D. Hanahan and R. A. Weinberg, Hallmarks of Cancer: The Next Generation, Cell, vol.144, issue.5, pp.646-674, 2011.
DOI : 10.1016/j.cell.2011.02.013

Y. Ma and L. M. Hendershot, The role of the unfolded protein response in tumour development: friend or foe?, Nature Reviews Cancer, vol.10, issue.12, pp.966-977, 2004.
DOI : 10.1016/j.neuint.2004.01.003

D. Ruggero, Translational control in cancer etiology. Cold Spring Harbor perspectives in biology 5, 2013.

N. Dejeans, Addicted to secrete ??? novel concepts and targets in cancer therapy, Trends in Molecular Medicine, vol.20, issue.5, pp.242-250, 2014.
DOI : 10.1016/j.molmed.2013.12.003

C. Hetz, The unfolded protein response: controlling cell fate decisions under ER stress and beyond, Nature Reviews Molecular Cell Biology, vol.22, pp.89-102, 2012.
DOI : 10.1038/nrm3270

H. J. Clarke, Endoplasmic Reticulum Stress in Malignancy, Cancer Cell, vol.25, issue.5, 2014.
DOI : 10.1016/j.ccr.2014.03.015

M. Bi, ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth, The EMBO Journal, vol.162, issue.19, pp.3470-3481, 2005.
DOI : 10.1038/sj.emboj.7600777

J. D. Blais, Perk-Dependent Translational Regulation Promotes Tumor Cell Adaptation and Angiogenesis in Response to Hypoxic Stress, Molecular and Cellular Biology, vol.26, issue.24, pp.9517-9532, 2006.
DOI : 10.1128/MCB.01145-06

A. S. Lee, Glucose-regulated proteins in cancer: molecular mechanisms and therapeutic potential, Nature Reviews Cancer, vol.5, issue.4, pp.263-276, 2014.
DOI : 10.1038/nrc3701

A. S. Lee, GRP78 Induction in Cancer: Therapeutic and Prognostic Implications, Cancer Research, vol.67, issue.8, pp.3496-3499, 2007.
DOI : 10.1158/0008-5472.CAN-07-0325

E. Chevet, Endoplasmic Reticulum Stress-Activated Cell Reprogramming in Oncogenesis Cancer discovery 12 ER proteostasis addiction in cancer biology: Novel concepts Proteostasis control by the unfolded protein response, Seminars in cancer biology 13 Hetz, pp.829-838, 2015.

E. Dufey, Cellular Mechanisms of Endoplasmic Reticulum Stress Signaling in Health and Disease. 1. An overview, AJP: Cell Physiology, vol.307, issue.7, pp.582-594, 2014.
DOI : 10.1152/ajpcell.00258.2014

C. Hetz, Targeting the unfolded protein response in disease, Nature Reviews Drug Discovery, vol.11, issue.9, pp.703-719, 2013.
DOI : 10.1038/nrd3976

Y. Lu, A Synthetic Biology Approach Identifies the Mammalian UPR RNA Ligase RtcB, Molecular Cell, vol.55, issue.5, pp.758-770, 2014.
DOI : 10.1016/j.molcel.2014.06.032

P. Walter and D. Ron, The Unfolded Protein Response: From Stress Pathway to Homeostatic Regulation, Science, vol.334, issue.6059, pp.1081-1086, 2011.
DOI : 10.1126/science.1209038

M. Maurel, Getting RIDD of RNA: IRE1 in cell fate regulation, Trends in Biochemical Sciences, vol.39, issue.5, pp.245-254, 2014.
DOI : 10.1016/j.tibs.2014.02.008

H. Urra, When ER stress reaches a dead end CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum, Biochim Biophys Acta Genes Dev, vol.20, issue.18, pp.3066-3077, 2004.

