S. Alahmed and J. Herbert, Strain differences in proliferation of progenitor cells in the dentate gyrus of the adult rat and the response to fluoxetine are dependent on corticosterone, Neuroscience, vol.157, issue.3, pp.677-682, 2008.
DOI : 10.1016/j.neuroscience.2008.08.072

M. S. Ansorge, E. Morelli, and J. A. Gingrich, Inhibition of Serotonin But Not Norepinephrine Transport during Development Produces Delayed, Persistent Perturbations of Emotional Behaviors in Mice, Journal of Neuroscience, vol.28, issue.1, 2008.
DOI : 10.1523/JNEUROSCI.3973-07.2008

M. S. Ansorge, M. Zhou, A. Lira, R. Hen, and J. A. Gingrich, Early-Life Blockade of the 5-HT Transporter Alters Emotional Behavior in Adult Mice, Science, vol.306, issue.5697, 2004.
DOI : 10.1126/science.1101678

A. E. Autry and L. M. Monteggia, Brain-Derived Neurotrophic Factor and Neuropsychiatric Disorders, Pharmacological Reviews, vol.64, issue.2, pp.238-258, 2012.
DOI : 10.1124/pr.111.005108

G. Baj, E. Leone, M. V. Chao, and E. Tongiorgi, Spatial segregation of BDNF transcripts enables BDNF to differentially shape distinct dendritic compartments, Proceedings of the National Academy of Sciences, vol.108, issue.40, pp.16813-16818, 2011.
DOI : 10.1073/pnas.1014168108

G. J. Boersma, R. S. Lee, Z. A. Cordner, E. R. Ewald, R. H. Purcell et al., exon IV in rats, Epigenetics, vol.480, issue.3, pp.437-447, 2014.
DOI : 10.1007/s11064-007-9339-4

F. Boulle, D. L. Van-den-hove, S. B. Jakob, B. P. Rutten, M. Hamon et al., Epigenetic regulation of the BDNF gene: implications for psychiatric disorders, Molecular Psychiatry, vol.21, issue.6, pp.584-596, 2012.
DOI : 10.1016/j.biopsych.2010.05.028

O. Cases, C. Lebrand, B. Giros, T. Vitalis, E. De-maeyer et al., Plasma membrane transporters of serotonin, dopamine, and norepinephrine mediate serotonin accumulation in atypical locations in the developing brain of monoamine oxidase A knock-outs, J Neurosci, issue.17, pp.18-6914, 1998.

E. Castren and T. Rantamaki, The role of BDNF and its receptors in depression and antidepressant drug action: Reactivation of developmental plasticity, Developmental Neurobiology, vol.8, issue.5, pp.289-297, 2010.
DOI : 10.1002/dneu.20758

Z. Y. Chen, D. Jing, K. G. Bath, A. Ieraci, T. Khan et al., Genetic Variant BDNF (Val66Met) Polymorphism Alters Anxiety-Related Behavior, Science, vol.314, issue.5796, pp.314-140, 2006.
DOI : 10.1126/science.1129663

W. O. Cooper, M. E. Willy, S. J. Pont, and W. A. Ray, Increasing use of antidepressants in pregnancy, Am J Obstet Gynecol, vol.196, issue.54407, pp.541-545, 2007.

R. S. Duman and B. Voleti, Signaling pathways underlying the pathophysiology and treatment of depression: novel mechanisms for rapid-acting agents, Trends in Neurosciences, vol.35, issue.1, pp.47-56, 2012.
DOI : 10.1016/j.tins.2011.11.004

M. Fuchikami, S. Morinobu, A. Kurata, S. Yamamoto, and S. Yamawaki, Single immobilization stress differentially alters the expression profile of transcripts of the brain-derived neurotrophic factor ( BDNF) gene and histone acetylation at its promoters in the rat hippocampus, The International Journal of Neuropsychopharmacology, vol.12, issue.01, pp.73-82, 2009.
DOI : 10.1017/S1461145708008997

P. Gaspar, O. Cases, and L. Maroteaux, The developmental role of serotonin: news from mouse molecular genetics, Nature Reviews Neuroscience, vol.17, issue.12, pp.1002-1012, 1038.
DOI : 10.1038/nrn1256

