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ABSTRACT: 

This paper deals with area-based subpixel image registration under rotation-isometric scaling-

translation transformation hypothesis. Our approach is based on a parametrical modeling of 

geometrically transformed textural image fragments and maximum likelihood estimation of 

transformation vector between them. Due to the parametrical approach based on the fractional 

Brownian motion modeling of the local fragments texture, the proposed estimator MLfBm  

(ML stands for “Maximum Likelihood” and fBm for “Fractal Brownian motion”) has the ability to 

better adapt to real image texture content compared to other methods relying on universal similarity 

measures like mutual information or normalized correlation. The main benefits are observed when 

assumptions underlying the fBm model are fully satisfied, e.g. for isotropic normally distributed 

textures with stationary increments. Experiments on both simulated and real images and for high 

and weak correlation between registered images show that the MLfBm estimator offers significant 

improvement compared to other state-of-the-art methods. It reduces translation vector, rotation 
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angle and scaling factor estimation errors by a factor of about 1.75…2 and it decreases probability 

of false match by up to 5 times. Besides, an accurate confidence interval for MLfBm estimates can be 

obtained from the Cramér–Rao lower bound on rotation-scaling-translation parameters estimation 

error. This bound depends on texture roughness, noise level in reference and template images, 

correlation between these images and geometrical transformation parameters. 

Index Terms – area-based image registration, subpixel registration, translation, rotation, isometric 

scaling, Cramér–Rao lower bound, Fisher information, performance limits, fractional Brownian 

motion model, maximum likelihood estimation (MLE), hyperspectral imagery, Hyperion, Landsat 8. 

 

1. INTRODUCTION 

Image registration is a fundamental image processing problem aiming at mapping two or more 

images (reference and template ones) to a common coordinate system [1]. Registration enables joint 

analysis of the information content of images acquired by different sensors at different time 

instances and/or under different modalities. Such practical and challenging use cases can be 

frequently met in remote sensing (registration of different spectral bands, images with large time-

base gap between each other or different spatial/spectral resolutions, registration of optical and 

radar images) [2-4] or in medical imaging (registration of computed tomography, magnetic 

resonance, and photon emission tomography images) [5]. 

A large number of image registration methods often determine parameters of a global 

geometrical transformation between reference and template images using a set of linked control 

fragments (CF). By CF, let us mean here a small image fragment with a practically similar content 

recognizable in both images (for feature-based methods, Control Points or Feature Points terms are 

in use). In practice, these CFs have to be selected first in both images and they can be subsequently 

registered either by feature-based or by area-based methods [3, 4]. In the former case, a rather large 

initial image registration error is tolerated provided the time required for finding and linking the 

CFs is limited and reasonable. On the contrary, area-based algorithms put more emphasis on the 

achievable CFs registration accuracy accepting thus higher computational complexity [6]. As a 
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result, feature-based methods have found a wide use at the coarse registration stage whilst area-

based methods are often preferred at the fine registration stage, especially when subpixel 

registration accuracy is required [7, 8]. 

Without loss of generality, the area-based registration problem aims at obtaining an accurate 

estimation of geometrical transformation parameters between two CFs (or a couple of small 

reference and template image fragments) relying directly on pixel intensities in these fragments. 

Due to the rigorous positioning of modern satellite sensors on one hand and the local nature of the 

problem at a CF level on the other hand, linear geometrical transform models between the two CFs 

can be reasonably considered [2], such as pure translation, rotation-scaling-translation (RST) or 

affine transformation [9] to name the most commonly used. In some cases, a correction for the relief 

influence might be required in addition to the previous assumption on the geometrical transform 

model. In this paper, we essentially concentrate on RST transformation model with isometric 

scaling between the two CFs. 

Area-based registration can be viewed as an optimization problem of a suitable similarity 

measure between reference and template CFs. There are few widespread similarity measures. The 

simplest one is sum of squared differences (SSD) [3]. This distance measure implicitly assumes that 

the intensity values of the corresponding fragments in two registered images are more or less within the 

same magnitude order. The use of this distance measure can certainly provide correct results when the 

aforementioned hypothesis is strictly satisfied. Otherwise, the results may degrade, in particular for 

multimodal images. The cross-correlation or least squares similarity measure can be viewed as an 

extension for handling linear dependence between the reference and template images intensities [8]. In 

multimodal settings, a standard solution is to consider a normalized version of the cross-correlation 

(Normalized Cross-Correlation, NCC) [10]. NCC is, arguably, the most frequently used similarity 

measure in image registration [11]. It is the basis for the Correlation- and Hough transform-based 

method of Automatic Image Registration (CHAIR) approach recently proved to cope with complex 

registration cases including synthetic aperture radar (SAR) with optical images registration [2]. 
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The mutual information (MI) distance measure, such as the one introduced in [12, 13] for registration, 

allows tackling with even more complex dependence between the reference and template images. The 

underlying idea is to measure the normalized entropy of joint density of the reference and template 

images. A Parzen-window estimator [14] with a smooth compactly supported kernel function can be 

used for estimating the unknown joint density. 

The normalized image intensity gradients (Normalized Gradient Fields, NGF) method [15] achieves 

a compromise between the more restricted SSD and the very general (and highly nonconvex) MI. This 

measure assumes that intensity changes in images of different modalities appear at corresponding 

positions. It is basically an L2-norm of a residual, measuring the alignment of the normalized gradients 

of reference and template images at a given position. Normalization of the gradient allows focusing on 

locations of changes rather than on the strength of the changes. 

Within this framework, subpixel registration accuracy can be usually achieved using interpolation of 

reference or/and template images [11]. This additional stage might have negative effect on geometrical 

transformation parameters estimation accuracy (for example, introducing bias) as it is discussed in  

[16, 17]. All the abovementioned similarity measures were adopted in the past quite successfully to 

measure either pure translation [11], or RST parameters [18], or more complex geometrical 

transformations model parameters [8, 19] with subpixel accuracy. 

In multitemporal and /or multimodal case, it happens that correlation between reference and 

template CFs may tend to be moderate or even weak; strongly correlated CFs could be rather rare in 

a pair of images to register. In such specific conditions, a registration method should be able to use 

available data as effectively as possible. More strictly, it should be characterized by a high 

probability of positive match and high registration accuracy in a wide range of correlation between 

reference and template images – from strong to weak. However, despite the research efforts devoted 

towards achieving this goal, design of registration methods with such wide application spectrum is 

still an open problem. 

In particular, the methods based on universal measures such as SSD, NCC, MI or NGF cannot 
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meet the abovementioned requirement easily. They impose only general requirements on registered 

images like smoothness or statistical dependence. They do not implicitly take into account image 

content and/or noise statistics. Such drawback inevitably reduces registration efficiency. 

Additionally, in multitemporal and/or multimodal registration cases, it is a difficult problem to 

precisely quantify the final accuracy of estimated parameters for a given geometrical transformation. 

The two main reasons for this lie in a rather complex structure of similarity measures in general and 

the often negative influence of interpolation stage. A Cramér–Rao lower bound (CRLB) on 

translation estimation error based on SSD measure was obtained by D. Robinson and P. Milanfar in 

[20]. This work was further extended for 2D rotation, RST transformation, 2D and 3D affine 

transformations [21] and 2D projective transformation [22]. As it has been shown in [23], this 

bound can be rather inaccurate in describing real estimators’ performance. Besides, it cannot be 

directly applied to multitemporal and/or multimodal cases. 

In a recent paper [23], we proposed and studied an original CRLB on pure translation estimation 

error STD. This bound was experimentally compared to other similar bounds of the literature. The 

performance of standard translation estimators was compared against these set of bounds based on 

simulated and real data. The obtained results showed good accuracy and adequateness of the newly 

proposed bound in a variety of settings including multitemporal and/or multimodal cases. A 

significant gap between theoretically predicted accuracy and performance of real registration 

methods has thus been filled to a certain extent in the case of simple translation transformation. 

In this paper, we move forward and prove it is possible to reduce further this gap, that is, to 

derive a new registration method that performs closer to the theoretically predicted accuracy for 

both a restricted but wide enough class of images and more complex geometrical transformations. A 

new and very efficient area-based registration method is thus proposed and its accuracy is precisely 

quantified. 

First of all, we upgrade the geometrical transformation model considered in our approach, from a 

simple translation to a more complex and more realistic RST transformation model, better suited for 
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many remote sensing applications. 

Second, in contrast to our previous work, we focus hereafter more properly on the efficient 

estimation of RST parameters in multitemporal and/or “mild” multimodal settings (registering, in 

particular, real images acquired by VNIR and SWIR optical sensors in the experimental part of this 

paper). We consequently propose a new estimator within the same approach as in [23] but extended 

to RST transformation hypothesis between the two CFs to register. It is called MLfBm due to its two 

distinctive features: it is derived within the Maximum Likelihood framework and the local texture 

in both CFs is still assumed to be well modeled by the fractal Brownian motion model (in MLfBm 

“ML” stands for “Maximum Likelihood” and “fBm” for “fractal Brownian motion”). The MLfBm 

estimator is proposed along with a refined optimization scheme assuring its global convergence. 

More, the observation model considered in this new ML fBm estimator relies on a signal-

dependent noise model for both RI and TI. This model proved to be more adequate for new 

generation of multispectral and hyperspectral sensors [24, 25]. At the CF level, we approximate the 

assumed signal-dependent noise by an additive noise with signal-dependent variance. This 

distinctive feature of the MLfBm method is worth noticing as other area-based registration methods 

cannot implicitly take such noise properties into account. We show a quite large tolerance of the 

ML fBm estimator to errors in the noise variance. This property allows using a possibly inaccurate 

noise variance directly estimated from noisy images without facing a decrease of the proposed 

method efficiency (meaning that no a priori information on noise variance is required to operate 

safely the method). 