P. Tsaytler, Selective Inhibition of a Regulatory Subunit of Protein Phosphatase 1 Restores Proteostasis, Science, vol.332, issue.6025, pp.91-94, 2011.
DOI : 10.1126/science.1201396

D. W. Reid, The Unfolded Protein Response Triggers Selective mRNA Release from the Endoplasmic Reticulum, Cell, vol.158, issue.6, pp.1362-1374, 2014.
DOI : 10.1016/j.cell.2014.08.012

C. Denoyelle, Anti-oncogenic role of the endoplasmic reticulum differentially activated by mutations in the MAPK pathway, Nature Cell Biology, vol.275, issue.10, pp.1053-1063, 2006.
DOI : 10.1158/0008-5472.CAN-05-3092

A. L. Huber, (IPK)-mediated attenuation of the proapoptotic PERK-CHOP pathway allows malignant progression upon low glucose, Mol Cell, vol.49, pp.58-1049, 2013.

S. B. Cullinan, Nrf2 Is a Direct PERK Substrate and Effector of PERK-Dependent Cell Survival, Molecular and Cellular Biology, vol.23, issue.20, pp.7198-7209, 2003.
DOI : 10.1128/MCB.23.20.7198-7209.2003

D. Vecchio and C. A. , De-differentiation confers multidrug resistance via noncanonical PERK-Nrf2 signaling ER stress potentiates insulin resistance through PERK-mediated FOXO phosphorylation, PLoS Biol Genes Dev, vol.12, issue.27, pp.441-449, 2013.

D. Pytel, Tumor progression and the different faces of the PERK kinase, Oncogene, vol.485, issue.10, 2015.
DOI : 10.1182/blood-2005-08-3531

C. Atkins, Characterization of a Novel PERK Kinase Inhibitor with Antitumor and Antiangiogenic Activity, Cancer Research, vol.73, issue.6, 1993.
DOI : 10.1158/0008-5472.CAN-12-3109

J. M. Axten, ]pyrimidin-4-amine (GSK2606414), a Potent and Selective First-in-Class Inhibitor of Protein Kinase R (PKR)-like Endoplasmic Reticulum Kinase (PERK), Journal of Medicinal Chemistry, vol.55, issue.16, pp.7193-7207, 2012.
DOI : 10.1021/jm300713s

O. Pluquet, Posttranscriptional Regulation of PER1 Underlies the Oncogenic Function of IRE??, Cancer Research, vol.73, issue.15, pp.4732-4743, 2013.
DOI : 10.1158/0008-5472.CAN-12-3989

X. Chen, XBP1 promotes triple-negative breast cancer by controlling the HIF1?? pathway, Nature, vol.365, issue.7494, pp.103-107, 2014.
DOI : 10.1038/nature13119

K. Masouleh and B. , Mechanistic rationale for targeting the unfolded protein response in pre-B acute lymphoblastic leukemia, Proceedings of the National Academy of Sciences, vol.111, issue.21, pp.2219-2228, 2014.
DOI : 10.1073/pnas.1400958111

D. R. Carrasco, The Differentiation and Stress Response Factor XBP-1 Drives Multiple Myeloma Pathogenesis, Cancer Cell, vol.11, issue.4, pp.349-360, 2007.
DOI : 10.1016/j.ccr.2007.02.015

M. Nakamura, Activation of the endoplasmic reticulum stress pathway is associated with survival of myeloma cells, Leukemia & Lymphoma, vol.15, issue.3, pp.531-539, 2006.
DOI : 10.1074/jbc.M300923200

N. Mimura, Blockade of XBP1 splicing by inhibition of IRE1?? is a promising therapeutic option in multiple myeloma, Blood, vol.119, issue.24, pp.5772-5781, 2012.
DOI : 10.1182/blood-2011-07-366633

I. Papandreou, Identification of an Ire1alpha endonuclease specific inhibitor with cytotoxic activity against human multiple myeloma, Blood, vol.117, issue.4, pp.1311-1314, 2011.
DOI : 10.1182/blood-2010-08-303099

M. Ri, Identification of Toyocamycin, an agent cytotoxic for multiple myeloma cells, as a potent inhibitor of ER stress-induced XBP1 mRNA splicing Patterns of somatic mutation in human cancer genomes, Blood cancer journal Nature, vol.2, issue.446, pp.153-158, 2007.

