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Synchronized Diffusive Wave Spectroscopy: Principle and Application to Sound
Propagation in Aqueous Foams

Jérôme Crassous,∗ Patrick Chasle, Juliette Pierre, Arnaud Saint-Jalmes, and Benjamin Dollet
Institut de Physique de Rennes, UMR CNRS 6251, Université de Rennes 1,

Campus de Beaulieu, F-35042 RENNES Cedex, France
(Dated: January 18, 2016)

We present an experimental method to measure oscillatory strains in turbid material. The material
is illuminated with a laser, and the speckle patterns are recorded. The analysis of the deformations
of the optical pathlength shows that the speckle patterns are modulated at the strain frequency.
By recording those patterns synchronously with the strain source, we are able to measure the
amplitude and the phase of the strain. This method is tested on the specific case of an aqueous foam
where an acoustic wave propagates. The effects of material internal dynamics and of heterogeneous
deformations are also discussed.

PACS numbers: 42.25.Dd Wave propagation in random media, 78.35.+c Brillouin and Rayleigh scattering;
other light scattering, 62.20.F- Deformation and plasticity 83.80.Iz Emulsions and foams

I. INTRODUCTION

Soft materials are commonly used in the food, cosmet-
ics and pharmaceutical industries; this is in part due to
the wide range of texture and rheology which can be en-
countered when dealing with gels, pastes, concentrated
colloidal solutions, foams or emulsions. Together with
these mechanical aspects, the ability to encapsulate and
deliver chemicals provides some increased interest in such
materials. As well, the non-trivial and often dispersive
nature of wave propagation in such materials is also an-
other specificity which can be optimized to get original
thermal or acoustical macroscopic properties. The draw-
backs of such a high potentiality in applications are the
structural and dynamical complexity of such soft mate-
rials; they are disordered, often opaque, and generally
driven in a out-of-equilibrium state as they are formed.
This results in time evolution (aging) and complex intrin-
sic dynamical mechanisms, with possible intermittency
and heterogeneity in space and time. Understanding
these evolutions inside the materials remains a generic
and important issue. It is for instance important to de-
termine the microscopic origins of the intrinsic rearrange-
ments, and how they can be coupled and superimposed
onto rearrangements induced by external forcing. As
well, transport properties and wave propagation in such
disordered and amorphous materials need to be investi-
gated, both on fundamental and practical standpoints.
Numerous techniques to scan these materials have been
developed, especially light scattering methods, taking ad-
vantage of being non-intrusive. When dealing with turbid
media, diffusive wave spectroscopy (DWS) is well suited,
as it can monitor the internal dynamics in highly diffu-
sive samples [1, 2]. This technique has been improved in
different ways to better resolve the space and time fluc-
tuations, to reduce the measurement timescales, and to
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get more information on the homogeneity of the dynam-
ics [3–9]. Despite these improvements, the optimization
of existing light scattering methods or the design of new
ones remains an active axis of research.

As a typical example of soft, opaque and aging materi-
als, aqueous foams — dispersions of gas into a liquid —
have been used as model systems to test and demonstrate
the efficiency of DWS [10, 11]. With time, DWS actually
became a major tool for investigating foams and has pro-
vided important insights on foam properties at the scale
of the bubbles, especially when it was coupled to macro-
scopic rheology [12, 13]. However, and despite their wide
use in industries and active academic studies [14, 15], var-
ious issues on aqueous foams remain open. These pend-
ing problems mostly concern (i) the time destabilization
of a foam and how this can be controlled by the physico-
chemical parameters, and (ii) the rheology of foams and
its specificities when compared to other soft glassy ma-
terials. In that respect, new progress requires techniques
to follow how the bubble diameter D and the foam liq-
uid fraction φl evolve in time; in fact, as a consequence of
drainage and coarsening, these two crucial quantities can
hardly be kept constant, as the bubble diameter increases
with time and the initial liquid content of the foam de-
creases with time. Optical and electrical methods can be
used to monitor these aging effects, but the whole evo-
lution of D and φl can still not be simply inferred with
these techniques. More recently, the acoustic properties
of aqueous foams have also been widely investigated, with
the aim to design original methods to probe foam prop-
erties [16–21]. The propagation of sound in foams turns
out to be quite complex, with non-trivial effects, like
the occurrence of negative density [20]. Though promis-
ing, the experimental approach based on transducers add
also some experimental limitations due to the mismatch
of acoustic impedance between the transducer and the
foam; hence, the injected acoustic wave depends on the
foam properties itself. As a consequence, measuring all
the sound features into a foam remains tricky. As an
alternative, the direct measurement of the acoustic de-
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formation (amplitude and phase) at any given location
is another approach to extract the sound velocity and its
attenuation. Along this direction, we previously showed
that the acoustic deformation can be detected by DWS
[22]. This was a first attempt to use light scattering tech-
niques to investigate the sound propagation into a foam.