Besides, we show that the MLfBm estimator is able to reduce RST parameters estimation error by 

a factor of 1.75…2 as compared to state-of-the-art methods. The MLfBm method is also characterized 

by a significantly lower probability of false CFs registration (outlier occurrence among CFs). It can deal 

in practice with large temporal and spectral differences, different spatial resolutions of reference and 

template images, weak correlation between registered CFs (normalized correlation coefficient down to 

0.4 is acceptable). Effects of relief influence can also be taken into account with the MLfBm using digital 
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elevation model (DEM).  

An extra outcome of the work performed in this paper is a CRLB describing the potential 

accuracy of parameters estimation for RST transformation hypothesis between couples of CPs. This 

CRLB is used here to assign a confidence interval for the obtained RST parameters estimates 

(confidence ellipsoid based on a CRLB estimate). To the best of our knowledge, this is the only 

bound of this kind suitable for multitemporal and/or multimodal registration cases. This bound can 

be especially useful to assign weights to each RST parameter estimate depending on its actual 

accuracy. Such weights can be later used either for outlier detection or for obtaining an adequate 

weighted estimate of the global geometrical transformation parameters. 

Finally, we investigate experimentally the range of applicability of the proposed parametrical 

approach to real data and demonstrate that for rather wide image class including isotropic textures 

with normal increments, the proposed method is more efficient than state-of-the-art methods and 

perform very close to the corresponding CRLB. 

The paper is organized as follows. Section 2 introduces the parametric statistical model chosen 

for describing translated, mutually rotated and scaled image textures and it details the MLfBm 

estimator developed accordingly. In Section 3, the performance of the newly proposed MLfBm 

estimator is comparatively assessed against that of four other alternative estimators based on 

experiments on simulated pure fBm data. The performance of this MLfBm estimator is analyzed in 

Section 4 for real-life Hyperion and Landsat 8 data. Finally, discussion and conclusions are given in 

Sections 5 and 6. 

2. JOINT MAXIMUM LIKELIHOOD ESTIMATION OF RST TRANSFORMATION AND IMAGE 

TEXTURE PARAMETERS 

This Section formally defines the newly derived MLfBm estimator of RST transformation 

parameter vector between reference and template images control fragments. Its potential performance 

characteristics are analyzed and convergence issues are discussed.  

 

2.1. Problem statement 
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By reference/template CF we mean image fragments of small size (from 7 by 7 to about 25 by 25 

pixels) cut out from the full size reference/template images. They are defined at two local 

reference/template coordinate systems with axes tORIs/uOTIv, where ( , )t s  and ( , )u v  denote 

respective pixel coordinates, and origins ORI and OTI are placed in the center of the corresponding 

CFs. In what follows, we use subscripts “RI” and “TI” for reference and template CFs, respectively. 

“XX” stands for either “RI” or “TI” according to the context. 

We assume the RST transformation model between tORIs and uOTIv coordinate systems that 

includes rotation by an angle α , isometric scaling with a factor r∆  and translation by a vector 

( ),t s∆ ∆ , where t∆  and s∆  are vertical and horizontal translation components: 

 
cos sin

sin cos

u t t
r

v s s

α α
α α

∆      
= ∆ +      − ∆      

. (1) 

The RST model parameter vector ( )RST , , ,t s rα= ∆ ∆ ∆θ  is to be estimated with accuracy 

allowing subpixel alignment of reference and template CFs. 

The reference, RI ( , )y t s , and template, TI ( , )y u v , CFs are of size RI RIN N×  and TI TIN N×  pixels 

respectively. They are defined according to the following additive observation model: 

RI RI RI( , ) ( , )+ ( , )y t s x t s t sη= , .RI .RI .RI .RI,..., , ,...,h h h ht N N s N N= − = − , 

TI TI TI( , ) ( , )+ ( , )y u v x u v u vη= , .TI .TI .TI .TI,..., , v ,...,h h h hu N N N N= − = − , 

where ( ). 1 / 2h XX XXN N= − , RI ( , )x t s  and TI ( , )x u v  are pixel samples of the RI and TI noise-free 

CFs, respectively; RI ( , )t sη  and TI ( , )u vη  are the corresponding noise processes viewed as stationary, 

spatially uncorrelated, zero-mean, Gaussian distributed fields with variances 2
.RInσ  and 2

.TInσ , 

respectively, and independent of each other. With these definitions, RIN  and TIN  are considered as 

odd values in our work. To deal with a signal-dependent noise hypothesis, 2.RInσ  and 2
.TInσ  are 

allowed to vary from CF to CF as this situation will be described in subsection 4.1. Other choices of 

CF shape (non-symmetrical arbitrary shape) are possible without modifying the proposed method. 
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Both RI ( , )y t s  and TI ( , )y u v  are transformed into 2 1XXN ×  column vectors RIY  and TIY  in 

column-major order and they compose sample RI

TI
Σ

 
=  
 

Y
Y

Y
 of size 2 2

RI TI( ) 1N N+ × . Let us define 

coordinates of a k-th element of RIY  vector as ( , )k kt s , and an l-th element of TIY  vector as ( , )l lu v . 

We adopt fBm model [26] to locally describe image texture or, more precisely, obtain correlation 

matrix of the sample ΣY . A great advantage of considering the fBm model for characterizing local 

texture is that it allows describing complex shapes with only two parameters [27]: texture roughness 

parameterized by Hurst exponent H  and texture amplitude parameterized by xσ . Here [0,1]H ∈  

(values less than 0.5 corresponds to rough and greater than 0.5 - to smooth textures) and xσ  is 

standard deviation (STD) of texture increments on unit distance. We additionally assume the same 

value of the parameter H  for both reference and template images (later in subsection 4.5, we have 

checked that this assumption is justified for real data). Thus, the registration problem is parameterized 

with only eight parameters (low order models are known to be preferable when estimating parameters 

from small samples [28, 29]) forming the full parameter vector .RI .TI RT( , , , , , , , )x x H k t s r= σ σ ∆ ∆ α ∆θ , 

where .RI .TI,x xσ σ  are xσ  values for reference and template CFs, respectively, RTk  is the correlation 

coefficient between these pair of CFs. Noise variances 2
.n XXσ  are supposed to be known and, 

accordingly, they are not included in θ  (in practice, 2
.n XXσ  can be found either using a sensor 

calibration dataset or estimated directly based on the image data, as suggested in our recent works  

[30, 31]). The full parameter vector can be represented as ( )texture RST,=θ θ θ , where 

texture .RI .TI RT( , , , )x x H k= σ σθ  is the texture parameter vector and RSTθ  is the RST parameter vector 

defined above. Within the framework introduced above, image registration problem amounts to 

estimating the vector θ . 

By using a local parametric approach for solving the registration problem, we seek to increase the 

final registration efficiency by a better adaptation of the whole approach to image texture. However, the 

fBm model is suitable for describing isotropic normally distributed textures with stationary 
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increments. Thus, the proposed method needs to be used cautiously when Gaussian hypothesis (single-

look SAR images with fully developed speckle is such an example) and/or isotropy hypothesis on local 

texture or noise model violates. We consider this issue more in detail later in Section 4. 

2.2. The MLfBm estimator 

Let us now introduce the maximum likelihood estimator (MLE) of the vector ( )texture RST,=θ θ θ . 

According to the definition of fBm process, it takes zero value at the origin. To assure this, consider a 

new sample RI RI.0 RIRI

TI TI.0 TITI

x

xΣ

−∆   
∆ = =    −∆   

Y 1Y
Y

Y 1Y
, where XX.0 (0,0)XXx x=  denotes true values of 

reference/template CFs central pixel, XX1  are unit vectors of size 2 1XXN × , respectively. The 

correlation matrix ΣR  of the sample Σ∆Y  is given by [23]: 

 
( )

( )
RI .RI RT RT RST

RT RT RST TI n.TI

n

T

k

kΣ

+ ⋅ 
=  ⋅ + 

R R R θ
R

R θ R R
, (2) 

where XXR  are correlation matrices of noise-free XX∆Y  sample, RT RTk R  is the cross-correlation 

matrix between RI∆Y  and TI∆Y , 2
.XX .n n XX XX= σR I  are correlation matrices of noise for 

reference/template CFs, XXI  are XX XXN N×  identity matrices, respectively. 

Let RTR  be expanded as RT .RI .TI HRTx x= σ σR R . Here elements of the matrix HRTR  describe 

covariance between elements of RI∆Y  and TI∆Y  when .RI .TI 1x xσ = σ =  and RT 1k = . For the fBm model, 

elements ( )RI 1 2,R k k , ( )TI 1 2,R l l , and ( )HRT ,R k l  take the following form (see Appendix A for details): 

( ) ( ) ( ) ( ) ( )( )1 1 2 2 1 2 1 2

2 22 2 2 2 2
RI 1 2 .RI, 0.5

HH H

x k k k k k k k kR k k t s t s t t s s
 = σ + + + − − + − 
 

, 

( ) ( ) ( ) ( ) ( )( )1 1 2 2 1 2 1 2

2 22 2 2 2 2
TI 1 2 .TI, 0.5

HH H

x l l l l l l l lR l l u v u v u u v v
 = σ + + + − − + − 
 

, 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )2 2 2 2' ' '2 '2 '2 '2 ' '
HRT 0 0 0 0,

2

H H HH H

k k l l k l k l

r
R k l t t s s t s t s t t s s

∆  = − + − + + − + − − + − 
 

, 

where ( ) ( )( )' 1 cos sint r u t v sα α−= ∆ − ∆ − − ∆ , ( ) ( )( )' 1 sin coss r u t v sα α−= ∆ − ∆ + − ∆ , 
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( )' 1
0 cos sint r t sα α−= −∆ ∆ − ∆ , ( )' 1

0 sin coss r t sα α−= −∆ ∆ + ∆ . 

