeylor expansion at the poifgsr =(0,0,0,1). It is seen that
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the mean log-LF function decreases significantstdathan the quadratic function. As a result, the
CRLB, which is based on second-order approximatiotime log-LF shape, becomes inadequate. It
underestimates the estimation accuracy.Qf. We stress that this is only a local effect noglem
visible on either side of (0,0,0,1). It clearly da®ot affect the performance of the M. estimator,

but it limits the adequacy of the derived CRLBlas tparticular point for samples of finite size.

450 <LF>
40_ ........ v. 4

35}

_ _ Ar
098 099 1 1.01 1.02

Fig. 3. Shape of log-LF (3) in the vicinity of tpeint 8., =(0,0,0,1): the mean value of log-LF is shown
as black thick curve, approximation by the secordkéoTaylor expansion - as black thin curve. Axispans

the interval[l-30,, ,1+ 37,, ], whereo,, =6..,(4) for TP #10

3.3. Robustnessto noise variance errors and complexity analysis of the MLgm

One more feature of the Ml estimator demands analysis: this is the only egbminvolved in
the comparison we have performed that directly iregiknowledge of noise variance as an input.
In practice, this value might be known with errargd the influence of these errors on thegdyiL
performance should be investigated accordingly. éodmethods of blind noise variance
estimation (including signal-dependent case) akeaknto perform well, with variance estimation
error lying most of the time within the £20% relagierror interval (x10% for STD) [37]. So, we
have performed additional experiments with seténgneously botlo, .,,0,;, values with +10%
(and later £20%) bias. Errors in noise variance leea limited increase of bias and estimation STD
for all RST parameters. The most significant infloe was seen at TP#MSH ) increased by
about 5% (10%). For other TPs, the effect was Sagamtly smaller, MSH i) increased by less than
4%. Therefore, the influence of noise variancengaiion error on the performance of the il

estimator can be reasonably neglected in practice.

Based on these results obtained on synthetic @medata (with ground truth available), we can
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conclude that the proposed M}k estimator provides significant improvements coregdato the
four alternatives belonging to state-of-the-arte3é& improvements are seen in terms of standard
deviation, bias and distribution shape of RST pa&tens estimates. However, we need to mention
for sake of fairness that our estimator is sigaifity more computationally intensive as it requires
operations with large sample correlation matrixe Tost of our current Matlab implementation of
ML sm estimator is 20s for estimation of RST parameéstar for one pair of CFs (reference CF is
23 by 23 pixels, template CF is 15 by 15 pixelshgdntel Core2 Duo T5450, 1.66 GHz. The
similar operation with the same settings takes @6she NCC method (2D spline interpolation
stage was found to be mainly responsible for th&€Ni@ethod time cost), meaning that the P4

estimator is about 35 times slower than the NC@nesor. For larger sizesl;, and N, of the CFs,

this ratio will further increase. With this magrdti order, we have preferred to concentrate our
efforts to demonstrate the Mk, estimator potential for improving RST parametestingation

accuracy leaving efficient implementation for fiawvork.

4. PERFORMANCE ANALYSIS OF THE PROPOSED ESTIMATOR ON RE-LIFE DATA

As a real-life example, we consider the registratod two images acquired by Hyperion and
Landsat 8 sensors. Four among the five estimatrsidered previously completed by an extra one
will be comparatively assessed on this pair of skt Thus, the comparison includes thegML
NCC, MI, NGF estimators and the LSM algorithm imhuced in [8] at the fine registration stage.
The latter algorithm is based on cross-correlasiomlarity measure and it is more suitable for real
life data than SSD.

4.1. Test data

Recall that Hyperion sensor [38] acquires hypenspedimages in 242 spectral bands with
spectral resolution of about 10nm. Spectral ramge 355.59 nm to 2577.08 nm is covered by two
spectrometers (not all bands are active): VNIR @sa# 1...70; 355.59... 1057.68 nm) and SWIR
(bands ## 71...242; 851.92... 2577.08nm). Landsat @llisat[39] bears two pushbroom

multispectral sensors, Optical Land Imager (OLId arhermal InfraRed Sensor (TIRS). OLI
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collects data from nine spectral bands (433...1390 spatial resolution is 15/30 m), and TIRS
acquires data in two spectral bands (10.30...12.50 gpatial resolution is 100m). The main
parameters of the Hyperion and Landsat 8 databetswiere used in our experiment [40] are
specified in Table 4.

Table 4. Characteristics of the Hyperion and Lah8dast datasets.