The method described in [22] allows only to obtain the
amplitude of the acoustic waves. The phase of the wave
may be obtained by synchronizing the acquisition of scat-
tered light with the acoustic signal. This has been done
by Wintzenrieth et al [23]. These authors used a method
based on the visibility of the speckle pattern [9]. The
variations of the phase difference between the beginning
of time integration and the harmonic excitation produces
a variation of the visibility. The relative phase between
the excitation and material deformation may then be ob-
tained.

Following those previous works, we propose here an-
other DWS experimental scheme where the deformation
amplitude and phase can be inferred from synchronized
measurements and the combination of four partial corre-
lation functions. The system chosen to make this proof
of concept consists in an aqueous foam, where the shear
arises from an acoustic forcing. This method is tested
on the acoustics propagation into a liquid foam and com-
pared to previous measurements.

In this article, we first describe this DWS scheme,
named ”Synchronized DWS”, and present the mathemat-
ical formalism — valid for any diffusive system under a
sinusoidal shear deformation — showing that the shear
amplitude and phase of this deformation can be derived
by measuring four different correlation functions, mon-
itored synchronously with the deformation. Then, we
explain how this can be tested by doing experiments on
foams under an acoustic forcing. Various results are pre-
sented, either at a given location for different imposed
amplitude and phase, or while scanning the foam as a
function of the distance from the source. Further exper-
imental tests, discussions and comparisons are given in
the last section.

II. SYNCHRONIZED DIFFUSING WAVE
SPECTROSCOPY

A. Principle of the method

Diffusing wave spectroscopy is a experimental tool
which has been successfully used for concentrated col-
loidal suspensions, emulsions, foams or granular materi-
als. The principle of DWS is to record multiply scat-
tered coherent light, and to monitor the time evolution
of this scattered light, in terms of correlation functions.
Shortly speaking, the correlation of the scattered inten-
sity arises from interference between many photon paths.
If a system is at rest, the interference pattern is frozen,
and the scattered intensity does not show temporal evo-
lution. If scatterers move inside the sample, interference

FIG. 1. (a) A sinusoidal shear of displacement γ. Time t0
is such that γ(t0) = 0. (b) Snapshots of a portion of optical
path (full line) on some scatterers (black circle). The zone is
periodically sheared and the path periodically deformed. (c)
Variation of a segment joining two points r and r + l∗e. A is
the displacement field of the scatterers.

pattern fluctuates, and the intensity correlation function
decreases with time. We consider here the case of a phys-
ical system of scatterers which is periodically sheared at
frequency T . We plot in Fig. 1a a sinusoidal shear defor-
mation. Fig. 1b shows an optical path joining some scat-
terers. Since they are displaced into the sheared zone,
the path is also periodically deformed. Let t0 be a time
at which the strain vanishes. The paths at times t0+T/4
and t0 + 3T/4 are symmetrically sheared. This shear in-
duce a phase shift along this ray, thus a loss of correlation
of the scattered light between these two times. The am-
plitude of the shear may then be related to this loss of
correlation. Because γ(t0) = γ(t0 + T/2), the paths at
times t0 and t0 + T/2 are identical. The system appears
frozen, and the intensity of the scattered line is perfectly
correlated. Hence, the time t0 may be deduced from the
maximum of correlation of speckle patterns acquired at
time t and t + T/2. The phase difference between the
shear at a given point of the material and the source of
the shear may then be estimated. Therefore, in principle,
by a synchronized monitoring at times t, t+T/4, t+T/2
and t+3T/4, one can derive the amplitude and the phase
of the deformation. The derivation of the relevant math-
ematical combinations allowing us to get these quantities
from the partial correlations is given below. The princi-
ple of parallel lock-in detection that we use is not new
and has been used in detection of ultrasonic modulation
such as described in [24, 25], but to our knowledge never
used with DWS.
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B. Link between the intensity correlation function
and material deformation