URL : https://hal.archives-ouvertes.fr/hal-01274960

S. Gentile, Clinical Utilization of Atypical Antipsychotics in Pregnancy and Lactation, Annals of Pharmacotherapy, vol.41, issue.9, 2004.
DOI : 10.1111/j.1365-2125.1978.tb01639.x

S. Gentile, SSRIs in Pregnancy and Lactation, CNS Drugs, vol.17, issue.2, pp.623-633, 2005.
DOI : 10.2165/00023210-200519070-00004

S. Gentile, A. Rossi, and C. Bellantuono, SSRIs during breastfeeding: spotlight on milk-to-plasma ratio, Archives of Women's Mental Health, vol.172, issue.3, pp.39-51, 2007.
DOI : 10.1007/s00737-007-0173-0

J. R. Homberg, D. Schubert, and P. Gaspar, New perspectives on the neurodevelopmental effects of SSRIs, Trends in Pharmacological Sciences, vol.31, issue.2, pp.60-65, 2010.
DOI : 10.1016/j.tips.2009.11.003

H. Ishiwata, T. Shiga, and N. Okado, Selective serotonin reuptake inhibitor treatment of early postnatal mice reverses their prenatal stress-induced brain dysfunction, Neuroscience, vol.133, issue.4, pp.893-901, 2005.
DOI : 10.1016/j.neuroscience.2005.03.048

N. N. Karpova, J. Lindholm, P. Pruunsild, T. Timmusk, and E. Castren, Long-lasting behavioural and molecular alterations induced by early postnatal fluoxetine exposure are restored by chronic fluoxetine treatment in adult mice, European Neuropsychopharmacology, vol.19, issue.2, pp.97-108, 2009.
DOI : 10.1016/j.euroneuro.2008.09.002

V. Kiryanova, B. B. Mcallister, and R. H. Dyck, Long-term outcomes of developmental exposure to fluoxetine: a review of the animal literature, Dev Neurosci, vol.35, issue.6, pp.437-439, 2013.

L. Knaepen, I. Rayen, T. D. Charlier, M. Fillet, V. Houbart et al., Developmental fluoxetine exposure normalizes the long-term effects of maternal stress on postoperative pain in Sprague-Dawley rat offspring, PLoS One, vol.8, issue.2, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01122060

J. H. Kristensen, K. F. Ilett, L. P. Hackett, P. Yapp, M. Paech et al., Distribution and excretion of fluoxetine and norfluoxetine in human milk, British Journal of Clinical Pharmacology, vol.53, issue.4, pp.521-527, 1999.
DOI : 10.1046/j.1365-2125.1999.00040.x

K. Laine, T. Heikkinen, U. Ekblad, and P. Kero, Effects of Exposure to Selective Serotonin Reuptake Inhibitors During Pregnancy on Serotonergic Symptoms in Newborns and Cord Blood Monoamine and Prolactin Concentrations, Archives of General Psychiatry, vol.60, issue.7, p.720, 2003.
DOI : 10.1001/archpsyc.60.7.720

L. J. Lee, Neonatal Fluoxetine Exposure Affects the Neuronal Structure in the Somatosensory Cortex and Somatosensory-Related Behaviors in Adolescent Rats, Neurotoxicity Research, vol.425, issue.4, pp.12640-12649, 2009.
DOI : 10.1007/s12640-009-9022-4

B. Leuner, P. J. Fredericks, C. Nealer, and C. Albin-brooks, Chronic Gestational Stress Leads to Depressive-Like Behavior and Compromises Medial Prefrontal Cortex Structure and Function during the Postpartum Period, PLoS ONE, vol.3, issue.2, 2014.
DOI : 10.1371/journal.pone.0089912.t001

S. F. Lisboa, P. E. Oliveira, L. C. Costa, E. J. Venancio, and E. G. Moreira, Behavioral Evaluation of Male and Female Mice Pups Exposed to Fluoxetine during Pregnancy and Lactation, Pharmacology, vol.80, issue.1, 2007.
DOI : 10.1159/000103097

H. Malm, Prenatal Exposure to Selective Serotonin Reuptake Inhibitors and Infant Outcome, Therapeutic Drug Monitoring, vol.34, issue.6, pp.607-614, 2012.
DOI : 10.1097/FTD.0b013e31826d07ea

K. Martinowich, H. Manji, and B. Lu, New insights into BDNF function in depression and anxiety, Nature Neuroscience, vol.102, issue.9, 2007.
DOI : 10.1038/nn1971