R. Ghosh, Allosteric Inhibition of the IRE1?? RNase Preserves Cell Viability and Function during Endoplasmic Reticulum Stress, Cell, vol.158, issue.3, pp.534-548, 2014.
DOI : 10.1016/j.cell.2014.07.002

Z. Xue, A Conserved Structural Determinant Located at the Interdomain Region of Mammalian Inositol-requiring Enzyme 1??, Journal of Biological Chemistry, vol.286, issue.35, pp.30859-30866, 2011.
DOI : 10.1074/jbc.M111.273714

A. N. Shajahan, The role of X-box binding protein-1 in tumorigenicity, Drug News & Perspectives, vol.22, issue.5, pp.241-246, 2009.
DOI : 10.1358/dnp.2009.22.5.1378631

G. Auf, Inositol-requiring enzyme 1?? is a key regulator of angiogenesis and invasion in malignant glioma, Proceedings of the National Academy of Sciences, vol.107, issue.35, pp.15553-15558, 2010.
DOI : 10.1073/pnas.0914072107

N. Dejeans, Autocrine control of glioma cells adhesion and migration through IRE1??-mediated cleavage of SPARC mRNA, Journal of Cell Science, vol.125, issue.18, pp.4278-4287, 2012.
DOI : 10.1242/jcs.099291

D. Jiang, Targeting the IRE1?????XBP1 branch of the unfolded protein response in human diseases, Seminars in Cancer Biology, vol.33, pp.48-56, 2015.
DOI : 10.1016/j.semcancer.2015.04.010

R. K. Jain, Molecular regulation of vessel maturation, Nature Medicine, vol.9, issue.6, pp.685-693, 2003.
DOI : 10.1038/nm0603-685

E. R. Pereira, Transcriptional and Post-Transcriptional Regulation of Proangiogenic Factors by the Unfolded Protein Response, PLoS ONE, vol.57, issue.9, 2010.
DOI : 10.1371/journal.pone.0012521.s008

F. Binet and P. Sapieha, ER Stress and Angiogenesis, Cell Metabolism, vol.22, issue.4, pp.560-575, 2015.
DOI : 10.1016/j.cmet.2015.07.010

Y. Wang, The Unfolded Protein Response Induces the Angiogenic Switch in Human Tumor Cells through the PERK/ATF4 Pathway, Cancer Research, vol.72, issue.20, pp.5396-5406, 2012.
DOI : 10.1158/0008-5472.CAN-12-0474

L. Zeng, Vascular Endothelial Cell Growth-Activated XBP1 Splicing in Endothelial Cells Is Crucial for Angiogenesis, Circulation, vol.127, issue.16, pp.1712-1722, 2013.
DOI : 10.1161/CIRCULATIONAHA.112.001337

E. Karali, VEGF Signals through ATF6 and PERK to Promote Endothelial Cell Survival and Angiogenesis in the Absence of ER Stress, Molecular Cell, vol.54, issue.4, pp.559-572, 2014.
DOI : 10.1016/j.molcel.2014.03.022

E. R. Pereira, Endoplasmic Reticulum (ER) Stress and Hypoxia Response Pathways Interact to Potentiate Hypoxia-inducible Factor 1 (HIF-1) Transcriptional Activity on Targets Like Vascular Endothelial Growth Factor (VEGF), Journal of Biological Chemistry, vol.289, issue.6, pp.3352-3364, 2014.
DOI : 10.1074/jbc.M113.507194

H. Urra and C. Hetz, A Novel ER Stress-Independent Function of the UPR in Angiogenesis, Molecular Cell, vol.54, issue.4, pp.542-544, 2014.
DOI : 10.1016/j.molcel.2014.05.013