In the following, we note l∗ the transport mean free
path into the material, f = 1/T the frequency of the
strain modulation and ω = 2πf . The length of a photon
path into the sample is noted s. We consider here a par-
allel detection of the scattered light. For this a camera is
used as sensor, and the intensity of many pixels are mea-
sured simultaneously. We note I(t) the array of scattered
intensity acquired at a time t. We compute the normal-
ized correlation function of the scattered intensity:

gI(t, t+ τ) =
〈I(t)I(t+ τ)〉 − 〈I〉2

〈I2〉 − 〈I〉2
, (1)

where 〈·〉 is here an average on the pixels of the cam-
era. The electronic noise of the camera is removed fol-
lowing a procedure explained in [26]. The normaliza-
tion of the correlation function ensured that gI(t, t) = 1
whatever the contrast of the image. From the Siegert
relation gI(t, t + τ) = |gE(t, t + τ)|2 we obtain the nor-
malized correlation function of the scattered electric field
E : gE(t, t + τ) = (1/I0)〈E∗(t) · E(t + τ)〉. The normal-
ization constant I0 is the mean scattered intensity.

The autocorrelation function of the scattered electric
field may be decomposed as a sum on paths of length
s [1, 2]:

gE(t, t+ τ) =

∫
s

P (s)〈exp
(
∆φs(t, t+ τ)

)
〉ds. (2)

In (2), P (s) is the normalized path length distribution
with

∫
s
P (s)ds = 1. The complex exponential function

is averaged on all paths of length s, and ∆φs(t, t+ τ) is
the phase shift for a path of length s. We drop in the
following the two times t and t + τ in equations. Such
paths may be decomposed in s/l∗ independent segments

of length l∗. It then follows that ∆φs =
∑s/l∗

j=1 ∆φj ,
with ∆φj the phase variation of the segment number j
between times t and t+ τ . Since ∆φs is the sum of many
independent variables, it is a Gaussian random variable,
and then:

〈exp(∆φs)〉 = exp

[
−1

2
〈∆φ2s〉

]

= exp

−1

2

s/l∗∑
j=1

〈∆φ2j 〉

 . (3)

In (3), 〈·〉 is an average on all orientations of the seg-
ments, and we also assume that 〈∆φj〉 = 0, i.e. there is
no dilatation of compression of the medium. If the defor-
mation is homogeneous, 〈∆φ2j 〉 does not depend on the

number of the segment, and
∑s/l∗

j=1 〈∆φ2j 〉 = s〈∆φ2〉/l∗.
For small enough phase shifts, exp

[
s〈∆φ2〉/2l∗

]
' 1 −

s〈∆φ2〉/2l∗ and (2) becomes: gE(t, t + τ) '
∫
s
P (s)[1 −

s〈∆φ2〉/2l∗]ds. After integration we obtain:

gE(t, t+ τ) ' 1−A〈∆φ2(t, t+ τ)〉, (4)

with A a constant depending on P (s). Following the ap-
proach detailed in numerous studies [27? –29] we now
relate 〈∆φ2〉 to the deformation of the material. We con-
sider a segment joining the points r and r + l∗e with
e the unit vector joining the two points as shown on
Fig. 1c. The displacements at time t are A(r, t) and
A(r+l∗e, t), and the new distance between the two points
is ' l∗

(
1+
[
(e ·∇)A(r, t)