R. Molteni, A. Cattaneo, F. Calabrese, F. Macchi, J. D. Olivier et al., Reduced function of the serotonin transporter is associated with decreased expression of BDNF in rodents as well as in humans, Neurobiology of Disease, vol.37, issue.3, pp.747-755, 2010.
DOI : 10.1016/j.nbd.2009.12.014

J. P. Mostert, M. W. Koch, M. Heerings, D. J. Heersema, and J. De-keyser, Therapeutic Potential of Fluoxetine in Neurological Disorders, CNS Neuroscience & Therapeutics, vol.4, issue.2, 2008.
DOI : 10.1016/j.neulet.2004.10.009

M. Nagano, M. Liu, H. Inagaki, T. Kawada, and H. Suzuki, Early intervention with fluoxetine reverses abnormalities in the serotonergic system and behavior of rats exposed prenatally to dexamethasone, Neuropharmacology, vol.63, issue.2, pp.292-300, 2012.
DOI : 10.1016/j.neuropharm.2012.03.027

E. W. Neeley, R. Berger, J. I. Koenig, and S. Leonard, Prenatal stress differentially alters brain-derived neurotrophic factor expression and signaling across rat strains, Neuroscience, vol.187, issue.11, pp.24-35, 2011.
DOI : 10.1016/j.neuroscience.2011.03.065

C. W. Noorlander, F. F. Ververs, P. G. Nikkels, C. J. Van-echteld, G. H. Visser et al., Modulation of serotonin transporter function during fetal development causes dilated heart cardiomyopathy and lifelong behavioral abnormalities, PLoS ONE, vol.3, issue.7, 2008.

O. 'mahony, S. M. Myint, A. M. Van-den-hove, D. Desbonnet, L. Steinbusch et al., Gestational stress leads to depressive-like behavioural and immunological changes in the rat, Neuroimmunomodulation, vol.13, issue.2, pp.82-88, 1159.

T. F. Oberlander, J. A. Gingrich, and M. S. Ansorge, Sustained Neurobehavioral Effects of Exposure to SSRI Antidepressants During Development: Molecular to Clinical Evidence, Clinical Pharmacology & Therapeutics, vol.48, issue.6, pp.672-677, 0201.
DOI : 10.1038/sj.mp.4002007

T. F. Oberlander, M. Papsdorf, U. M. Brain, S. Misri, C. Ross et al., Prenatal Effects of Selective Serotonin Reuptake Inhibitor Antidepressants, Serotonin Transporter Promoter Genotype (SLC6A4), and Maternal Mood on Child Behavior at 3 Years of Age, Archives of Pediatrics & Adolescent Medicine, vol.164, issue.5, pp.444-451, 2010.
DOI : 10.1001/archpediatrics.2010.51

T. F. Oberlander, P. Reebye, S. Misri, M. Papsdorf, J. Kim et al., Externalizing and Attentional Behaviors in Children of Depressed Mothers Treated With a Selective Serotonin Reuptake Inhibitor Antidepressant During Pregnancy, Archives of Pediatrics & Adolescent Medicine, vol.161, issue.1, pp.22-29, 2007.
DOI : 10.1001/archpedi.161.1.22

T. F. Oberlander, W. Warburton, S. Misri, J. Aghajanian, and C. Hertzman, Neonatal Outcomes After Prenatal Exposure to Selective Serotonin Reuptake Inhibitor Antidepressants and Maternal Depression Using Population-Based Linked Health Data, Archives of General Psychiatry, vol.63, issue.8, pp.63-898, 2006.
DOI : 10.1001/archpsyc.63.8.898

E. Oliveira, C. R. Pinheiro, A. P. Santos-silva, I. H. Trevenzoli, Y. Abreu-villaca et al., Nicotine exposure affects mother's and pup's nutritional, biochemical, and hormonal profiles during lactation in rats, Journal of Endocrinology, vol.205, issue.2, pp.159-170, 2010.
DOI : 10.1677/JOE-09-0430

J. R. Homberg, Fluoxetine administration to pregnant rats increases anxiety-related behavior in the offspring, Psychopharmacology (Berl), 2011.

N. Onishchenko, N. Karpova, F. Sabri, E. Castren, and S. Ceccatelli, Long-lasting depressionlike behavior and epigenetic changes of BDNF gene expression induced by perinatal exposure to methylmercury, J Neurochem, vol.106, issue.3, 2008.