Omitting a constant that does not depend on θ , the logarithmic likelihood function (log-LF) of the 

sample Σ∆Y  can be written as: 

 ( ) ( )11
log , log

2
TL −

Σ Σ Σ Σ Σ∆ = − ∆ ∆ +Y θ Y R Y R . (3) 

With these notations, the MLE of the parameter vector θ  is obtained as: 

 ( )ˆ arg max log ;L Σ= ∆  
θ

θ Y θ , (4) 

 

11 1 1
RI.0 RI RI RI TI RI

1 1 1
TI.0 TI RI TI TI TI

ˆ

ˆ

T T T

T T T

x

x

−− − −
Σ Σ Σ Σ
− − −
Σ Σ Σ Σ

   ∆ 
=      ∆     

e R e e R e e R Y

e R e e R e e R Y
, (5) 

subject to constraints .RI .TI RT0;  0;  0 1;  1x x H kσ σ≥ ≥ ≤ ≤ ≤ . Here ( )RI RI TI,=e 1 0  and ( )TI RI TI,=e 0 1 , 

XX0  are 2 1XXN ×  zero vectors. MLE of unknown values XX.0x  in (5) are obtained by equating to zero 

the first derivatives of ( )log ,L Σ∆Y θ  w.r.t. XX.0x .We will later refer to the estimator in (4) as the 

newly proposed MLfBm estimator for RST geometrical transformation hypothesis. 

The MLfBm estimator in (4) optimizes the similarity measure (3). It is important to note that the 

log-LF in (3) is a continuous function w.r.t. the parameters vector θ  and does not involve any 

transformation of the input data Σ∆Y . Therefore, subpixel registration accuracy can be reached with 

ML fBm estimator without interpolating either image data or similarity measure. This is a positive 

feature of the MLfBm worth noticing as it has been repeatedly emphasized in the literature that such 

interpolation stage might alter accuracy of subpixel registration algorithms [16, 17, 20]. 

By using the MLfBm estimator, the lower bound on estimation error STD of parameter vector θ  

can be calculated as: 

  ( )diag=
θ θ
σ C , (6) 

where ( )diag ⋅  returns the diagonal elements of a matrix, 1−=
θ θ

C I  is the CRLB on estimation errors 

covariance, 
θ

I  is the Fisher Information Matrix (FIM) of the parameter vector θ  with ij-th entry [28]: 



 12 

 ( ) ( ) ( ) ( ) ( )
1 11

, tr
2i ji j I

i j
− −Σ Σ
Σ Σ

 ∂ ∂= =   ∂ ∂ 
θ θ θ

R R
I R R

θ θ
, , 1...8i j = . (7) 

Derivatives of ΣR  w.r.t. ( )iθ  are given in Appendix A. We denote by RSTσ  (
RSTθ

C ) the part of 

θ
σ  (

θ
C ) related to RST parameters t∆ , s∆ , α  and r∆ defined above. 

Given matrix 
θ

C , a confidence interval on the MLE θ̂  can be represented by the scattering 

ellipse in the parameters space. Therefore, the MLfBm estimator can be also viewed as an interval 

estimator of the RST parameters. Accuracy of the interval estimates provided by the MLfBm 

estimator depends on the actual adequacy of 
θ

C  bound. A detailed analysis of 
θ

C  for pure 

translation model [23] proved it to be a very tight bound even when dealing with real data. We will 

show in the next two Sections that this statement can be also extended to the RST model. To the 

best of our knowledge, our bound is the only one that can be applied at the moment to 

multitemporal and/or multimodal registration problem. 

2.3. MLfBm estimator initialization and implementation 

The problem defined in (4) is a nonlinear constrained optimization problem and it is solved here 

using Han-Powell optimization method [32]. Advantages of this quasi-Newton method are superlinear 

convergence speed and availability of efficient implementations. 

However, the log-LF given in (3) exhibits multiple extrema (see subsection 4.4). Therefore, a 

proper selection of an initial guess for θ̂  is needed to prevent numerical optimization process from 

possible convergence to a local extremum. By definition, 2
xσ  is the variance of fBm-field 

increments on unit distance. Then, reasonable initial guesses for .RIxσ  and .TIxσ  can be obtained as 

standard deviation (STD) of XXY  first-order increments: 

 ( ) ( )( ) ( ) ( )( )2
.ˆ , 1, , , 1 / 2x RI RI RI RI RID y t s y t s D y t s y t sσ  = − + + − +  , (8) 

 ( ) ( )( ) ( ) ( )( )2
.ˆ , 1, , , 1 / 2x TI TI TI TI TID y u v y u v D y u v y u vσ  = − + + − +  , (9) 

where the operator ( )D ⋅  returns argument variance. We fix the initial guess for the Hurst parameter to 
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0.5H = , i.e. in the middle of the Hurst exponent range of possible values. The sample correlation 

coefficient between reference and template images is used as initial guess for RTk . 

Setting initial guess for RSTθ  vector depends on a particular application. Our recommendation for 

satisfying global convergence will be discussed in Section 4. 

3. COMPARATIVE ANALYSIS OF THE ML FBM ESTIMATOR AGAINST STATE-OF-THE-ART 

ALTERNATIVES ON SIMULATED FBM DATA  

To better analyze the MLfBm ability to improve RST parameters estimation accuracy, let us first 

compare it against the most commonly used area-based similarity measures introduced above, such as 

the SSD [3], NCC [33], MI [12, 13], and NGF [15]. In this Section, comparison is carried out in 

controlled conditions based on simulated noisy fBm texture. All estimators are compared in terms of 

bias, efficiency (closeness to the 
θ

C  bound), and distribution of RST parameters estimates. 

Experimental results presented in this Section have been obtained based on the Flexible Algorithms 

for Image Registration (FAIR) software [34], a package written in MATLAB. 

3.1. Test points 

The following analysis is based on ten different test points (TP) numbered from 1 to 10 in 

Table 1. Among these test points (sets of parameters), TP #1 is treated as a basic parameter vector. 

The nine other TPs are obtained by changing one or several parameter value(s) of TP #1 

components (those marked by bold in Table 1). TPs ##1…10 cover situations with rough and 

smooth texture, low and high noise level, weak and strong correlation between reference and 

template CFs (see the column Description). 

We would like to stress that values of fBm model and RST parameters for the selected set of TPs 

in Table 1 are typical ones estimated for Landsat8 to Hyperion images registration problem 

discussed later in the experimental Section of this paper. The most frequently met value of the ratio 

/x nσ σ  for both Hyperion and Landsat8 bands is about 5 and it can drop down to 1 for noisy areas. 

The average of the Hurst exponent is about 0.65 but can be as low as 0.3 for some CFs; RTk  varies 

from 0 to 0.95 and we set RT 0.95k =  and 0.5 as the strong and weak correlation cases, respectively; 



 14 

( ),t s∆ ∆  pairs cover subpixel shifts from no translation to half-pixel translation cases (integer shifts 

were removed from consideration here as they do not affect estimators performance). Rotation angle 

between Hyperion and Landsat8 images was about 17º and the scaling factor was about 1.025. 

Table 1. Test points parameter values (.TI .RI 1n nσ σ= = , .RI 5xσ = , RI TI 8N N= + ) 

Test  
point 

Description . Ix Tσ  H  RTk  TIN  t∆ , 
pixels 

s∆ , 
pixels 

α , 
degrees r∆  

1 Basic 5 0.65 0.95 15 0.25 0.25 17 1.025 
2 Weak correlation 5 0.65 0.5 15 0.25 0.25 17 1.025 
3 Small template CF size 5 0.65 0.95 9 0.25 0.25 17 1.025 
4 High noise level 1 0.65 0.95 15 0.25 0.25 17 1.025 
5 Rough texture 5 0.35 0.95 15 0.25 0.25 17 1.025 
6 Pure translation 5 0.65 0.95 15 0.5 0.5 0 1 
7 Pure translation 5 0.65 0.95 15 0.5 0 0 1 
8 Pure rotation 5 0.65 0.95 15 0 0 5 1 
9 Pure scaling 5 0.65 0.95 15 0 0 0 0.8 

10 
Zero geometrical 
transformation 

5 0.65 0.95 15 0 0 0 1 

 

CRLBs on RST parameters estimation error STD for TP ##1…10 are given in Table 2. These values 

are calculated by substituting the corresponding parameters into Eq. (6) and (7). The lowest estimation 

accuracy is observed for TP #2 due to weak correlation between reference and template CFs, the 

highest – for TP #9. Mean theoretical estimation error STD is about 0.067 pixels for translation, 

0.67º for rotation angle and about 0.012 for scaling factor. 