]
·e
)
. The variation of the phase

between the two times t and t+ τ is then k times the dif-
ference of length:

∆φ = kl∗
[
(e · ∇)

(
A(r, t+ τ)−A(r, t)

)]
· e. (5)

For a harmonic displacement with a polarization along
the unit vector a, we can write A(r, t) = [α(r) cos(ωt) +
β(r) sin(ωt)]a. The phase variation is then:

∆φ ' 2kl∗(e · a) sin(ωτ/2)[
−
(
e · ∇α(r)

)
sin(ωt+ ωτ/2)

+
(
e · ∇β(r)

)
cos(ωt+ ωτ/2)

]
. (6)

For simplicity, we suppose that ∇α(r) and ∇β(r) are
parallel to the same unit vector n. We will justify this
assumption for our experiments in Sec. IV C. We may
then write:

∇α(r) = γ(r) cos
(
Ψ0(r)

)
n (7a)

∇β(r) = −γ(r) sin
(
Ψ0(r)

)
n, (7b)

with γ(r) the amplitude and Ψ0(r) the phase of the de-
formation. Performing average on segment orientations:

〈∆φ2〉 ' 4k2l∗2η(a,n)γ2(r) sin2(ωτ/2)

× sin2(ωt+ ωτ/2 + Ψ0(r)) (8)

with η(a,n) = 〈(e · a)2(e · n)2〉e. For transverse waves
η(a,n) = 2/15. Combining with (7), we finally obtain:

γ2(r) sin2(ωτ/2) × sin2(ωt+ ωτ/2 + Ψ0(r))

' C × [1− gE(t, t+ τ)], (9)

with C a constant depending on geometry and of optical
constants.

C. Synchronized acquisition

The correlation functions are now measured at four
different combinations of times t(mod T ) and t+ τ(mod
T ):

g(1) = gE(0, T/2) (10a)

g(2) = gE(T/4, 3T/4) (10b)

g(3) = gE(0, T/4) (10c)

g(4) = gE(T/4, T/2). (10d)

With (9), we have:
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C × [1− g(1)] = γ2(r) sin2[Ψ0(r) + π/2] (11a)

C × [1− g(2)] = γ2(r) sin2[Ψ0(r) + π] (11b)

C × [1− g(3)] =
1

2
γ2(r) sin2[Ψ0(r) + π/4] (11c)

C × [1− g(4)] =
1

2
γ2(r) sin2[Ψ0(r) + 3π/4], (11d)

and then:

γ2(r) = C ×
[
2− g(1) − g(2)

]
, (12a)

cot 2Ψ0(r) =
[ g(1) − g(2)

2− g(1) − g(2)
]
/
[ g(3) − g(4)

2− g(3) − g(4)
]
. (12b)

The amplitude and the phase of the shear may then
be simply obtained with the above combinations of cor-
relation functions, all measured synchronously with the
harmonic excitation.

III. EXPERIMENTS

A. Experimental Setup

FIG. 2. Schematic drawing of the setup. A cylindrical glass
cell is filled with a liquid foam. A loudspeaker generates an
acoustic wave. A laser illuminates the foam and the scattered
light is detected by a camera. A lens is placed to expand the
beam. The camera and the laser may be translated along the
z direction.

The preceding formalism is in principle applicable to
every scattering medium which is periodically sheared.
In order to test this formalism, we performed experiment
on aqueous foams, in which we apply a sinusoidal defor-
mation by an external acoustic forcing. In our geometry,
the strain occurs because there is a displacement field
generated by the acoustic wave into the bulk, and no
acoustic displacement at the glass walls [22]. This cre-
ates a periodically sheared layer near the lateral glass
boundaries. The structure of this sheared layer will be
discussed in Sec. IV C.