N. R. Mahadevan, Transmission of endoplasmic reticulum stress and pro-inflammation from tumor cells to myeloid cells, Proceedings of the National Academy of Sciences, vol.108, issue.16, pp.6561-6566, 2011.
DOI : 10.1073/pnas.1008942108

N. R. Mahadevan, Cell-extrinsic effects of tumor ER stress imprint myeloid dendritic cells and impair CD8(+) T cell priming Control of systemic proteostasis by the nervous system, PLoS One Trends Cell Biol, vol.7, issue.25, pp.1-10, 2012.

N. N. Iwakoshi, The transcription factor XBP-1 is essential for the development and survival of dendritic cells, The Journal of Experimental Medicine, vol.96, issue.10, pp.2267-2275, 2007.
DOI : 10.1038/384474a0

F. Osorio, The unfolded-protein-response sensor IRE-1?? regulates the function of CD8??+ dendritic cells, Nature Immunology, vol.204, issue.3, pp.248-257, 2014.
DOI : 10.1126/science.1158042

J. R. Cubillos-ruiz, ER Stress Sensor XBP1 Controls Anti-tumor Immunity by Disrupting Dendritic Cell Homeostasis, Cell, vol.161, issue.7, pp.1527-1538, 2015.
DOI : 10.1016/j.cell.2015.05.025

P. T. Thevenot, The Stress-Response Sensor Chop Regulates the Function and Accumulation of Myeloid-Derived Suppressor Cells in Tumors, Immunity, vol.41, issue.3, pp.389-401, 2014.
DOI : 10.1016/j.immuni.2014.08.015

J. A. Aguirre-ghiso, Models, mechanisms and clinical evidence for cancer dormancy, Nature Reviews Cancer, vol.20, issue.11, pp.834-846, 2007.
DOI : 10.1038/nrc2256

D. Paez, Cancer dormancy: a model of early dissemination and late cancer recurrence. Clinical cancer research : an official journal of the American Association for, Cancer Research, vol.18, pp.645-653, 2012.

M. A. Ginos, Identification of a Gene Expression Signature Associated with Recurrent Disease in Squamous Cell Carcinoma of the Head and Neck, Cancer Research, vol.64, issue.1, pp.55-63, 2004.
DOI : 10.1158/0008-5472.CAN-03-2144

Y. H. Lin, Multiple gene expression classifiers from different array platforms predict poor prognosis of colorectal cancer. Clinical cancer research : an official journal of the American Association for, Cancer Research, vol.13, pp.498-507, 2007.

S. Ramaswamy, Multiclass cancer diagnosis using tumor gene expression signatures, Proceedings of the National Academy of Sciences, vol.98, issue.26, pp.15149-15154, 2001.
DOI : 10.1073/pnas.211566398

D. M. Schewe and J. A. Aguirre-ghiso, ATF6alpha-Rheb-mTOR signaling promotes survival of dormant tumor cells in vivo, Proc Natl Acad Sci, vol.105, 2008.

M. Arai, Transformation-associated gene regulation by ATF6?? during hepatocarcinogenesis, FEBS Letters, vol.63, issue.1, pp.184-190, 2006.
DOI : 10.1016/j.febslet.2005.11.072

A. Higa, Endoplasmic Reticulum Stress-Activated Transcription Factor ATF6?? Requires the Disulfide Isomerase PDIA5 To Modulate Chemoresistance, Molecular and Cellular Biology, vol.34, issue.10, pp.1839-1849, 2014.
DOI : 10.1128/MCB.01484-13

J. Thorpe and S. R. Schwarze, IRE1?? controls cyclin A1 expression and promotes cell proliferation through XBP-1, Cell Stress and Chaperones, vol.80, issue.130???131, pp.497-508, 2010.
DOI : 10.1007/s12192-009-0163-4