Table 2. CRLB on RST parameters estimation error for TP ##1…10 (STD values) 

TP RST(1)σ , 
pixels ( t∆ ) 

RST(2)σ , 
pixels ( s∆ ) 

RST(3)σ , 
degrees (α ) RST(4)σ  ( r∆ ) 

1 0.048 0.049 0.447 0.008 
2 0.130 0.133 1.208 0.023 
3 0.082 0.083 1.236 0.024 
4 0.107 0.109 0.990 0.019 
5 0.058 0.062 0.569 0.010 
6 0.056 0.056 0.509 0.009 
7 0.043 0.068 0.476 0.009 
8 0.049 0.049 0.45 0.010 
9 0.039 0.034 0.373 0.003 
10 0.049 0.049 0.454 0.008 

3.2. Numerical results analysis 

For each test point, the reference and template CFs are obtained via Cholesky decomposition of the 

correlation matrix ΣR  [35]. A total number of 1000 samples is used to collect statistics for each 

estimator compared. Note that the reference CF size is set larger than the template CF size to ensure 
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full overlapping of control fragments. 

Several quantitative criteria are considered for assessing the estimation accuracy. We have 

decided to use median and median of absolute deviations (MAD) measures to account for possible 

outliers among estimates. For each ith component of the RST parameter vector, the quantitative 

criteria are defined by the following expressions: robust analogs of bias  

RST RST
ˆ( ) ( ( ))ib i med i= −θ θ  and standard deviation 1.48i is MAD= ⋅ , the statistical efficiency 

measure 2
RST100% ( ) / ( )ie i MSE i= ⋅σ , 1...4i = . Here ( )med ⋅  denotes median operator, 

RST RST
ˆ ˆ(| ( ) ( ( )) |)iMAD med i med i= −θ θ  is median absolute deviation, 2 2( ) i iMSE i s b= +  is mean 

square error (for biased estimates), ie  reflects efficiency of each estimator w.r.t. the RST( )iσ  bound. For 

an efficient estimator, 100%ie ≈ . A value 100%ie �  relates to a non efficient estimator. 

Comparative results are presented in Fig. 1, 2 and Table 3. Recall first that all four parameters are 

jointly estimated by the proposed method. Fig. 1 displays experimental probability density functions 

(pdf) of estimates of each RSTθ  component for TP #1. These pdfs are shown for the three estimators 

(ML fBm, NGF, and MI) proved to be the best in our comparison. In addition, Gaussian pdfs 

2
RST RST( ( ), ( ) )N i iθ σ  are shown as dashed curves for comparison with the distribution predicted by 

theory. Table 3 compares the MLfBm, NGF, ML, NCC, and SSD estimators in terms of estimates 

bias. Fig. 2 presents data in terms of robust standard deviation is  just defined above. 

The following observations can be drawn: 

1. The mean percentage of outlying estimates roughly determined as 

( )RST RST
ˆ ( ) ( ) 4 iP i i s− >θ θ  is about 1% for the NGF estimator, 2.5% for the NCC and MI estimators, 

and 7% for the SSD estimator. For the MLfBm estimator, this value is only about 0.1%, i.e. the smallest. 

2. The close proximity of experimental pdf for the MLfBm estimator with the Gaussian 

distribution can be clearly stressed (see pdfs in Fig.1). More in detail, according to Lilliefors 

goodness-of-fit test [36], the hypothesis of normality for t∆ , s∆ , α  and r∆  estimate distributions 
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can be accepted for the MLfBm estimator at significance level 5% for all TPs except for TP #2. The 

rest of estimators pass the normality test (after removing the abovementioned outliers) only for TP #5 

(the MI method has also passed the normality test for TP #10; NGF method for TP #10 and #8). 

 
 a b 

                               
 c 

Fig. 1. Experimental pdfs of the RST parameter estimates for TP #1: horizontal translation (a), rotation 

angle (b) and scaling factor (c). The MLfBm data are shown as red curves, the NGF data - as green curves, the 

MI data - as blue curves and the theoretical pdfs ( )2
RST RST( ), ( )N i iθ σ - as dashed black curves 

3. For each estimator compared and each RST parameter, Table 3 shows minimum, 

maximum, MAD, and STD bias values obtained over all 10 TPs. The proposed MLfBm always 

shows the best results (ranked in the second position for MAD measure in only one case for 

translation t∆ ) in terms of bias maximum deviation interval (difference between max and min 

values), MAD and STD measures. For both NCC and SSD estimators, large errors are possible 

(they are responsible for increasing significantly the difference between max and min values and 

STD). We have found TP #2 (weak correlation between RI and TI) to be the worst case for efficacy 

of the MI, NCC and SSD estimators. In terms of MAD, the MLfBm reduces bias by a factor of about 2 

for translation estimates, by 4…7 times for rotation angle and about 10 times for the scaling factor 
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compared to the NGF, MI, NCC and SSD. 

Table 3. Min, max, MAD and STD values of bias (multiplied by 103) of translation (measured in pixels), of 

rotation angle (measured in degrees) and of scaling factor estimates obtained by the five methods 

Estimator RSTθ  min max MAD STD 
RSTθ  min max MAD STD 

ML fBm 

NGF 
MI 

NCC 
SSD 

t∆ , 

pixel 

 -8.5 
 -2.6 
 -3.5 
 -32.0 
 -46.0 

 2.9 
 10.4 
 22.8 
 4.4 
 2.3 

 2.8 
 1.8 
 4.2 
 5.8 
 9.1 

 3.9 
 3.9 
 9.2 
 10.8 
 13.9 

s∆ , 

pixel 

 -8.8 
 -19.4 
 -7.0 
 -78.8 
 -257.8 

 3.7 
 6.1 
 9.2 
 7.4 
 14.1 

 0.8 
 2.8 
 4.5 
 5.7 
 8.0 

 3.2 
 7.3 
 5.3 
 25.7 
 80.3 

ML fBm 

NGF 
MI 

NCC 
SSD 

α , 

degree 

 -40.8 
 -265.9 
 -178.2 
 -927.1 
 -1827.5 

 16.5 
 48.4 
 171.2 
 62.3 
 44.2 

 15.5 
 60.4 
 114.0 
 64.4 
 74.1 

 20.1 
 108.2 
 126.3 
 294.4 
 567.6 

r∆  

 -1.6 
 -0.9 
 4.5 

 -227.5 
 -246.7 

 0.4 
 27.5 
 78.0 
 7.4 
 13.8 

 0.3 
 3.0 
 4.0 
 4.2 
 3.5 

 0.6 
 8.4 
 23.6 
 71.0 
 76.3 

 

4. In graphical form, estimation errors of the RST parameters are presented in Fig.2. For all 

estimators, intervals [ ]3 , 3i i i ib s b s− +  are shown as bars of specific colors. In addition, intervals 

[ ]RST RST3 ( ),3 ( )i i− σ σ  are given as semi-transparent bars. It is seen that according to [ ]3 , 3b s b s− +  

intervals, the estimators can again be roughly ranked as follows: MLfBm, NGF, MI, NCC, and SSD. In 

efficiency terms, the average efficiency (defined as 
4

1

1

4 i
i

e e
=

= ∑ ) of the proposed MLfBm estimator is 

about 90%, about 23% for the NGF estimator, 12-13% for the MI and NCC estimators, and, finally, 

about 6% for the SSD estimator. The behavior of the ML fBm estimator for TP #10 differs from the 

behavior observed for the rest of TPs and this will be discussed later in this Section. The NGF, MI 

and NCC estimators are less effective (by 20-50%) in estimating α  and r∆  parameter as compared to 

translation parameters. TP #2 is the most challenging test point for all estimators, except the MLfBm. 

5. For TP #2, the average efficiency e is about 85% for the MLfBm, 3.5% for the NGF, 5.3% 

for the MI, 0.5% for the NCC and 0.25% for the SSD. This result is essential as TP #2 corresponds 

to the multitemporal and/or multimodal registration case (modeled by weak correlation between 

reference and template CFs). In this specific case and supported by experiment carried out on real 

data, the MLfBm estimator significantly outperforms even the MI method specially designed to cope 

with multimodal data. 

6. For TP #10 (illustrating no geometrical transformation between reference and template 

CFs), the estimation error obtained with the MLfBm estimator is significantly lower than the value of 
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the CRLB RST( )iσ  for all components of the RSTθ  vector (efficiency exceeds 100%). We mainly 

attribute this effect to a specific non-quadratic shape of log-LF (3) at this point. 

(a) 

(b) 

(c) 
 

Fig. 2. Characteristics of RST parameters estimation errors for horizontal translation (a), rotation angle (b) and 

scaling factor (c) obtained by the five algorithms retained in the comparative study for all TPs #1-10 

To better illustrate this, Fig. 3 displays a section of the mean log-LF w.r.t r∆  parameter and 

its approximation by the second-order Taylor expansion at the point RST (0,0,0,1)=θ . It is seen that 
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the mean log-LF function decreases significantly faster than the quadratic function. As a result, the 

CRLB, which is based on second-order approximation of the log-LF shape, becomes inadequate. It 

underestimates the estimation accuracy of RSTθ . We stress that this is only a local effect no longer 

visible on either side of (0,0,0,1). It clearly does not affect the performance of the MLfBm estimator, 

but it limits the adequacy of the derived CRLB at this particular point for samples of finite size. 

 

Fig. 3. Shape of log-LF (3) in the vicinity of the point RST (0,0,0,1)=θ : the mean value of log-LF is shown 

as black thick curve, approximation by the second-order Taylor expansion - as black thin curve. Axis x spans 

the interval [1 3 ,1 3 ]r rσ σ∆ ∆− + , where RST(4)rσ ∆ = σ  for TP #10. 

3.3. Robustness to noise variance errors and complexity analysis of the MLfBm 

One more feature of the MLfBm estimator demands analysis: this is the only estimator involved in 

the comparison we have performed that directly requires knowledge of noise variance as an input. 