Parameter Hyperion Landsat 8QLI)
Dataset related information
Scene ID EO1H1800252002116110KZ LC8177025201406%GGN
Acquisition time 26.04.2002 06.03.2014
Path/ Row 180/25 177/25
Site Latitude/Longitude, degrees 49.4339/32.0678 .8449/31.6597
Processing Level L1R L1T
Look angle, degrees 9.7073 0 (nadir)

Sensor related information

8061/7941 (reflective bands B1-BY)

Number of rows/columns 3129/256 16121/15881 (reflective band B8
Spatial resolution, m 30.38 30 (B1-B7, B9) or 18)B
Swath, km 7.7 185
Orbit Sun-synchronous; altitude is 705 km  Sun-sgorabus; altitude is 708 km

Among the 242 Hyperion bands, band #25 (VNIR; 50%81) has been selected as the reference
image. The Landsat 8 band B1 (OLI; 433...453 nm)us template image. Spatial resolution of
both bands is 30 m. We will later consider a mosenglex case when reference and template
images have different spatial resolution. For thal, we consider Landsat8 band B8 (OLI,
500...680 nm; panchromatic; spatial resolution is L&mtemplate image.

Different acquisition settings (12 years differemeeacquisition time, different wavelengths and
spectral widths) make Landsat 8 to Hyperion regisin a multitemporal or even a “mild”
multimodal registration problem (true multimodalityolves data acquired by sensors of different
physical nature). This can be clearly seen from &ithat shows registered Hyperion (Fig. 4a) and
Landsat 8 (Fig. 4b) bands. Different spatial reiohs complicate this problem even further.

To cope with the relief influence on Hyperion imagige fragment of ASTER Global Digital
Elevation Map (GDEM) [40] covering the study areaswused. DEM was manually registered to
the Hyperion image (Fig. 4c). Relief for the stuahga is quite flat with elevation varying from 50

to 243 m (themean elevation value is 113 m).
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Relief influence in cross-track direction was
systematically corrected at all stages describddwbe
based on Hyperion image acquisition parameters in
Table 4. Lansat 8 image is terrain corrected, rthtadal
correction is needed.

Noise parameters for the Hyperion and Landsat 8
datasets have been determined based on blind signal
dependent noise parameters estimation method f80] a
according to theesults obtained in [31]. Specifically, we

have set the following noise model for both images:
0-3 = a-r? Sl + I Ui sC (10)

where | is the image intensityg?’, and g’ , are the

noise parameters that relate to signal-independedt
signal-dependent components, respectively.

According to our estimates,o,=8.344€ and
0,s,=0.267Z for the Hyperion band #25 and (=0
and o, ,,=0.117¢ for the Landsat 8 band B1l. When
registering CFs of the two bands, noise varianggs
and o’

-r for each pair of reference/template CFs are

obtained according to (10) by substitutiog, , o, s,

n.

® 1(a) A | (c) with their estimates specified above ¢ dvith CF mean
Fig. 4. Registered Hyperion band #25 (a),

Landsat 8 band B1 (b) and DEM (c). Gray Nt€nsity.
levels ranging from black to white cover
intensity ranges 1100...3800 for Hyperion,
8500...9600 for Landsat 8 and 50...250m
for DEM. Images size is 256 by 3129 pixels.
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4.2. Coarse and fineregistration stages

To register Landsat8 to Hyperion images, we adaptetivo-stage approach that includes

subsequent coarse and fine registration stagetheAtoarse registration stage, we used the affine

('.T' ] = A [' ]+dm , (11)
JTl JR|

where (i, ] 5) denote terrain corrected row and column indiceshefreference imag€i;,, j;,)

transformation model

denote row and column indices of the template im@dgg, is 2 by 2 matrix andl,,,, is 2 by 1

translation vector, the lower subscript ‘HtoL’ meatmansformation from Hyperion to Landsat 8
image coordinate system.

Initially, Hyperion and Landsat 8 images were reggisd based on the corners longitude and
latitude provided with each image. This registnatoecurred to be very inaccurate with errors up to
300 pixels in the along-track direction. To refiés result, we have applied automatic registration
based on SURF descriptor [41] followed by RANSAQyoaithm [42] to estimate affine
transformation parameters in the presence of ositlia this manner, registration error was reduced
down to 2 pixels (this has been verified based®ma&nually selected control points).

