K. Wolk, S. Kunz, E. Witte, M. Friedrich, K. Asadullah et al., IL-22 Increases the Innate Immunity of Tissues, Immunity, vol.21, issue.2, pp.241-254, 2004.
DOI : 10.1016/j.immuni.2004.07.007

X. Yang and S. G. Zheng, Interleukin-22: A likely target for treatment of autoimmune diseases, Autoimmunity Reviews, vol.13, issue.6, pp.615-620, 2014.
DOI : 10.1016/j.autrev.2013.11.008

M. Goto, M. Murakawa, K. Kadoshima-yamaoka, Y. Tanaka, K. Nagahira et al., Murine NKT cells produce Th17 cytokine interleukin-22, Cellular Immunology, vol.254, issue.2, pp.81-84, 2009.
DOI : 10.1016/j.cellimm.2008.10.002

P. C. Res, G. Piskin, O. J. De-boer, C. M. Van-der-loos, P. Teeling et al., Overrepresentation of IL-17A and IL-22 Producing CD8 T Cells in Lesional Skin Suggests Their Involvement in the Pathogenesis of Psoriasis, PLoS ONE, vol.5, issue.11, pp.14108-14113, 2010.
DOI : 10.1371/journal.pone.0014108.g005

S. J. Rubino, K. Geddes, and S. E. Girardin, Innate IL-17 and IL-22 responses to enteric bacterial pathogens, Trends in Immunology, vol.33, issue.3, pp.112-118, 2012.
DOI : 10.1016/j.it.2012.01.003

M. Akdis, O. Palomares, W. Van-de-veen, M. Van-splunter, and C. A. Akdis, TH17 and TH22 cells: A??confusion of antimicrobial response with tissue inflammation versus protection, Journal of Allergy and Clinical Immunology, vol.129, issue.6, pp.1438-1449, 2012.
DOI : 10.1016/j.jaci.2012.05.003

G. F. Sonnenberg, L. A. Fouser, and D. Artis, Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22, Nature Immunology, vol.148, issue.5, pp.383-390, 2011.
DOI : 10.1097/QAI.0b013e31817efb54

Y. Zheng, D. M. Danilenko, P. Valdez, I. Kasman, J. Eastham-anderson et al., Interleukin-22, a TH17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis, Nature, vol.102, issue.7128, pp.648-651, 2007.
DOI : 10.1038/nature05505

G. F. Sonnenberg, L. A. Monticelli, T. Alenghat, T. C. Fung, N. A. Hutnick et al., Innate Lymphoid Cells Promote Anatomical Containment of Lymphoid-Resident Commensal Bacteria, Science, vol.336, issue.6086, pp.1321-1325, 2012.
DOI : 10.1126/science.1222551

F. Cornelissen, P. Aparicio-domingo, R. M. Reijmers, and T. Cupedo, Activation and effector functions of human RORC+ innate lymphoid cells, Current Opinion in Immunology, vol.23, issue.3, pp.361-367, 2011.
DOI : 10.1016/j.coi.2011.03.002

I. B. Mcinnes and G. Schett, The Pathogenesis of Rheumatoid Arthritis, New England Journal of Medicine, vol.365, issue.23, pp.2205-2219, 2011.
DOI : 10.1056/NEJMra1004965

L. Geboes, L. Dumoutier, H. Kelchtermans, E. Schurgers, T. Mitera et al., Proinflammatory role of the Th17 cytokine interleukin-22 in collagen-induced arthritis in C57BL/6 mice, Arthritis & Rheumatism, vol.212, issue.2, pp.390-395, 2009.
DOI : 10.1002/art.24220

H. Ikeuchi, T. Kuroiwa, N. Hiramatsu, Y. Kaneko, K. Hiromura et al., Expression of interleukin-22 in rheumatoid arthritis: Potential role as a proinflammatory cytokine, Arthritis & Rheumatism, vol.98, issue.4, pp.1037-1046, 2005.
DOI : 10.1002/art.20965