In practice, this value might be known with errors and the influence of these errors on the MLfBm 

performance should be investigated accordingly. Modern methods of blind noise variance 

estimation (including signal-dependent case) are known to perform well, with variance estimation 

error lying most of the time within the ±20% relative error interval (±10% for STD) [37]. So, we 

have performed additional experiments with setting erroneously both .RI .TI,n nσ σ  values with ±10% 

(and later ±20%) bias. Errors in noise variance lead to a limited increase of bias and estimation STD 

for all RST parameters. The most significant influence was seen at TP#4: ( )MSE i  increased by 

about 5% (10%). For other TPs, the effect was significantly smaller, ( )MSE i  increased by less than 

4%. Therefore, the influence of noise variance estimation error on the performance of the MLfBm 

estimator can be reasonably neglected in practice. 

Based on these results obtained on synthetic pure fBm data (with ground truth available), we can 
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conclude that the proposed MLfBm estimator provides significant improvements compared to the 

four alternatives belonging to state-of-the-art. These improvements are seen in terms of standard 

deviation, bias and distribution shape of RST parameters estimates. However, we need to mention 

for sake of fairness that our estimator is significantly more computationally intensive as it requires 

operations with large sample correlation matrix. The cost of our current Matlab implementation of 

ML fBm estimator is 20s for estimation of RST parameter vector for one pair of CFs (reference CF is 

23 by 23 pixels, template CF is 15 by 15 pixels) using Intel Core2 Duo T5450, 1.66 GHz. The 

similar operation with the same settings takes 0.6s for the NCC method (2D spline interpolation 

stage was found to be mainly responsible for the NCC method time cost), meaning that the MLfBm 

estimator is about 35 times slower than the NCC estimator. For larger sizes TIN  and RIN  of the CFs, 

this ratio will further increase. With this magnitude order, we have preferred to concentrate our 

efforts to demonstrate the MLfBm estimator potential for improving RST parameters estimation 

accuracy leaving efficient implementation for future work. 

4. PERFORMANCE ANALYSIS OF THE PROPOSED ESTIMATOR ON REAL-LIFE DATA 

As a real-life example, we consider the registration of two images acquired by Hyperion and 

Landsat 8 sensors. Four among the five estimators considered previously completed by an extra one 

will be comparatively assessed on this pair of datasets. Thus, the comparison includes the MLfBm, 

NCC, MI, NGF estimators and the LSM algorithm introduced in [8] at the fine registration stage. 

The latter algorithm is based on cross-correlation similarity measure and it is more suitable for real-

life data than SSD. 

4.1. Test data 

Recall that Hyperion sensor [38] acquires hyperspectral images in 242 spectral bands with 

spectral resolution of about 10nm. Spectral range from 355.59 nm to 2577.08 nm is covered by two 

spectrometers (not all bands are active): VNIR (bands ## 1…70; 355.59… 1057.68 nm) and SWIR 

(bands ## 71…242; 851.92… 2577.08nm). Landsat 8 satellite [39] bears two pushbroom 

multispectral sensors, Optical Land Imager (OLI) and Thermal InfraRed Sensor (TIRS). OLI 
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collects data from nine spectral bands (433…1390 nm; spatial resolution is 15/30 m), and TIRS 

acquires data in two spectral bands (10.30…12.50 µm; spatial resolution is 100m). The main 

parameters of the Hyperion and Landsat 8 datasets that were used in our experiment [40] are 

specified in Table 4. 

Table 4. Characteristics of the Hyperion and Landsat 8 test datasets. 

Parameter Hyperion Landsat 8 (OLI) 

Dataset related information 
Scene ID EO1H1800252002116110KZ LC81770252014065LGN00 

Acquisition time 26.04.2002 06.03.2014 
Path/ Row 180/25 177/25 

Site Latitude/Longitude, degrees 49.4339/32.0678 48.8497/31.6597 
Processing Level L1R L1T 

Look angle, degrees 9.7073 0 (nadir) 
Sensor related information 

Number of rows/columns 3129/256 
8061/7941 (reflective bands B1-B7) 
16121/15881 (reflective band B8) 

Spatial resolution, m 30.38 30 (B1-B7, B9) or 15 (B8) 
Swath, km 7.7 185 

Orbit Sun-synchronous; altitude is 705 km Sun-synchronous; altitude is 708 km 

Among the 242 Hyperion bands, band #25 (VNIR; 599.80 nm) has been selected as the reference 

image. The Landsat 8 band B1 (OLI; 433…453 nm) is our template image. Spatial resolution of 

both bands is 30 m. We will later consider a more complex case when reference and template 

images have different spatial resolution. For this goal, we consider Landsat8 band B8 (OLI, 

500…680 nm; panchromatic; spatial resolution is 15m) as template image. 

Different acquisition settings (12 years difference in acquisition time, different wavelengths and 

spectral widths) make Landsat 8 to Hyperion registration a multitemporal or even a “mild” 

multimodal registration problem (true multimodality involves data acquired by sensors of different 

physical nature). This can be clearly seen from Fig. 4 that shows registered Hyperion (Fig. 4a) and 

Landsat 8 (Fig. 4b) bands. Different spatial resolutions complicate this problem even further. 

To cope with the relief influence on Hyperion image, the fragment of ASTER Global Digital 

Elevation Map (GDEM) [40] covering the study area was used. DEM was manually registered to 

the Hyperion image (Fig. 4c). Relief for the study area is quite flat with elevation varying from 50 

to 243 m (the mean elevation value is 113 m). 
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 (a)  (b)  (c) 
Fig. 4. Registered Hyperion band #25 (a), 

Landsat 8 band B1 (b) and DEM (c). Gray 

levels ranging from black to white cover 

intensity ranges 1100…3800 for Hyperion, 

8500…9600 for Landsat 8 and 50…250m 

for DEM. Images size is 256 by 3129 pixels. 

Relief influence in cross-track direction was 

systematically corrected at all stages described below 

based on Hyperion image acquisition parameters in 

Table 4. Lansat 8 image is terrain corrected, no additional 

correction is needed. 

Noise parameters for the Hyperion and Landsat 8 

datasets have been determined based on blind signal-

dependent noise parameters estimation method [30] and 

according to the results obtained in [31]. Specifically, we 

have set the following noise model for both images: 

 2 2 2
. .n n SI n SDIσ σ σ= + , (10) 

where I  is the image intensity, 2
.n SIσ  and 2

.n SDσ  are the 

noise parameters that relate to signal-independent and 

signal-dependent components, respectively. 

According to our estimates, . =8.3448n SIσ  and 

. =0.2672n SDσ  for the Hyperion band #25 and . =0n SIσ  

and . =0.1175n SDσ  for the Landsat 8 band B1. When 

registering CFs of the two bands, noise variances 2
.n RIσ  

and 2
.n TIσ  for each pair of reference/template CFs are 

obtained according to (10) by substituting .n SIσ , .n SDσ  

with their estimates specified above and I  with CF mean 

intensity. 
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4.2. Coarse and fine registration stages 

To register Landsat8 to Hyperion images, we adapted a two-stage approach that includes 

subsequent coarse and fine registration stages. At the coarse registration stage, we used the affine 

transformation model 

 HtoL HtoL
TI RI

TI RI

i i

j j

   
= +   

   
A d , (11) 

where ( , )RI RIi j  denote terrain corrected row and column indices of the reference image, ( , )TI TIi j  

denote row and column indices of the template image, HtoLA  is 2 by 2 matrix and HtoLd  is 2 by 1 

translation vector, the lower subscript ‘HtoL’ means transformation from Hyperion to Landsat 8 

image coordinate system. 

Initially, Hyperion and Landsat 8 images were registered based on the corners longitude and 

latitude provided with each image. This registration occurred to be very inaccurate with errors up to 

300 pixels in the along-track direction. To refine this result, we have applied automatic registration 

based on SURF descriptor [41] followed by RANSAC algorithm [42] to estimate affine 

transformation parameters in the presence of outliers. In this manner, registration error was reduced 

down to 2 pixels (this has been verified based on 15 manually selected control points). 

Applying RQ-decomposition to HtoLA , we have found that the rotation angle and scaling factor 

between Hyperion and Landsat 8 were 0 16.93α = o  and 0 1.0245r∆ = , respectively. The values  

0α  and 0r∆  have been later used as an initial guess of RST parameters at the fine registration stage. 

The fine registration is next performed in three steps: 1) control fragments selection, 2) 

registration of each pair of CFs using one of the five estimators in comparison, 3) refinement of the 

affine transformation parameters HtoLA  and HtoLd . 

4.3. CFs selection procedure 

The CFs selection procedure includes the following stages: 

1. The reference image is tiled by non-overlapping reference CFs of size RI RIN N×  with 

coordinates ( ) ( )( ),RI RIi k j k , where k  denotes CF index (for notation simplicity, we will 
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omit this index when some operation is applied to all CFs). 

2. For each reference CF centered at ( ),RI RIi j  at the reference image RI, the corresponding 

position ( ),TI TIi j  of template CF at the template image TI is calculated using (11). As TIi  

and TIj  can be fractional numbers, we center template CF position at [ ] [ ]( ),TI TIi j , where [ ]⋅  

is the operation of rounding to the nearest integer. For each CF, RSTθ  is initialized as 

( )RST.IG 0 0 0 0, , ,t s rα= ∆ ∆ ∆θ , where [ ]0 TI TIt i i∆ = −  and [ ]0 TI TIs j j∆ = −  are initial subpixel 

translations. 