J. W. Brewer and J. A. Diehl, PERK mediates cell-cycle exit during the mammalian unfolded protein response, Proceedings of the National Academy of Sciences, vol.97, issue.23, pp.12625-12630, 2000.
DOI : 10.1073/pnas.220247197

A. C. Ranganathan, Functional Coupling of p38-Induced Up-regulation of BiP and Activation of RNA-Dependent Protein Kinase-Like Endoplasmic Reticulum Kinase to Drug Resistance of Dormant Carcinoma Cells, Cancer Research, vol.66, issue.3, pp.1702-1711, 2006.
DOI : 10.1158/0008-5472.CAN-05-3092

L. Galluzzi, Immunological Effects of Conventional Chemotherapy and Targeted Anticancer Agents, Cancer Cell, vol.28, issue.6, pp.690-714, 2015.
DOI : 10.1016/j.ccell.2015.10.012

E. Bobrovnikova-marjon, PERK promotes cancer cell proliferation and tumor growth by limiting oxidative DNA damage, Oncogene, vol.58, issue.27, pp.3881-3895, 2010.
DOI : 10.1016/j.molcel.2005.07.019

K. A. Henry, The unfolded protein response is not necessary for the G1/S transition, but it is required for chromosome maintenance in Saccharomyces cerevisiae Anticancer drugs for the modulation of endoplasmic reticulum stress and oxidative stress, Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine, pp.5743-5752, 2010.

L. He, ATM blocks tunicamycin-induced endoplasmic reticulum stress, FEBS Letters, vol.27, issue.5, pp.903-908, 2009.
DOI : 10.1016/j.febslet.2009.02.002

N. Dioufa, p53 antagonizes the unfolded protein response and inhibits ground glass hepatocyte development during endoplasmic reticulum stress, Experimental Biology and Medicine, vol.1813, issue.10, pp.1173-1180
DOI : 10.1126/science.1092472

D. Acosta-alvear, XBP1 Controls Diverse Cell Type- and Condition-Specific Transcriptional Regulatory Networks, Molecular Cell, vol.27, issue.1, pp.53-66, 2007.
DOI : 10.1016/j.molcel.2007.06.011

A. B. Oromendia, Aneuploidy causes proteotoxic stress in yeast, Genes & Development, vol.26, issue.24, pp.2696-2708, 2012.
DOI : 10.1101/gad.207407.112

D. Zhang, Keeping up the balance: Role of HDACs in cardiac proteostasis and therapeutic implications for atrial fibrillation Proteostasis modulators prolong missense VHL protein activity and halt tumor progression, Cardiovascular research Cell reports, vol.81, issue.3, pp.52-59, 2013.

C. Boyault, HDAC6???p97/VCP controlled polyubiquitin chain turnover, The EMBO Journal, vol.22, issue.14, pp.3357-3366, 2006.
DOI : 10.1038/sj.emboj.7601210

E. Marza, Genome-wide screen identifies a novel p97/CDC-48-dependent pathway regulating ER-stress-induced gene transcription, EMBO reports, vol.16, issue.3, pp.332-340, 2015.
DOI : 10.15252/embr.201439123

URL : https://hal.archives-ouvertes.fr/hal-01163728

N. Dicks, Endoplasmic Reticulum Stress, Genome Damage, and Cancer, Frontiers in Oncology, vol.73, issue.16, p.11, 2015.
DOI : 10.1038/onc.2014.27

A. W. Schram, A dual role for SAGA-associated factor 29 (SGF29) in ER stress survival by coordination of both histone H3 acetylation and histone H3 lysine-4 trimethylation Epithelial-to-mesenchymal transition activates PERK-eIF2alpha and sensitizes cells to endoplasmic reticulum stress, PLoS One Cancer discovery, vol.8, issue.4, pp.702-715, 2013.