E. M. Colin, P. S. Asmawidjaja, J. P. Van-hamburg, A. M. Mus, M. Van-driel et al., -dihydroxyvitamin D3 modulates Th17 polarization and interleukin-22 expression by memory T cells from patients with early rheumatoid arthritis, Arthritis Rheum, vol.1, issue.62, pp.25-132, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00408989

A. Mitra, S. K. Raychaudhuri, and S. P. Raychaudhuri, Functional role of IL-22 in psoriatic arthritis, Arthritis Research & Therapy, vol.14, issue.2, pp.65-81, 2012.
DOI : 10.1007/s10753-011-9365-x

H. Shen, J. C. Goodall, H. Gaston, and J. S. , Frequency and phenotype of peripheral blood Th17 cells in ankylosing spondylitis and rheumatoid arthritis, Arthritis & Rheumatism, vol.70, issue.6, pp.1647-1656, 2009.
DOI : 10.1002/art.24568

L. Zhang, Y. G. Li, Y. H. Li, L. Qi, X. G. Liu et al., Increased Frequencies of Th22 Cells as well as Th17 Cells in the Peripheral Blood of Patients with Ankylosing Spondylitis and Rheumatoid Arthritis, PLoS ONE, vol.445, issue.4, pp.31000-31018, 2012.
DOI : 10.1371/journal.pone.0031000.s004

K. Kreymborg, R. Etzensperger, L. Dumoutier, S. Haak, A. Rebollo et al., IL-22 Is Expressed by Th17 Cells in an IL-23-Dependent Fashion, but Not Required for the Development of Autoimmune Encephalomyelitis, The Journal of Immunology, vol.179, issue.12, pp.8098-8104, 2007.
DOI : 10.4049/jimmunol.179.12.8098

S. Schmechel, A. Konrad, J. Diegelmann, J. Glas, M. Wetzke et al., Linking genetic susceptibility to Crohn??s disease with Th17 cell function: IL-22 serum levels are increased in Crohn??s disease and correlate with disease activity and IL23R genotype status, Inflammatory Bowel Diseases, vol.14, issue.2, pp.204-212, 2008.
DOI : 10.1002/ibd.20315

K. Sugimoto, A. Ogawa, E. Mizoguchi, Y. Shimomura, A. Andoh et al., IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis, Journal of Clinical Investigation, vol.118, pp.534-544, 2008.
DOI : 10.1172/JCI33194

K. Wolk, E. Witte, U. Hoffmann, W. D. Doecke, S. Endesfelder et al., IL-22 Induces Lipopolysaccharide-Binding Protein in Hepatocytes: A Potential Systemic Role of IL-22 in Crohn's Disease, The Journal of Immunology, vol.178, issue.9, pp.5973-5981, 2007.
DOI : 10.4049/jimmunol.178.9.5973

L. A. Zenewicz, G. D. Yancopoulos, D. M. Valenzuela, A. J. Murphy, S. Stevens et al., Innate and Adaptive Interleukin-22 Protects Mice from Inflammatory Bowel Disease, Immunity, vol.29, issue.6, pp.947-957, 2008.
DOI : 10.1016/j.immuni.2008.11.003

G. F. Sonnenberg, M. G. Nair, T. J. Kirn, C. Zaph, L. A. Fouser et al., Pathological versus protective functions of IL-22 in airway inflammation are regulated by IL-17A, The Journal of Experimental Medicine, vol.118, issue.6, pp.1293-1305, 2010.
DOI : 10.1038/nm1720

C. D. Allen, K. M. Ansel, C. Low, R. Lesley, H. Tamamura et al., Germinal center dark and light zone organization is mediated by CXCR4 and CXCR5, Nature Immunology, vol.171, issue.9, pp.943-952, 2004.
DOI : 10.1038/ni1083