3. All CFs are grouped into four groups according to two attributes: Normal vs. not Normal 

and isotropic vs. anisotropic texture. Group I is for Normal and Isotropic textures, group II is 

used for Normal but Anisotropic, group III - for Isotropic but not Normal, and group IV - for 

both not Normal and Anisotropic. The reason for such grouping is that texture anisotropy 

and abnormality does not match with fBm model. By preclassifying CFs, we seek to 

evaluate the robustness of the MLfBm estimator to texture deviations from fBm model. From 

the four groups I…IV, group I contains CFs that best match the fBm approach. 

Anisotropic textures have been detected by calculating autocorrelation function of template CF, 

( ),r i j∆ ∆ , approximating it by second order polynomial 

( ) 2 2, 2r i j a i b j c i j d i e j f∆ ∆ = ∆ + ∆ + ∆ ∆ + ∆ + ∆ +  and calculating eigenvalues maxλ  and minλ  of the 

matrix 
a c

c b

 
 
 

. A pair of reference/template CFs is considered isotropic if max min/ 2λ λ < , otherwise 

this pair is considered as anisotropic. A pair of reference/template CFs is considered Normal if both 

vertical and horizontal increments of template CF with unity lag pass the Lilliefors normality test 

[36] with significance level 1%. In total, 1500 pairs of CFs have been detected suitable for our 

registration processing scheme, among them 416 belong to group I, 138 to group II, 473 to group III, 

and 473 to group IV. 
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4.4. Ensuring global convergence 

Initializing the MLfBm estimator by the vector RST.IGθ  previously defined (in item 2 of subsection 

4.3) does not, in general, assure convergence to the global maximum. Indeed, the magnitude of the 

coarse registration error with respect to translation parameter is about 2 pixels. With this, it has been 

experimentally found that the attracting area of the global maximum of the proposed log-LF with 

respect to translation is about ±0.6 pixel wide. This clearly means that RST.IGθ  could be outside the 

attracting area of the global log-LF maximum leading to erroneous estimates. To assure global 

convergence, we have considered the so called multi-start optimization technique with nine 

different initial guesses for RST.IGθ : ( )RST.IG 0 0 0 0, , ,shift shiftt t s s rα= ∆ + ∆ ∆ + ∆ ∆θ , where 

, 1,0,1shift shiftt s∆ ∆ = − . Convergence of the MLfBm is illustrated in Fig. 5 where nine convergence 

paths are superimposed on the 2D cross-section of the log-LF: each point ( ),t s∆ ∆  corresponds to 

the maximum log-LF value with respect to .RI .TI RT( , , , )x x H kσ σ  vector, setting the two remaining 

parameters as 0α = α , 0r r∆ = ∆ . 

Fig. 5a shows a typical convergence scenario, seen for majority of CFs. The initial guess 

( )RST.IG 0 0 0 0, , ,t s rα= ∆ ∆ ∆θ  lies within the main lobe of the log-LF and leads to correct final 

estimation result. An example of an opposite situation when ( )0 0 0 0, , ,t s rα∆ ∆ ∆  does not belong to 

the main lobe of the log-LF is shown in Fig. 5b. In this case, convergence to the global maximum is 

truly assured by other initial guesses. 

The same procedure has been used indifferently for the four NGF, MI, NCC, and LSM 

estimators: the corresponding similarity measures are thus minimized nine times starting each time 

from a different initial guess among the nine considered. The estimate that corresponds to the 

absolute minimum of each similarity measure is just taken as the final estimate.  

For each pair of CFs, we have obtained five estimates � � �( )RST.estimator
ˆ ˆ, , ,t s rα= ∆ ∆ ∆θ , where the 

subscript “estimator” takes one or the other of the values “MLfBm”, “NGF”, “MI”, “NCC” or 
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“LSM”. Similarly to Section 3, we set RI 23N =  and RI 15N =  for all estimators. For the MLfBm 

estimator, additional results are obtained as auxiliary data: texture parameter vector 

( )texture .RI .TI RT
ˆˆ ˆˆ ˆ, , ,x x H kσ σ=θ  and estimate RSTσ̂  of the RSTσ  vector. The latter is simply found by 

substituting textureθ̂  and 
fBmRST.MLθ̂  into (6). 

      
 a b 
Fig. 5. Convergence of the MLfBm estimator for two CFs. Larger log-LF values are shown in red color, lower 

– in blue color. Nine convergence paths are shown in black; the starting points are marked as “•”, the end 

points - as “o”; the point ( )0 0,t s∆ ∆  - as green “□”marker; the global log-LF maximum - as green “o” marker. 

Initial guess is within (a) and outside (b) the mail lobe of the log-LF. 

Due to lack of ground truth, all estimates RST.estimatorθ̂  will be compared with the output of the 

subsequent fine registration stage RST.fineθ̂ (as explained at the end of subsection 4.2). At this stage, 

we used RANSAC algorithm fed with the MLfBm estimates for CFs of group I to get refined 

estimates of the global affine transform HtoL.fineA  and HtoL.fined . 

4.5. Test of hypothesis of identical Hurst exponent values for Hyperion and Landsat 8 images 

Before analyzing quantitatively the accuracy of RST parameters estimation, let us check validity 

of the hypothesis stating that the same Hurst exponent can be used for reference and template CFs. 

Recall that this hypothesis has been accepted above to derive the correlation matrix (2). To this end, 

for each pair of CFs, two estimates of the Hurst exponent, RIĤ  and TIĤ , were obtained 
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independently for reference and template CFs. We can 

observe from distribution of the pairs of estimates 

( RIĤ , TIĤ ) (see Fig. 6) that they are concentrated enough 

along the line RI TIH H= . Correlation between RIĤ  and 

TIĤ  is 0.55. Thus, the hypothesis RI TIH H=  can be 

reasonably accepted. 

4.6. Quantitative analysis measures 

Let us now analyze the estimation accuracy of RSTθ  

vector for different CFs. The following three measures are adopted for this purpose: probability of 

outlying estimates, absolute error STD and normalized error STD. Below, we introduce and briefly 

discuss each measure. 

Typically, an outlying estimate is defined as an estimate lying outside a circle with a predefined 

radius centered at the true value of parameters vector. For translation parameter estimates, a typical 

value of this radius is one pixel [43]. This definition is intuitively clear but subjective by nature. 

Indeed, it is clear that different pairs of CFs can be suitable for registration in a different degree. 

For example, a higher value of .RI .RI/x nσ σ  and .TI .TI/x nσ σ  ratios (that are related to SNR measure) 

and a higher magnitude of correlation coefficient RTk  should lead to a more accurate registration. 

Within the proposed approach, this variability can be characterized by the corresponding CRLBs 

(elements tσ ∆ , sσ ∆ , ασ  and rσ ∆  of vector RSTσ̂ ). For the considered registration scenario, ˆ tσ ∆  and 

ˆ sσ ∆  vary from 0.025 to 2 pixels with the mode located at ≈0.1 pixel; ˆασ  varies from 0.2 to 15 

degrees with the mode about 0.9 degrees; ˆ rσ ∆  varies from 0.004 to 0.3 with the mode around 0.018. 

Overall, for all components, the standard deviation of estimation error can exhibit a 75-fold 

variation. This quite high variation indicates that it is impossible to detect outlying estimates by 

applying the same threshold to all pairs of CFs. 

However, an outlying estimate can be more properly defined if a reasonable distribution of 

 
Fig. 6. Distribution of pairs ( RIĤ , TIĤ ) 

for CFs of group I 
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normal estimates is assumed. This can be done using 
RSTθ

C  bound. Recall that asymptotic 

distribution of RSTθ  vector estimate by an efficient unbiased estimator is 
RSTRST0( , )N
θ

θ C , where 

RST0θ  denotes the true RST parameter vector. Here, we use the estimate RST.fineθ̂  as RST0θ . For a 

practical estimator, RSTθ  estimates distribution should be more or less close to 
RSTRST0( , )N
θ

θ C . Thus, 

to detect outliers, we need to test zero hypothesis that RSTθ̂  follows 
RSTRST0( , )N
θ

θ C  distribution 

against alternative hypothesis that RSTθ̂  does not obey 
RSTRST0( , )N
θ

θ C . The sufficient statistics for 

this test is the quadratic form 
RST

1
RST RST0 RST RST0

ˆ ˆ( ) ( )TQ −= − −
θ

θ θ C θ θ . We define accordingly an 

outlying estimate by the following rule: 

 thQ Q> , (12) 

where thQ  is a threshold. For the zero hypothesis, Q  should follow a χ2 distribution with four 

degrees of freedom (the number of RST parameters). At significance level 61 10α −= −  for χ2(4) 

distribution, we get 33.3768thQ = . Probability of outlying estimates can now be obtained as 

( )out thP P Q Q= > . 

Normalized errors vector is obtained by dividing each element of the absolute error 

RST RST RST0
ˆ∆ = −θ θ θ  by the corresponding element of RSTσ  (potential STD value): 

RST RST RST. /δ = ∆θ θ σ , where . /  defines pointwise matrix division. Below, we deal with standard 

deviation of absolute (abs.is ) and normalized (norm.is ) errors. These standard deviations are defined 

as in the Section 3 through MAD measure to prevent outliers influence. 

4.7. Absolute errors analysis 

Let us start with the analysis of absolute errors. For the CFs belonging to group I, the 

experimental pdfs of absolute errors corresponding to the MLfBm and MI estimators are shown in 

Fig. 7 (the NGF and NCC methods produced results similar to the MI). Pdfs were computed using 

kernel smoothing density estimate implemented in ksdensity Matlab function. It is seen that for the 

ML fBm estimator, these errors are characterized by the lowest variance and the absence of heavy-
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tails caused by outliers (two spikes in the scaling factor pdf for the MI method are due to constraints 

in the form of lower and upper bounds imposed on r∆  value). 