Applying RQ-decomposition t@\,,., , we have found that the rotation angle and scdkatpr
between Hyperion and Landsat 8 werg=16.93 and Ar, =1.024%, respectively. The values

a, andAr, have been later used as an initial guess of R&npers at the fine registration stage.

The fine registration is next performed in threepst 1) control fragments selection, 2)
registration of each pair of CFs using one of flie &stimators in comparison, 3) refinement of the

affine transformation parametefs, , andd,,, .

4.3. CFsselection procedure
The CFs selection procedure includes the follovatagyes:

1. The reference image is tiled by non-overlappingenaice CFs of sizéN, x N, with

coordinates{ig, (k). jr (k)) . wherek denotes CF index (for notation simplicity, we will
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omit this index when some operation is appliedt€gs).

2. For each reference CF centerec(igt,jR,) at the reference image RI, the corresponding
position(iTl,jTl) of template CF at the template image Tl is catedlausing (11). As,,
and j;, can be fractional numbers, we center template @#ipn at([i, ][, ]), where[]
is the operation of rounding to the nearest inteffer each CFf.g, is initialized as
Ocsric = (At As,a,Ary) , where Aty =iy, —[iy,] and As, = j, =[] are initial subpixel

translations.

3. All CFs are grouped into four groups accordingvo fattributes: Normal vs. not Normal
and isotropic vs. anisotropic texture. Group lasKormal and Isotropic textures, group Il is
used for Normal but Anisotropic, group Hfer Isotropic but not Normahknd group IV - for
both not Normal and Anisotropic. The reason forhsgoouping is that texture anisotropy
and abnormality does not match with fBm model. Bedgmassifying CFs, we seek to
evaluate the robustness of the flLestimator to texture deviations from fBm modebrr
the four groups I...1V, group | contains CFs thattbmatch the fBm approach.

Anisotropic textures have been detected by caliaigiautocorrelation function of template CF,

r (Ai A ) : approximating it by second order polynomial

r(A,N)=aN?+bN*+2ZNN +d A +elj +f and calculating eigenvaluek,, and A, of the

n

. la
matrix |:

C
c b] A pair of reference/template CFs is consideretrapic if A, /A, <2, otherwise

this pair is considered as anisotropic. A pairaférence/template CFs is considered Normal if both
vertical and horizontal increments of template GEhwnity lag pass the Lilliefors normality test
[36] with significance level 1%. In total, 1500 paiof CFs have been detected suitable for our
registration processing scheme, among them 41é&getogroup |, 138 to group 11, 473 to group I

and 473 to group IV.
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4.4. Ensuring global convergence

Initializing the MLgm estimator by the vect(@.;  previously defined (in item 2 of subsection

4.3) does not, in general, assure convergenceetgltdbal maximum. Indeed, the magnitude of the
coarse registration error with respect to transtafiarameter is about 2 pixels. With this, it hasrb
experimentally found that the attracting area @ ¢fobal maximum of the proposed log-LF with

respect to translation is about +0.6 pixel wideisTdlearly means thi@., . could be outside the

attracting area of the global log-LF maximum leadio erroneous estimates. To assure global

convergence, we have considered the so called -stalti optimization technique with nine
different initial guesses for@.q; o BRSTJG=(AtO+Atshm,Aso+Asshm,ao,A ro) ,  Where
Atg, OSg = —1,0,1. Convergence of the Md., is illustrated in Fig. 5 where nine convergence
paths are superimposed on the 2D cross-sectioneotog-LF: each poir(At,As) corresponds to
the maximum log-LF value with respect (0, ,,0,+,H .Ks;) vector setting the two remaining
parameters eéa =a,, Ar =Ar,.

Fig. 5a shows a typical convergence scenario, $eemajority of CFs. The initial guess
eRST.IG:(AtO’ASO’OlO'ArO) lies within the main lobe of the log-LF and leatis correct final
estimation result. An example of an opposite sitmatvhen(At,,As,,a,,Ar,) does not belong to

the main lobe of the log-LF is shown in Fig. S5bthis case, convergence to the global maximum is
truly assured by other initial guesses.

The same procedure has been used indifferentlytHer four NGF, MI, NCC, and LSM
estimators: the corresponding similarity measuregtaus minimized nine times starting each time
from a different initial guess among the nine cdastd. The estimate that corresponds to the

absolute minimum of each similarity measure is faken as the final estimate.