G. N. Pandey, X. Ren, H. S. Rizavi, R. R. Conley, R. C. Roberts et al., Brain-derived neurotrophic factor and tyrosine kinase B receptor signalling in post-mortem brain of teenage suicide victims, The International Journal of Neuropsychopharmacology, vol.11, issue.08, pp.1047-1061, 2008.
DOI : 10.1017/S1461145708009000

J. L. Pawluski, Perinatal Selective Serotonin Reuptake Inhibitor Exposure: Impact on Brain Development and Neural Plasticity, Neuroendocrinology, vol.95, issue.1, pp.39-46, 2012.
DOI : 10.1159/000329293

J. L. Pawluski, T. D. Charlier, S. E. Lieblich, G. L. Hammond, and L. A. Galea, Reproductive experience alters corticosterone and CBG levels in the rat dam, Physiology & Behavior, vol.96, issue.1, pp.31-938400277, 2008.
DOI : 10.1016/j.physbeh.2008.09.004

J. L. Pawluski, L. A. Galea, U. Brain, M. Papsdorf, and T. F. Oberlander, Neonatal S100B Protein Levels After Prenatal Exposure to Selective Serotonin Reuptake Inhibitors, PEDIATRICS, vol.124, issue.4, 2009.
DOI : 10.1542/peds.2009-0442

T. D. Charlier, Developmental fluoxetine exposure differentially alters central and peripheral measures of the HPA system in adolescent male and female offspring, Neuroscience, vol.doi, pp.306-4522, 2012.

I. Pereira-figueiredo, C. Sancho, J. Carro, O. Castellano, and D. E. Lopez, The effects of sertraline administration from adolescence to adulthood on physiological and emotional development in prenatally stressed rats of both sexes, Frontiers in Behavioral Neuroscience, vol.3, 2014.
DOI : 10.1371/journal.pone.0002170

D. Popa, C. Lena, C. Alexandre, and J. Adrien, Lasting Syndrome of Depression Produced by Reduction in Serotonin Uptake during Postnatal Development: Evidence from Sleep, Stress, and Behavior, Journal of Neuroscience, vol.28, issue.14, 2008.
DOI : 10.1523/JNEUROSCI.4006-07.2008

P. Pruunsild, A. Kazantseva, T. Aid, K. Palm, and T. Timmusk, Dissecting the human BDNF locus: Bidirectional transcription, complex splicing, and multiple promoters, Genomics, vol.90, issue.3, pp.397-406, 2007.
DOI : 10.1016/j.ygeno.2007.05.004

J. Rampono, S. Proud, L. P. Hackett, J. H. Kristensen, and K. F. Ilett, A pilot study of newer antidepressant concentrations in cord and maternal serum and possible effects in the neonate, The International Journal of Neuropsychopharmacology, vol.7, issue.3, pp.329-334, 2004.
DOI : 10.1017/S1461145704004286

I. Rayen, M. Gemmel, G. Pauley, H. W. Steinbusch, and J. L. Pawluski, Developmental exposure to SSRIs, in addition to maternal stress, has long-term sex-dependent effects on hippocampal plasticity, Psychopharmacology, vol.3, issue.Suppl 1, pp.1231-1244, 2015.
DOI : 10.1007/s00213-014-3758-0

I. Rayen, H. W. Steinbusch, T. D. Charlier, and J. L. Pawluski, Developmental fluoxetine exposure and prenatal stress alter sexual differentiation of the brain and reproductive behavior in male rat offspring, Psychoneuroendocrinology, vol.38, issue.9, pp.306-453000012, 2013.
DOI : 10.1016/j.psyneuen.2013.01.007

URL : https://hal.archives-ouvertes.fr/hal-01122065

I. Rayen, H. W. Steinbusch, T. D. Charlier, and J. L. Pawluski, Developmental fluoxetine exposure facilitates sexual behavior in female offspring, Psychopharmacology, vol.7, issue.1, pp.123-133, 2014.
DOI : 10.1007/s00213-013-3215-5

URL : https://hal.archives-ouvertes.fr/hal-01122028

I. Rayen, D. L. Van-den-hove, J. Prickaerts, H. W. Steinbusch, and J. L. Pawluski, Fluoxetine during Development Reverses the Effects of Prenatal Stress on Depressive-Like Behavior and Hippocampal Neurogenesis in Adolescence, PLoS ONE, vol.60, issue.9, 2011.
DOI : 10.1371/journal.pone.0024003.t002

O. Rivero, S. Sich, S. Popp, A. Schmitt, B. Franke et al., Impact of the ADHDsusceptibility gene CDH13 on development and function of brain networks, Research Support, Non- U.S. Gov'tReview]. European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology, pp.492-507, 2013.