Absolute error STDs abs.is  are given in Table 5. The general observation is that the ML fBm 

estimator offers substantial performance improvement over the NGF, MI, NCC, and LSM methods 

for all groups of CFs and all RST parameters: abs.is  decreases by 1.5…2.6 times for all RST 

parameters. The NGF, MI and NCC methods show similar performance for groups I-III. For group 

IV, the NGF outperforms the MI and NCC methods. For all groups, the LSM demonstrates the 

worst estimation accuracy. 

All methods involved in the comparison carried out show similar performance for groups I-II, 

decreased performance for group III and even more significant decrease for group IV. Therefore, it 

can be concluded that texture anisotropy affects all five registration methods in a negative manner 

but only slightly, texture non-normality affects them more significantly and combination of these 

two factors degrades estimation even more significantly. 

4.8. Normalized error analysis 

The experimental pdfs of the quadratic form Q  defined in (12) for the MLfBm and MI estimators 

and calculated for CFs of group I are given in Fig. 8 (again the results for NGF and NCC are similar 

to MI). The threshold thQ  is shown as the vertical black thick line. The pdf of statistic Q  for the 

ML fBm method is significantly more concentrated towards zero values and has smaller right-hand 

tail as compared to the one for the MI method. In quantitative sense, this leads to decreased 

normalized error STD and decreased percentage of outliers.  

For group I, the percentage of outliers is only 10% for the MLfBm method but it increases up to 

48% for the NGF, MI, and NCC methods. For groups II-IV, we see the same tendency as for 

absolute errors: the percentage of outliers slightly increases for groups II and III. This increase 

becomes significant for group IV. For the LMS method, the estimation errors are very significant. 

Due to this, almost all estimates are classified as outliers. 
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(a) 

(b) 

(c) 
Fig. 7. Experimental pdfs of RST parameters estimates by the MLfBm and MI estimators. 

a) translations, b) rotation angle and c) scaling factor. All pdfs are obtained for CFs from group I. 

Table 5. Absolute errors analysis (the smallest STD values of absolute errors are shown in bold font) 

Standard deviation of absolute errors (1.48MAD) 
RST parameter Estimator 

Group I Group II Group III Group IV 

t∆  and s∆  

ML fBm 
NGF 
MI 

NCC 
LSM 

0.198 
0.36 
0.336 
0.311 
1.797 

0.229 
0.368 
0.402 
0.355 
1.898 

0.226 
0.365 
0.362 
0.378 
1.866 

0.309 
0.454 
0.51 
0.651 
3.590 

α  

ML fBm 
NGF 
MI 

NCC 
LSM 

0.023 
0.044 
0.046 
0.040 
0.181 

0.024 
0.052 
0.031 
0.036 
0.173 

0.029 
0.046 
0.047 
0.049 
0.216 

0.024 
0.043 
0.044 
0.045 
0.268 

r∆  

ML fBm 
NGF 
MI 

NCC 
LSM 

0.027 
0.054 
0.049 
0.070 
0.177 

0.027 
0.050 
0.059 
0.061 
0.189 

0.034 
0.055 
0.068 
0.078 
0.206 

0.044 
0.079 
0.088 
0.127 
0.345 
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Fig. 8. Experimental pdf of the quadratic form Q  obtained for CFs from group I. 

Table 6. Probability of outlying estimates of RST parameters, outP , % 

(the smallest probabilities of outlying estimates are shown in bold font) 

Estimator Group I Group II Group III Group IV 
ML fBm  10.10 20.29 23.89 44.82 
NGF 48.56 55.07 56.03 66.81 
MI 47.36 56.52 57.51 72.09 

NCC 47.12 55.07 60.68 77.59 
LSM 94.95 97.82 95.56 97.04 

 

For a more detailed analysis, Table 7 summarizes standard deviations of the normalized errors 

norm.is  separately for each group of CFs and for each RST parameter. In addition, for group I the 

results are given in parenthesis for three subintervals of RTk  values: less than 0.6, from 0.6 to 0.8 

and larger than 0.8. The experimental results with different spatial resolutions between reference 

and template images are presented in the last column. 

To better interpret data in Table 7, recall that for an efficient estimator and an accurate lower 

bound used for normalization, norm.is  should be close to unity. For CFs of group I, the ML fBm is very 

close to this ideal case with norms  about 2 for translation parameters and 1.55 for rotation angle and 

scaling factor. This corresponds to an efficiency of the MLfBm estimator w.r.t. 
θ

C  bound of about 

25…42% on real data whilst it is of 90% for the simulated pure fBm-samples. To our opinion, this is 

a reasonable price to pay for applying a model-based estimator to a complex pair of real datasets. 

For the NGF, MI and NCC methods, norms  increases by a factor of 1.75…2 as compared to the 

ML fBm estimator. This observation remains for groups II-IV with the same tendencies as previously: 
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norms  increases slightly for all estimators in comparison for groups II and III, this increase becomes 

significant for group IV. For the LSM method, norms  is significantly larger than for other methods 

in comparison. 

Table 7. Normalized errors analysis (the smallest STD values of normalized errors are shown in bold font) 

Standard deviation of normalized errors (1.48MAD), dimensionless quantity RST 
parameter 

Estima
tor Group I 

all CFs (0.4…0.6/0.6…0.8/0.8…0.95) 
Group II Group III Group IV 

Group I 
(Landsat8 B8) 

t∆  and 
s∆  

ML fBm 

NGF 
MI 

NCC 
LSM 

2.02 (1.71/ 2.26/ 2.03) 
3.59 (4.26/ 3.35/ 3.31) 
3.55 (4.11/ 3.62/ 2.49) 
3.37 (4.39/ 2.94/ 2.63) 

17.45 (17.91/ 16.47/ 16.78) 

2.5 
4.35 
4.28 
4.23 
20.57 

2.44 
4.01 
3.96 
4.37 
18.84 

3.67 
5.43 
5.74 
7.83 
41.80 

2.67 
--- 
--- 

3.80 
--- 

α  

ML fBm 

NGF 
MI 

NCC 
LSM 

1.54 (1.28/1.60/ 2.29) 
2.9 (3.73/2.57/ 2.51) 

2.85 (3.41/ 2.50/ 2.27) 
2.58 (4.37/ 2.09/ 2.53) 

11.19 (12.17/ 9.34/ 9.71) 

1.59 
3.36 
2.23 
2.64 
12.11 

1.86 
3.26 
3.36 
3.37 
14.81 

1.97 
3.53 
3.51 
3.45 
20.04 

2.03 
--- 
--- 

2.53 
--- 

r∆  

ML fBm 

NGF 
MI 

NCC 
LSM 

1.56 (1.59/ 1.39/ 1.78) 
3.08 (3.91/ 3.04/ 1.76) 
3.15 (4.06/ 2.55/ 2.31) 
4.01 (7.39/ 2.78/ 2.54) 

9.77 (11.66/ 10.42/ 6.00) 

1.84 
3.77 
3.51 
3.72 
11.59 

2.08 
3.66 
4.4 
4.86 
12.64 

3.06 
5.2 
6.37 
9.22 
23.15 

2.24 
--- 
--- 

3.10 
--- 

 

Correlation coefficient RTk  for CFs of group I varies from 0.4 to 0.95. Table 7 details normalized 

error STD for three intervals of RTk . The first of them, 0.4 0.6RTk< < , is close to TP#2 considered 

in Section 3. It is interesting to compare performance of the considered set of estimators on similar 

simulated and real-life data. For real-life data, performance of the NGF, MI, and NCC estimators 

are in coherence with the results obtained for pure fBm data: the RST parameters estimation error is 

3…7 times greater than 
θ

C  (see Fig. 2). On simulated data, the MLfBm performed very closely to 

θ
C  at TP#2; for real-life data its performance decreased by a factor of 1.3…1.7 due to deviation of 

real-life textures from the fBm model. For high correlation, 0.8 0.95RTk< < , the MLfBm still shows 

the best performance, but its gain is less pronounced (for rotation angle and scaling factor, the MI 

and NGF show performance similar to the MLfBm). 

We have also tested a more challenging pair of images to register with different spatial 

resolutions. We kept the same Hyperion band with 30m resolution as the reference image. 

Landsat 8 band B8 with spatial resolution 15m was used as template image. To simplify the 
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experiment, we have used the same settings as previously but corrected them taking into account the 

other spatial resolution of the B8 Landsat 8 band. Comparison was restricted to CFs of group I and 

the two estimators MLfBm and NCC. This last experiment did not show any significant difference in 

results for the NCC as compared to those presented and discussed above for a pair of images with 

the same spatial resolution. Performance of the MLfBm in terms of the normalized error STD 

degraded by a factor of 1.3…1.4. We explain this by the fact that different widths of point spread 

function for the reference and template images are not taken into account in our model. 

Nevertheless, in these challenging settings, the MLfBm still outperforms the NCC. This confirms that 

both the MLfBm estimator and 
θ

C  bound are robust enough to significant changes in spatial 

resolution between reference and template images. 

Finally, let us consider the Hyperion and Landsat 8 registration accuracy achievable by the 

SURF method [41] using OpenSURF library [44]. To facilitate the processing, Landsat 8 image was 

first transformed to Hyperion coordinate system (using HtoL.fineA  and HtoL.fined ) and then cropped. 