For each pair of CFs, we have obtained five ests 0 -(@t,@s,ﬁ,@r), where the

RST.estimator

subscript “estimator” takes one or the other of Wadues “MLfBm”, “NGF”, “MI”, “NCC” or
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“LSM”. Similarly to Section 3, we seN. =23 and N, =15 for all estimators. For the MLfBm

estimator, additional results are obtained as muyil data: texture parameter vector

A A

étexture:(ax_m,ax_ﬂ,l:l ,IQRT) and estimates.., of the o5, vector. The latter is simply found by

substitutingﬁ

and (T)RST_MLme into (6).

texture

Fig. 5. Convergence of the M, estimator for two CFs. Larger log-LF values areveh in red color, lower

—in blue color. Nine convergence paths are shovatack; the starting points are marked as “¢”,¢hd
points - as “0”; the poin(Ato,Aso) - as greenti"marker; the global log-LF maximum - as green “oénker.
Initial guess is within (a) and outside (b) the Inhabe of the log-LF.

Due to lack of ground truth, all estimaté,gsT,esmltol will be compared with the output of the

subsequent fine registration sta@gmne(as explained at the end of subsection 4.2). At shage,

we used RANSAC algorithm fed with the Ml estimates for CFs of group | to get refined

estimates of the global affine transfory, andd g fine -

toL.fine
4.5, Test of hypothesisof identical Hur st exponent valuesfor Hyperion and Landsat 8 images
Before analyzing quantitatively the accuracy of R#ifameters estimation, let us check validity

of the hypothesis stating that the same Hurst esapiocan be used for reference and template CFs.

Recall that this hypothesis has been accepted @balerive thecorrelation matrix (2). To this end,

for each pair of CFs, two estimates of the Hurspoment, ﬁR, and HAn, were obtained

26



independently for reference and template CFs. We ca

Hri : : . .2/ observe from distribution of the pairs of estimates

0.8 ,.:. .'.‘.':‘.'.:_

IR e (Hg ,Hy) (see Fig. 6) that they are concentrated enough
NP [fececacionabaad .'..-;:::,' ;‘,"".'L‘:‘:'."' Do .'... o

SR S R along the lineH,, = H,,. Correlation betweeH,, and
0.4 ...... :,...'....'.:‘ ..... R . ..... J

YA | H,, is 0.55. Thus, the hypothesH, =H; can be
0.2 ...... Zeesessc . ...... pemecac: peeaase 4

Hpy reasonably accepted.
0

0 02 04 06 08 1 o _
_ o N 4.6. Quantitative analysis measur es
Fig. 6. Distribution of pairsHy, , Hy,)

Let us now analyze the estimation accuracy Qf
for CFs of group |

vector for different CFs. The following three megesuare adopted for this purpose: probability of
outlying estimates, absolute error STD and norredlierror STD. Beloywve introduce and briefly
discuss each measure.

Typically, an outlying estimate is defined as atineate lying outside a circle with a predefined
radius centered at the true value of parameter®ndeor translation parameter estimates, a typical
value of this radius is one pixel [43]. This defiion is intuitively clear but subjective by nature.

Indeed, it is clear that different pairs of CFs bansuitable for registration in a different degree

For example, a higher value o, /0,5 ando, /0, ratios (that are related to SNR measure)
and a higher magnitude of correlation coefficik,, should lead to a more accurate registration.
Within the proposed approach, this variability dsecharacterized by the corresponding CRLBs
(elementso,,, 0., 0, ando,, of vectorergr). For the considered registration sceneg,, and
O, Vary from 0.025 to 2 pixels with the mode locatd0.1 pixel; &, varies from 0.2 to 15
degrees with the mode about 0.9 degr g, ;varies from 0.004 to 0.3 with the mode around 8.01

Overall, for all components, the standard deviatadnestimation error can exhibit a 75-fold
variation. This quite high variation indicates tlitats impossible to detect outlying estimates by
applying the same threshold to all pairs of CFs.

However, an outlying estimate can be more propddfined if a reasonable distribution of
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normal estimates is assumed. This can be done using bound. Recall that asymptotic

distribution of 0., vector estimate by an efficient unbiased estimag(N(0.s,,C, ), Where

0., denotes the true RST parameter vector. Here, wethes estimatéRST.fine as0.s,. For a

practical estimatorf ., estimates distribution should be more or lessecto N(0¢;,,C, ). Thus,
to detect outliers, we need to test zero hypothﬂfsisﬁRST follows N(0gs:,,C, ) distribution
against alternative hypothesis trfmg does not obe N(0.s;,C, ). The sufficient statistics for

this test is the quadratic forr@z(ﬁRST—ﬂRSTO)TC;iST(ﬁ rs—0 sr) - We define accordingly an
outlying estimate by the following rule:

Q>Qy, (12)
where Q, is a threshold. For the zero hypothegsshould follow ay® distribution with four
degrees of freedom (the number of RST parametétsgignificance levela =1-10° for y*(4)
distribution, we getQ, =33.376€. Probability of outlying estimates can now be oigd as
P = P(Q> Q).