N. Sheshadri, SCCA1/SERPINB3 Promotes Oncogenesis and Epithelial-Mesenchymal Transition via the Unfolded Protein Response and IL6 Signaling, Cancer Research, vol.74, issue.21, pp.6318-6329, 2014.
DOI : 10.1158/0008-5472.CAN-14-0798

K. M. Rouschop, The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5, Journal of Clinical Investigation, vol.120, issue.1, pp.127-141, 2010.
DOI : 10.1172/JCI40027DS1

H. Mujcic, Hypoxic activation of the PERK/eIF2alpha arm of the unfolded protein response promotes metastasis through induction of LAMP3. Clinical cancer research : an official, journal of the American Association for Cancer Research, vol.19, pp.6126-6137, 2013.

A. Nagelkerke, Hypoxia stimulates migration of breast cancer cells via the PERK/ATF4/LAMP3-arm of the unfolded protein response Breast cancer research : BCR 15 Hypoxic regulation of the PERK/ATF4/LAMP3-arm of the unfolded protein response in head and neck squamous cell carcinoma Activating transcription factor 4 promotes esophageal squamous cell carcinoma invasion and metastasis in mice and is associated with poor prognosis in human patients The impact of the endoplasmic reticulum proteinfolding environment on cancer development, R2 91 Nagelkerke, pp.581-597, 2013.

S. Martin, Inducing apoptosis of cancer cells using small-molecule plant compounds that bind to GRP78, British Journal of Cancer, vol.2010, issue.2, pp.433-443, 2013.
DOI : 10.1002/pro.421

A. Prabhu, Targeting the Unfolded Protein Response in Glioblastoma Cells with the Fusion Protein EGF-SubA, PLoS ONE, vol.68, issue.12, p.52265, 2012.
DOI : 10.1371/journal.pone.0052265.s003

P. Pyrko, The Unfolded Protein Response Regulator GRP78/BiP as a Novel Target for Increasing Chemosensitivity in Malignant Gliomas, Cancer Research, vol.67, issue.20, pp.9809-9816, 2007.
DOI : 10.1158/0008-5472.CAN-07-0625

B. Drogat, IRE1 Signaling Is Essential for Ischemia-Induced Vascular Endothelial Growth Factor-A Expression and Contributes to Angiogenesis and Tumor Growth In vivo, Cancer Research, vol.67, issue.14, pp.6700-6707, 2007.
DOI : 10.1158/0008-5472.CAN-06-3235

A. Jabouille, Glioblastoma invasion and cooption depend on IRE1?? endoribonuclease activity, Oncotarget, vol.6, issue.28, pp.24922-24934, 2015.
DOI : 10.18632/oncotarget.4679

URL : https://hal.archives-ouvertes.fr/hal-01197351

X. Hou, PERK silence inhibits glioma cell growth under low glucose stress by blockage of p-AKT and subsequent HK2's mitochondria translocation, Scientific Reports, vol.21, p.9065, 2015.
DOI : 10.1038/srep09065

H. A. Hamed, OSU-03012 enhances Ad.7-induced GBM cell killing via ER stress and autophagy and by decreasing expression of mitochondrial protective proteins, Cancer Biology & Therapy, vol.9, issue.7, pp.526-536, 2010.
DOI : 10.4161/cbt.9.7.11116

A. Yacoub, PERK-Dependent Regulation of Ceramide Synthase 6 and Thioredoxin Play a Key Role in mda-7/IL-24-Induced Killing of Primary Human Glioblastoma Multiforme Cells, Cancer Research, vol.70, issue.3, pp.1120-1129, 2010.
DOI : 10.1158/0008-5472.CAN-09-4043

D. Y. Dadey, The ATF6 pathway of the ER stress response contributes to enhanced viability in glioblastoma Genome-wide CRISPR-Cas9 Screens Reveal Loss of Redundancy between PKMYT1 and WEE1 in Glioblastoma Stem-like Cells, Oncotarget Cell reports, vol.103, issue.13, pp.2425-2439, 2015.