G. D. Victora, T. A. Schwickert, D. R. Fooksman, A. O. Kamphorst, M. Meyer-hermann et al., Germinal Center Dynamics Revealed by Multiphoton Microscopy with??a Photoactivatable Fluorescent Reporter, Cell, vol.143, issue.4, pp.592-605, 2010.
DOI : 10.1016/j.cell.2010.10.032

O. Bannard, R. M. Horton, C. D. Allen, J. An, T. Nagasawa et al., Germinal center centroblasts transition to a centrocyte phenotype according to a timed program and depend on the dark zone for effective selection Th17 cells, but not Th1 cells, from patients with early rheumatoid arthritis are potent inducers of matrix metalloproteinases and proinflammatory cytokines upon synovial fibroblast interaction, including autocrine interleukin-17A production, Immunity Arthritis Rheum, vol.39, issue.63, pp.912-924, 2011.

C. M. Weyand and J. J. Goronzy, Ectopic Germinal Center Formation in Rheumatoid Synovitis, Annals of the New York Academy of Sciences, vol.90, issue.1, pp.140-149, 2003.
DOI : 10.1111/j.1749-6632.2003.tb06042.x

C. A. Murphy, C. L. Langrish, Y. Chen, W. Blumenschein, T. Mcclanahan et al., Divergent Pro- and Antiinflammatory Roles for IL-23 and IL-12 in Joint Autoimmune Inflammation, The Journal of Experimental Medicine, vol.161, issue.12, pp.1951-1957, 2003.
DOI : 10.4049/jimmunol.168.11.5699

E. Lubberts, M. I. Koenders, B. Oppers-walgreen, L. Van-den-bersselaar, C. J. Coenen-de-roo et al., Treatment with a neutralizing anti-murine interleukin-17 antibody after the onset of collagen-induced arthritis reduces joint inflammation, cartilage destruction, and bone erosion, Arthritis & Rheumatism, vol.9, issue.2, pp.650-659, 2004.
DOI : 10.1002/art.20001

E. V. Acosta-rodriguez, L. Rivino, J. Geginat, D. Jarrossay, M. Gattorno et al., Surface phenotype and antigenic specificity of human interleukin 17???producing T helper memory cells, Nature Immunology, vol.179, issue.6, pp.639-646, 2007.
DOI : 10.1038/ni1467

S. Nakae, Y. Komiyama, A. Nambu, K. Sudo, M. Iwase et al., Antigen-Specific T Cell Sensitization Is Impaired in IL-17-Deficient Mice, Causing Suppression of Allergic Cellular and Humoral Responses, Immunity, vol.17, issue.3, pp.375-387, 2002.
DOI : 10.1016/S1074-7613(02)00391-6

L. Svensson, J. Jirholt, R. Holmdahl, and L. Jansson, B cell-deficient mice do not develop type II collagen-induced arthritis (CIA), Clinical and Experimental Immunology, vol.156, issue.3, pp.521-526, 1998.
DOI : 10.1016/0165-5728(92)90188-Q

Y. Kochi, A. Suzuki, R. Yamada, and K. Yamamoto, Genetics of rheumatoid arthritis: Underlying evidence of ethnic differences, Journal of Autoimmunity, vol.32, issue.3-4, pp.158-162, 2009.
DOI : 10.1016/j.jaut.2009.02.020

M. Pierer, J. Rethage, R. Seibl, R. Lauener, F. Brentano et al., Chemokine Secretion of Rheumatoid Arthritis Synovial Fibroblasts Stimulated by Toll-Like Receptor 2 Ligands, The Journal of Immunology, vol.172, issue.2, pp.1256-1265, 2004.
DOI : 10.4049/jimmunol.172.2.1256

V. F. Shih, J. Cox, N. M. Kljavin, H. S. Dengler, M. Reichelt et al., Homeostatic IL-23 receptor signaling limits Th17 response through IL-22-mediated containment of commensal microbiota, Proceedings of the National Academy of Sciences, vol.111, issue.38, pp.13942-13947
DOI : 10.1073/pnas.1323852111