Normalized errors vector is obtained by dividingcleaelement of the absolute error
AORST:QRST—ORSTC by the corresponding element obgsy (potential STD value):
OOpsr =00 o/ 6 oo, Where./ defines pointwise matrix division. Below, we dedth standard
deviation of absoluteq, ;) and normalized £, ) €rrors. These standard deviations are defined
as in the Section 3 through MAD measure to prewetiters influence.

4.7. Absolute errorsanalysis

Let us start with the analysis of absolute errdfer the CFs belonging to group I, the
experimental pdfs of absolute errors correspondtinthe MLs,n and MI estimators are shown in
Fig. 7 (the NGF and NCC methods produced resuitdasi to the MI). Pdfs were computed using
kernel smoothing density estimate implemented oeksity Matlab function. It is seen that for the
MLm estimator, these errors are characterized byaWwedt variance and the absence of heavy-
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tails caused by outliers (two spikes in the scalagjor pdf for the Ml method are due to constsint
in the form of lower and upper bounds impose(Ar nvalue).

Absolute error STDss,,; are given in Table 5. The general observationhet the ML

estimator offers substantial performance improveanoger the NGF, MI, NCC, and LSM methods

for all groups of CFs and all RST parametesg, decreases by 1.5...2.6 times for all RST

parameters. The NGF, Ml and NCC methods show simp#aformance for groups I-1ll. For group
IV, the NGF outperforms the Ml and NCC methods. Rbrgroups, the LSM demonstrates the
worst estimation accuracy.

All methods involved in the comparison carried sbhow similar performance for groups I-l,
decreased performance for group Ill and even migrefieant decrease for group IV. Therefore, it
can be concluded that texture anisotropy affedtBva registration methods in a negative manner
but only slightly, texture non-normality affectseth more significantly and combination of these

two factors degrades estimation even more sigmifiga

4.8. Normalized error analysis

The experimental pdfs of the quadratic fo@ndefined in (12) for the Mg, and MI estimators
and calculated for CFs of group | are given in Bigagain the results for NGF and NCC are similar

to MI). The threshold,, is shown as the vertical black thick line. The péifstatisticQ for the

MLm method is significantly more concentrated towazdeo values and has smaller right-hand
tail as compared to the one for the MI method. lrargitative sense, this leads to decreased
normalized error STD and decreased percentagetidrsu

For group I, the percentage of outliers is only 1f@f#cthe ML, method but it increases up to
48% for the NGF, Ml and NCC methods. For groups II-1V, we see the stndency as for
absolute errors: the percentage of outliers skghittreases for groups Il and lll. This increase
becomes significant for group IV. For the LMS meaththe estimation errors are very significant.

Due to this, almost all estimates are classifieduiBers.
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Fig. 7. Experimental pdfs of RST parameters estmby the Mig,, and MI estimators.
a) translations, b) rotation angle and c) scalawdr. All pdfs are obtained for CFs from group |.

Table 5. Absolute errors analysis (the smallest S8@lDes of absolute errors are shown in bold font)

RST parameter Estimator Standard deviation of absolute errors (1.48MAD)
Group !l | Groupll| Grouplll| Group IV

ML gm 0.198 0.229 0.226 0.309

NGF 0.36 0.368 0.365 0.454

At and As Mi 0.336 0.402 0.362 0.51
NCC 0.311 0.355 0.378 0.651

LSM 1.797 1.898 1.866 3.590

MLen | 0023 0.024 0.029 0.024

NGF 0.044 0.052 0.046 0.043

a Mi 0.046 0.031 0.047 0.044
NCC 0.040 0.036 0.049 0.045

LSM 0.181 0.173 0.216 0.268

MLem | 0.027 0.027 0.034 0.044

NGF 0.054 0.050 0.055 0.079

Ar Mi 0.049 0.059 0.068 0.088
NCC 0.070 0.061 0.078 0.127

LSM 0.177 0.189 0.206 0.345
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Q,dimensionless quantity

Fig. 8. Experimental pdf of the quadratic fofgh obtained for CFs from group |.