M. Roceri, W. Hendriks, G. Racagni, B. A. Ellenbroek, and M. A. Riva, Early maternal deprivation reduces the expression of BDNF and NMDA receptor subunits in rat hippocampus, Molecular Psychiatry, vol.7, issue.6, pp.609-616, 2002.
DOI : 10.1038/sj.mp.4001036

H. J. Romijn, M. A. Hofman, and A. Gramsbergen, At what age is the developing cerebral cortex of the rat comparable to that of the full-term newborn human baby?, Early Human Development, vol.26, issue.1, pp.61-67, 1991.
DOI : 10.1016/0378-3782(91)90044-4

L. A. Smit-rigter, C. W. Noorlander, L. Von-oerthel, P. Chameau, M. P. Smidt et al., Prenatal fluoxetine exposure induces life-long serotonin 5-HT3 receptor-dependent cortical abnormalities and anxiety-like behaviour, Neuropharmacology, vol.62, issue.2, pp.865-870, 2012.
DOI : 10.1016/j.neuropharm.2011.09.015

J. W. Smith, J. R. Seckl, A. T. Evans, B. Costall, and J. W. Smythe, Gestational stress induces post-partum depression-like behaviour and alters maternal care in rats, Psychoneuroendocrinology, vol.29, issue.2, pp.29-227, 2004.
DOI : 10.1016/S0306-4530(03)00025-8

E. Strackx, D. L. Van-den-hove, J. Prickaerts, L. Zimmermann, H. W. Steinbusch et al., Fetal asphyctic preconditioning protects against perinatal asphyxia-induced behavioral consequences in adulthood, Behavioural Brain Research, vol.208, issue.2, pp.343-351, 2009.
DOI : 10.1016/j.bbr.2009.11.040

L. V. Toffoli, G. M. Rodrigues, . Jr, J. F. Oliveira, A. S. Silva et al., Maternal exposure to fluoxetine during gestation and lactation affects the DNA methylation programming of rat's offspring: Modulation by folic acid supplementation, Behavioural Brain Research, vol.265, pp.142-147, 2014.
DOI : 10.1016/j.bbr.2014.02.031

N. M. Tsankova, O. Berton, W. Renthal, A. Kumar, R. L. Neve et al., Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action, Nature Neuroscience, vol.140, issue.4, pp.519-525, 1038.
DOI : 10.1038/nn1659

D. L. Van-den-hove, C. E. Blanco, B. Aendekerk, L. Desbonnet, M. Bruschettini et al., Prenatal Restraint Stress and Long-Term Affective Consequences, Developmental Neuroscience, vol.27, issue.5, pp.313-320, 2005.
DOI : 10.1159/000086711

H. W. Steinbusch, Prenatal maternal paroxetine treatment and neonatal mortality in the rat: a preliminary study, Neonatology, vol.93, issue.1, 2008.

J. Prickaerts, Vulnerability versus resilience to prenatal stress in male and female rats; Implications from gene expression profiles in the hippocampus and frontal cortex, Eur Neuropsychopharmacol, vol.doi, pp.924-977, 2013.

D. L. Van-den-hove, H. W. Steinbusch, A. Scheepens, W. D. Van-de-berg, L. A. Kooiman et al., Prenatal stress and neonatal rat brain development, Neuroscience, vol.137, issue.1, pp.145-155, 2006.
DOI : 10.1016/j.neuroscience.2005.08.060

I. L. Ward and J. Weisz, Differential Effects of Maternal Stress on Circulating Levels of Corticosterone, Progesterone, and Testosterone in Male and Female Rat Fetuses and Their Mothers*, Endocrinology, vol.114, issue.5, pp.1635-1644, 1984.
DOI : 10.1210/endo-114-5-1635

M. Weinstock, The long-term behavioural consequences of prenatal stress, Neuroscience & Biobehavioral Reviews, vol.32, issue.6, pp.1073-1086, 2008.
DOI : 10.1016/j.neubiorev.2008.03.002