G. D. Victora, M. C. Nussenzweig, and . Germinal-centers, Germinal Centers, Annual Review of Immunology, vol.30, issue.1, pp.429-457, 2012.
DOI : 10.1146/annurev-immunol-020711-075032

X. Wang, B. Cho, K. Suzuki, Y. Xu, J. A. Green et al., Follicular dendritic cells help establish follicle identity and promote B cell retention in germinal centers, The Journal of Experimental Medicine, vol.166, issue.12, pp.2497-2510, 2011.
DOI : 10.1007/BF00323564

O. Bannard, R. M. Horton, C. D. Allen, J. An, T. Nagasawa et al., Germinal Center Centroblasts Transition to a Centrocyte Phenotype According to a Timed Program and Depend on the Dark Zone for Effective Selection, Immunity, vol.39, issue.5, pp.912-924, 2013.
DOI : 10.1016/j.immuni.2013.08.038

J. D. Mountz, J. H. Wang, S. Xie, and H. C. Hsu, Cytokine regulation of B-cell migratory behavior favors formation of germinal centers in autoimmune disease, Discov Med, vol.11, pp.76-85, 2011.

H. C. Hsu, P. Yang, J. Wang, Q. Wu, R. Myers et al., Interleukin 17???producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice, Nature Immunology, vol.1, issue.2, pp.166-175, 2008.
DOI : 10.1038/ni1552

F. Barone, S. Nayar, J. Campos, T. Cloake, D. R. Withers et al., IL-22 regulates lymphoid chemokine production and assembly of tertiary lymphoid organs, Proceedings of the National Academy of Sciences, vol.112, issue.35, pp.11024-11029, 2015.
DOI : 10.1073/pnas.1503315112

J. Rangel-moreno, D. M. Carragher, L. Garcia-hernandez, M. Hwang, J. Y. Kusser et al., The development of inducible bronchus-associated lymphoid tissue depends on IL-17, Nature Immunology, vol.65, issue.7, pp.639-646, 2011.
DOI : 10.1016/j.immuni.2010.06.001

K. W. Kim, H. R. Kim, J. Y. Park, J. S. Park, H. J. Oh et al., Interleukin-22 promotes osteoclastogenesis in rheumatoid arthritis through induction of RANKL in human synovial fibroblasts, Arthritis & Rheumatism, vol.58, issue.4, pp.1015-1023, 2012.
DOI : 10.1002/art.33446

S. Justa, X. Zhou, and S. Sarkar, Endogenous IL-22 Plays a Dual Role in Arthritis: Regulation of Established Arthritis via IFN-?? Responses, PLoS ONE, vol.4, issue.3, pp.93279-93326, 2014.
DOI : 10.1371/journal.pone.0093279.s001

R. J. Marijnissen, M. I. Koenders, R. L. Smeets, M. H. Stappers, C. Nickerson-nutter et al., Increased expression of interleukin-22 by synovial Th17 cells during late stages of murine experimental arthritis is controlled by interleukin-1 and enhances bone degradation, Arthritis & Rheumatism, vol.247, issue.10, pp.2939-2948, 2011.
DOI : 10.1002/art.30469

R. M. Reijmers, R. W. Groen, A. Kuil, K. Weijer, F. C. Kimberley et al., Disruption of heparan sulfate proteoglycan conformation perturbs B-cell maturation and APRIL-mediated plasma cell survival, Blood, vol.117, issue.23, pp.6162-6171, 2011.
DOI : 10.1182/blood-2010-12-325522

D. Malhotra, A. L. Fletcher, J. Astarita, V. Lukacs-kornek, P. Tayalia et al., Transcriptional profiling of stroma from inflamed and resting lymph nodes defines immunological hallmarks, Nature Immunology, vol.2, issue.5, pp.499-510, 2012.
DOI : 10.1038/ni.1856