Table 6. Probability of outlying estimates of RSArgmeterspP, ,, %
(the smallest probabilities of outlying estimates shown in bold font)
Estimator Group | Group I Group Il Group IV

ML tgm 10.10 20.29 23.89 44.82
NGF 48.56 55.07 56.03 66.81
Ml 47.36 56.52 57.51 72.09
NCC 47.12 55.07 60.68 77.59
LSM 94.95 97.82 95.56 97.04
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For a more detailed analysis, Table 7 summarizesdard deviations of the normalized errors
Swomi Separately for each group of CFs and for each p&8&meter. In addition, for group | the
results are given in parenthesis for three subiatsrof k,; values: less than 0.6, from 0.6 to 0.8

and larger than 0.8. The experimental results witferent spatial resolutions between reference

and template images are presented in the last colum

To better interpret data in Table 7, recall that da efficient estimator and an accurate lower

bound used for normalizatios,,,; should be close to unity. For CFs of group I, Miegn, is very
close to this ideal case witf,,,, about 2 for translation parameters and 1.55 fation angle and
scaling factor. This corresponds to an efficienéythe MLen estimator w.r.tC, bound of about

25...42% on real data whilst it is of 90% for the glated pure fBm-samples. To our opinion, this is
a reasonable price to pay for applying a modeldbasémator to a complex pair of real datasets.

For the NGF, MI and NCC methods,,,, increases by a factor of 1.75...2 as compared to the
ML sm estimator. This observation remains for groupd/lllith the same tendencies as previously:
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Sworm iNcreases slightly for all estimators in compami$or groups Il and Ill, this increase becomes

significant for group IV. For the LSM method,,,, is significantly larger than for other methods

in comparison.

Table 7. Normalized errors analysis (the small@$d 8alues of normalized errors are shown in boht)fo

RST Estima Standard deviation of normalized errors (1.48MAdnensionless quantity
Group | Group |
parameter  tor |, crs (o.4...o.e/o%...o.s/o.s...0.95 Group Il | Group Il Group VI | 5ysat8 BS)
ML tgm 2.02 (1.71/ 2.26/ 2.03) 25 2.44 3.67 2.67
At and NGF 3.59 (4.26/ 3.35/ 3.31) 4.35 4.01 5.43 ---
As Ml 3.55 (4.11/ 3.62/ 2.49) 4.28 3.96 574 ---
NCC 3.37 (4.39/ 2.94/ 2.63) 4.23 4.37 7.83 3.80
LSM 17.45 (17.91/ 16.47/ 16.78) 20.57 18.84 41.80 ---
ML gm 1.54 (1.28/1.60/ 2.29 1.59 1.86 1.97 2.03
NGF 2.9 (3.73/2.57/ 2.51) 3.36 3.26 3.53
a MI 2.85 (3.41/ 2.502.27) 2.23 3.36 3.51
NCC 2.58 (4.37/ 2.09/ 2.53) 2.64 3.37 3.45 2.53
LSM 11.19 (12.17/ 9.34/ 9.71) 12.11 14.81 20.04 -—-
ML tgm 1.56 (1.59/ 1.39/ 1.78 1.84 2.08 3.06 2.24
NGF 3.08 (3.91/ 3.041.76) 3.77 3.66 5.2
Ar Ml 3.15 (4.06/ 2.55/ 2.31) 3.51 4.4 6.37 ---
NCC 4.01 (7.39/ 2.78/ 2.54) 3.72 4.86 9.22 3.10
LSM 9.77 (11.66/ 10.42/ 6.00) 11.59 12.64 23.15 ---

Correlation coefficienk,, for CFs of group | varies from 0.4 to 0.95. Tabldetails normalized
error STD for three intervals df;;. The first of them0.4< k., < 0.6, is close to TP#2 considered

in Section 3. It is interesting to compare perfanceof the considered set of estimators on similar
simulated and real-life data. For real-life datarffprmance of the NGF, MI, and NCC estimators
are in coherence with the results obtained for fBne data: the RST parameters estimation error is

3...7 times greater tha@, (see Fig. 2). On simulated data, the iplLperformed very closely to
C, at TP#2; for real-life data its performance deseebby a factor of 1.3...1.7 due to deviation of
real-life textures from the fBm model. For high mation, 0.8<k, < 0.95, the MLgnm still shows

the best performance, but its gain is less pronedifffor rotation angle and scaling factor, the M
and NGF show performance similar to the {il).