The OpenSURF algorithm has found 2321 control points. The MADs of absolute errors calculated 

over the 300 best control points take the following values: 3.44 pixels in across-track direction (s∆ ) 

and 0.87 pixels in along-track direction (t∆ ). These values exceed significantly the MAD of 

absolute errors for all estimators used in comparison that vary from 0.2 to 0.65 pixels irrespectively 

from direction. 

Based on the experiments and analysis carried out in this paper, we can conclude that while 

being applied to register real-life multitemporal data, the MLfBm estimator provides smaller absolute 

and normalized errors as well as a reduced number of outliers as compared to the state-of-the-art 

alternative algorithms considered here. 

5. DISCUSSION 

In developing the MLfBm estimator, we have pursued the main goal of improving the image 

registration accuracy paying attention to the multitemporal and/or multimodal case. The gain 

obtained with the MLfBm estimator is a 1.75…2 times decrease of the RST parameters estimation 



 34 

error STD and a decrease of false match probability from 50 to 10%. To reach such performance 

characteristics, we have mainly restricted ourselves to isotropic textures with normal increments 

that can be described well by the fractional Brownian motion model. We have also dropped 

willingly computational efficiency requirement. Let us analyze the constraints induced by these 

assumptions. For real-life data, we have found that about 15% of CFs pass both isotropy and 

normality tests. Computational burden of the MLfBm is about 35 times higher (for template CFs of 

15 by 15 pixels) than that of the NCC as it deals with calculation of full correlation matrices of the 

registered image fragments. 

Fine registration of Lansat8 to Hyperion images (processing nine initial guesses for each of 416 

CFs of group I) by the MLfBm implemented in Matlab on Intel Core i7 980X processor takes about 3 

hours (rough estimate). Efficient implementation on, for example, C++ programming language 

could reduce this value by about two times. Registration of individual pairs of CFs is an 

independent task that can be carried out in parallel. Further decrease can be reached by 

implementing the basic MLfBm operations with correlation matrices (formation, multiplication, 

inversion) on GPU. Thus, with an optimization of the implementation, practical registration tasks 

can be solved with the MLfBm in acceptable time. 

Requirement of texture isotropy is quite natural in image registration. Indeed, for anisotropic 

textures, it becomes impossible to estimate both translation components, but only a linear 

combination of them. As a result, all analyzed estimators show increased absolute error of the RST 

parameters estimates for group II (Normal but Anisotropic textures) as compared to group I 

(Normal and Isotropic textures) and the same tendency for group IV (not Normal and Anisotropic 

textures) as compared to group III (not Normal but Isotropic textures). 

The normality requirement can be justified by the following arguments. First, universal 

similarity measures like NCC, MI and NGF do not possess robustness for non-normal textures. The 

drop in accuracy for groups III and IV as compared to groups I and II (see Table 5-7) is as 

significant for the NCC, MI and NGF estimators as for the MLfBm estimator. Therefore, image 
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registration based on textures with complex structure not following normal distribution is a 

challenging case for state-of-the-art methods. It requires more efforts to be understood. 

Second, assuming normal texture distribution allows formulating image registration problem in 

terms of second-order statistics. For such a statement, the lower bound of the RST parameters 

estimation error (CRLB) was derived in closed form (allowing the MLfBm to be viewed as an 

interval estimator). To the best of our knowledge, this is the only solution that captures the RST 

parameters estimation error as a function of the texture roughness, reference and template CFs 

signal-to-noise ratio, correlation between reference and template CFs and RST transformation 

parameters. Experiments show that this bound is very accurate for both simulated and real data. 

This bound - an extra outcome of the new estimator we have proposed - can be useful for 

preliminary detection of CFs suitable for registration, for weighted estimation of global geometrical 

transformation parameters, or for outlier detection. 

Therefore, the MLfBm estimator provides significant advantages over the state-of-the-art RST 

parameter estimators by introducing natural constraints on image texture but these advantages are 

gained at the expense of increased computational complexity. 

6. CONCLUSIONS 

This paper presents a new area-based image registration method, MLfBm, under rotation-scaling-

translation transformation hypothesis. 

Experiments on synthetic pure fBm and real hyperspectral data have demonstrated that the 

ML fBm estimator provides significant decrease in estimation error of the RST transformation 

parameters as compared to the set of state-of-the-art estimators retained in our comparison. The 

ML fBm is the most effective estimator in the case of weak correlation between registered CFs 

(correlation between reference and template images as weak as 0.4…0.6 is acceptable). It has 

proved to outperform the algorithm based on Mutual Information similarity measure, specially 

designed to cope with this case. 

One interesting feature of the MLfBm is that it provides a CRLB 
θ

C  on the RST parameters 
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estimation accuracy. For simulated fBm data, the MLfBm error STD is only 1.1 times larger than 
θ

C . 

Dealing with complex multitemporal registration of Hyperion and Landsat 8 data, the MLfBm error 

STD is about 1.5…2 times larger than 
θ

C . This means that the MLfBm estimator is actually able to 

provide not only an estimate of the RST transformation vector but also quite an accurate confidence 

interval for it. 

There are two main restrictive features of the MLfBm estimator. First, it relies on the fBm model 

that might be inadequate when applied to real-life data. Specifically, anisotropic textures, 

neighborhood of edges, non-random textures, non-Gaussian textures affect its performance. One 

interesting direction of further studies is to use more complex texture models within the proposed 

estimation scheme (for example, anisotropic texture models). 

The second restrictive feature is that the MLfBm estimator is computationally intensive and, at 

present, it can be recommended only for “off-line” applications where accuracy is of primary concern. 

But the MLfBm estimator (along with the 
θ

C  bound) has great potential for further development. 

It can be straightforwardly applied to images formed on irregular grids (for example, due to 

scanning geometry or relief influence). A more complex affine transformation can be considered as 

well. Future work will focus on these cases in the framework of multimodal registration. 
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APPENDIX A 

This appendix defines partial derivatives of the correlation matrix 

( )
( )

( )
( )

RI .RI RT RT RST RI .RI RT .RI .TI HRT RST

RT RT RST TI n.TI RT .RI .TI HRT RST TI n.TI

n n x x

T T
x x

k k

k kΣ

+ ⋅ + σ σ   
= =   ⋅ + σ σ +   

R R R θ R R R θ
R

R θ R R R θ R R
 



 37 

with respect to elements of the parameter vector .RI .TI RT( , , , , , , , )x x H k t s r= σ σ ∆ ∆ α ∆θ . The first four 

derivatives of the matrix ΣR  are given in [23]. The derivatives of ΣR  w.r.t RSTθ  elements 

, , ,t s r∆ ∆ α ∆  take the form 

HRT
RI

RST

RT .RI .TI
RST HRT

TI
RST

( )

( )

( )

Tx x

p
k

p

p

Σ

∂ 
 ∂θ∂  = σ σ  ∂θ  ∂   ∂θ  

R
Z

R

R
Z

, 1...4p = , 

where RIZ  and TIZ  are RI RIN N×  and TI TIN N×  zero matrices, respectively. We first give in details 

the derivation of ( )HRT ,R k l . We define element ( )HRT ,R k l  as 

( ) ( ) ( ) ( ) ( )( )' ' ' '
HRT 0 0, , 0,0 , ,k k l lR k l x t s x x t s x t s = − −      for .RI .TI 1x xσ = σ =  and RT 1k = . Here 

( )' ',l lt s  and ( )' '
0 0,t s  are coordinates of ( , )l lu v  and (0,0) , respectively, in the reference coordinate 

system obtained according to (1). According to the definition of fBm-process (we refer a reader to 

[23] for more details on the correlation properties of the fBm model) ( )HRT ,R k l  can be represented as 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )( )' ' ' '
HRT 0 0, , 0,0 , 0,0 , 0,0k k l lR k l x t s x x t s x x t s x = − − − − =    

 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )' ' ' '
0 0, 0,0 , 0,0 , 0,0 , 0,0 .k k l l k kx t s x x t s x x t s x x t s x   − − + − −           

Using the properties of fBm-process, we finally get: 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

2 22 2 '2 '2 ' '
HRT

2 22 2 '2 '2 ' '
0 0 0 0

,
2

2

H HH H

k k l l k l k l

H HH H

k k k k

r
R k l t s t s t t s s

r
t s t s t t s s

∆  = + + + − − + − − 
 

∆  − + + + − − + − = 
 

( ) ( )( ) ( ) ( ) ( ) ( )( )2 2 2 2' ' '2 '2 '2 '2 ' '
0 0 0 02

H H HH H

k k l l k l k l

r
t t s s t s t s t t s s

∆  = − + − + + − + − − + − 
 

. 

For p=1, 2 and 3 (parameters , ,t s∆ ∆ α ), 
( )HRT

RST

,

( )

R k l

p

∂
∂θ

 is given by 
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 (13) 

For p=4 ( r∆  parameter), the term ( )2
HRT ,HH r R k l−∆  is added to (13). 

Using (1), the derivatives of 't , 's , '
0t  and '

0s  with respect to elements , , ,t s r∆ ∆ α ∆  are obtained as: 
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' '
10 sin

s s
r

t t
α−∂ ∂= = −∆

∂∆ ∂∆
; 

' '
10 cos

s s
r

s s
α−∂ ∂= = −∆

∂∆ ∂∆
; 

' '
1 '0s s

r s
r r

−∂ ∂= = −∆
∂∆ ∂∆

; 

( ) ( )( )
'

1 cos sin
s

r u t v sα α
α

−∂ = ∆ − ∆ − − ∆
∂

; ( )
'

10 cos sin
s

r t sα α
α

−∂ = −∆ ∆ − ∆
∂

. 
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