We have also tested a more challenging pair of @mafp register with different spatial
resolutions. We kept the same Hyperion band witim 3@solution as the reference image.
Landsat 8 band B8 with spatial resolution 15m waeduas template image. To simplify the
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experiment, we have used the same settings aopsdyibut corrected them taking into account the
other spatial resolution of the B8 Landsat 8 b&wimparison was restricted to CFs of group | and
the two estimators Mg, and NCC. This last experiment did not show annificant difference in
results for the NCC as compared to those preseartddliscussed above for a pair of images with
the same spatial resolution. Performance of thggMln terms of the normalized error STD
degraded by a factor of 1.3...1.4. We explain thighgyfact that different widths of point spread
function for the reference and template images raoé taken into account in our model.
Nevertheless, in these challenging settings, theMétill outperforms the NCC. This confirms that

both the Mlgn estimator andC, bound are robust enough to significant changespatial

resolution between reference and template images.
Finally, let us consider the Hyperion and Landsate@gistration accuracy achievable by the
SURF method [41] using OpenSUREF library [44]. Toilitate the processing, Landsat 8 image was

first transformed to Hyperion coordinate systemin@sA ., . andd,, :..) and then cropped.

The OpenSURF algorithm has found 2321 control goifihe MADs of absolute errors calculated
over the 300 best control points take the followwadues: 3.44 pixels in across-track directids )
and 0.87 pixels in along-track directiom(). These values exceed significantly the MAD of
absolute errors for all estimators used in compartbat vary from 0.2 to 0.65 pixels irrespectively
from direction.

Based on the experiments and analysis carriedrothis paper, we can conclude that while
being applied to register real-life multitemporatal, the Mkgy, estimator provides smaller absolute
and normalized errors as well as a reduced numbeutbers as compared to the state-of-the-art

alternative algorithms considered here.

5.DISCUSSION

In developing the Mg, estimator, we have pursued the main goal of impgthe image
registration accuracy paying attention to the neitiporal and/or multimodal case. The gain

obtained with the Mg, estimator is a 1.75...2 times decrease of the R$dnpeters estimation
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error STD and a decrease of false match probalfilityy 50 to 10%. To reach such performance
characteristics, we have mainly restricted ourgeleeisotropic textures with normal increments
that can be described well by the fractional Bramnmotion model. We have also dropped
willingly computational efficiency requirement. Les analyze the constraints induced by these
assumptions. For real-life data, we have found #imiut 15% of CFs pass both isotropy and
normality tests. Computational burden of the {pjdLis about 35 times higher (for template CFs of
15 by 15 pixels) than that of the NCC as it death walculation of full correlation matrices of the
registered image fragments.

Fine registration of Lansat8 to Hyperion image®¢pssing nine initial guesses for each of 416
CFs of group 1) by the Mk, implemented in Matlab on Intel Core i7 980X pramstakes about 3
hours (rough estimate). Efficient implementation éor example, C++ programming language
could reduce this value by about two times. Regiistn of individual pairs of CFs is an
independent task that can be carried out in paratarther decrease can be reached by
implementing the basic Mg, operations with correlation matrices (formationultiplication,
inversion) on GPU. Thus, with an optimization oé implementation, practical registration tasks
can be solved with the Md,, in acceptable time.

Requirement of texture isotropy is quite naturalinrage registration. Indeed, for anisotropic
textures, it becomes impossible to estimate bo#mstation components, but only a linear
combination of them. As a result, all analyzedreators show increased absolute error of the RST
parameters estimates for group Il (Normal but Amuc textures) as compared to group |
(Normal and Isotropic textures) and the same teryéor group IV (not Normal and Anisotropic
textures) as compared to group Il (not Normal Isatropic textures).

The normality requirement can be justified by tha@loiving arguments. First, universal
similarity measures like NCC, Ml and NGF do not s robustness for non-normal textures. The
drop in accuracy for groups Ill and IV as compatedgroups | and Il (see Table 5-7) is as

significant for the NCC, MI and NGF estimators as the MLgy, estimator. Therefore, image
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registration based on textures with complex stmectoot following normal distribution is a
challenging case for state-of-the-art methodsduires more efforts to be understood.

Second, assuming normal texture distribution alléeveulating image registration problem in
terms of second-order statistics. For such a st&tgnthe lower bound of the RST parameters
estimation error (CRLB) was derived in closed fofallowing the Mlg, to be viewed as an
interval estimator). To the best of our knowledtes is the only solution that captures the RST
parameters estimation error as a function of thkx¢éute roughness, reference and template CFs
signal-to-noise ratio, correlation between refeeeand template CFs and RST transformation
parameters. Experiments show that this bound ig &ecurate for both simulated and real data.
This bound - an extra outcome of the new estimater have proposed - can be useful for
preliminary detection of CFs suitable for registrat for weighted estimation of global geometrical
transformation parameters, or for outlier detection

Therefore, the Mg, estimator provides significant advantages over dta¢e-of-the-art RST
parameter estimators by introducing natural comggan image texture but these advantages are
gained at the expense of increased computationaplexity.

6. CONCLUSIONS

This paper presents a new area-based image réigistnaethod, Mg, under rotation-scaling-
translation transformation hypothesis.

Experiments on synthetic pure fBm and real hypetspkdata have demonstrated that the
MLwm estimator provides significant decrease in estonaerror of the RST transformation
parameters as compared to the set of state-ofrthesamators retained in our comparison. The
ML is the most effective estimator in the case of kwearrelation between registered CFs
(correlation between reference and template imagesveak as 0.4...0.6 is acceptable). It has
proved to outperform the algorithm based on Mutidbrmation similarity measure, specially
designed to cope with this case.

One interesting feature of the Mk is that it provides &RLB C, on the RST parameters
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estimation accuracy. For simulated fBm data, thegMerror STD is only 1.1 times larger th&y .

Dealing with complex multitemporal registration leyperion and Landsat 8 data, the f}error

STD is about 1.5...2 times larger th@y . This means that the Ml estimator is actually able to

provide not only an estimate of the RST transforomavector but also quite an accurate confidence
interval for it.

There are two main restrictive features of thegylestimator. First, it relies on the fBm model
that might be inadequate when applied to real-tifa. Specifically, anisotropic textures,
neighborhood of edges, non-random textures, nors€kau textures affect its performance. One
interesting direction of further studies is to usere complex texture models within the proposed
estimation scheme (for example, anisotropic textuoeels).

The second restrictive feature is that thegLestimator is computationally intensive and, at
present, it can be recommended only for “off-lia@plications where accuracy is of primary concern.

But the MLgsm estimator (along with th€, bound) has great potential for further development

It can be straightforwardly applied to images fodmen irregular grids (for example, due to
scanning geometry or relief influence). A more cterpaffine transformation can be considered as
well. Future work will focus on these cases inftiaenework of multimodal registration.
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APPENDIXA

This appendix defines partial derivatives of the rreation matrix

R — [ I:szI + Rn.RI kRT ER RT (e RST)] :( R RI+ Rn .RI k RTGX .Rpx .TR HRT(e Rsaj
: kRT [H?LT (e RST) R Tl + R n.TI kRTo-X .Rpx .TRTHRT(e RST) R TI+ R n.Tl

36



with respect to elements of the parameter ve@tefo, .,,0, ;. H K At,As,a Ar). The first four
derivatives of the matrixR, are given in [23]. The derivatives d?, w.r.t 0., elements

At,As,a,Ar take the form

7 aRHRT
RI
R aeRST( p)
== kRTOX.RIOX.TI T » P =1..4,
aeRST( p) ( aRHRT J
085:(P) i

whereZ,, andZ,, are N, X N, and N, x N;,; zero matrices, respectively. We first give in dsta

the  derivaton  of Ry (kl) . We define element Ry (kl) as

Rier (K I)=<([ x(t,5)- X0,0 [>( - & (ﬂ» for 0, =0,;,=1 and ky; =1 . Here

(t,',s,') and (t('),s'o) are coordinates ofu,,v) and (0,0), respectively, in the reference coordinate

system obtained according to (1). According todkénition of fBm-process (we refer a reader to

[23] for more details on the correlation propertéshe fBm model)&RT(k, I) can be represented as

Rer (k) =(([(15) = A00][( £ 1.9~ £0.9)-( kit~ &od)]))=
([x(ts)=X0.9] {1.9)- %0.9]))+(([ ¥£.9- €0 fotig~ xop]))

Using the properties of fBm-process, we finally:get

A ey (e o) (-0 (s 4 |-
A () (e s) {50 (5 9 |-

A (o) (s ) (e 9) (e ) (0 (s |

ORyer (K1)
06ks:(P)

Rucr (1) =

Forp=1, 2 and 3 (parametefd,As,a), is given by
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Forp=4 (Ar parameter), the terl Ar" R .. (k, 1) is added to (13).
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Using (1), the derivatives df, s, t, ands, with respect to elementst,As,a,Ar are obtained as:
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