The experimental setup is drawn on Fig. 2. A cylin-
drical glass container (diameter 19 cm, height 50 cm)

is filled with a liquid foam. A loudspeaker is placed
above the cylinder, and generates a acoustic wave at a fre-
quency f . The acoustic wave emitted by the loudspeaker
is partially reflected by the foam surface, and partially
transmitted within the foam. The sheared layer is illu-
minated with the beam of a continuous laser (633 nm,
15 mW). The beam is slightly expanded to a diameter
of a few millimeters and illuminates the foam. The scat-
tered light is recorded with a CSMOS camera (Photon-
Focus MV1-D1312-160-CL) operating at a frequency 4f :
sequences of images at 4f are acquired in a burst mode.
The beginning of the acquisition sequence is triggered
synchronously to the loudspeaker excitation. A delay
between the trigger and the first acquired image may be

added in order to imposed a given phase shift ψ
(imp)
0 . All

the experiments presented here have been performed at
frequency f = 800 Hz and the exposure time of every
image is 11 µs. The number of pixels of each image is
Np = 13120.

The liquid foam is made using the method described
in [30]: it provides large quantities of homogeneous foam,
with initial bubble size of the order of 100 microns in di-
ameter. The production rate is 0.1 L/s, so that our 50-cm
high cell is filled in 1 min. The gas used is C2F6, to slow
down the coarsening [31]. Experiments are performed af-
ter waiting times between 30 mn to 5 hours, correspond-
ing to bubble diameter of 200 to 700 microns. For the
experimental results shown here, we used sodium dodecyl
sulfate (SDS) as surfactant, with a concentration equal
to 10 times the surfactant critical micelle concentration
(cmc). The initial liquid fraction is φl ' 5%. Comple-
mentary tests were made using a more complex chemical
formulation, providing a high interfacial viscoelasticity
[32].

B. Computations of correlation functions

The raw data are a numbered succession of images of
Np = 13120 pixels acquired at intervals 1/4f = 312.5 µs.
Because the light intensity levels are low, we need to care-
fully remove the electronic noise of the sensor. We define
the normalized intensity correlation function between two
images n and m as:

gn,mI =
〈ImIn〉 − 〈Im〉〈In〉 − aelec − belecδnm

〈I2n〉 − 〈In〉2 − aelec − belec
(13)

We noted In the intensity vector of Np pixels of the
image n, and 〈·〉 designs here an average on all the pix-
els. We checked that the electronic noise in is such that
〈inim〉 = aelec + belecδnm. The values of aelec and belec
are determined by an independent measurement, and
we checked that for a well aged foam at rest, we get
gn,m�nI = 0 and gn,n+1

I = 1.

For a cycle of oscillation n, we compute the quantities
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g
(i)
I (n) as:

g
(0)
I (n) =

1

4

p=3∑
p=0

g4n+p,4n+4+p
I (14a)

g
(1)
I (n) =

1

2
(g4n,4n+2
I + g4n+2,4n+4

I ) (14b)

g
(2)
I (n) =

1

2
(g4n+1,4n+3
I + g4n+3,4n+5

I ) (14c)

g
(3)
I (n) =

1

2
(g4n,4n+1
I + g4n+1,4n+4

I ) (14d)

g
(4)
I (n) =

1

2
(g4n+1,4n+2
I + g4n+2,4n+5

I ). (14e)

If we suppose a scattering medium where the dynam-
ics are only due to the acoustic wave (i.e. no internal
dynamics), we have for i 6= 0:

g(i) =

√
g
(i)
I (4n), (15)

where the g(i) are the quantities defined in (10). The

interest of computing g
(0)
I (n) and of the somewhat tricky

definitions of g
(i6=0)
I (n) is to allow some corrections of the

scattering medium dynamic. This will be explained in
Sec. IV A.

FIG. 3. Correlations functions of the scattered intensities
g
(i)
I (n) as a function the number n of the oscillation cycle.

Colors are i = 0: purple, 1: black, 2: red, 3: green and 4:
blue.

Fig. 3 shows the evolution of the function g
(i)
I (n) as a

function of the cycle of oscillation n. In this experiment
the value of the acoustic excitation is kept constant, with

a fixed phase. g
(0)
I is close to 1, the fluctuations being

due to the intrinsic dynamics of the foam (coarsening

events). The values of g
(i6=0)
I fluctuate around their mean

values, and the values depend on the partial correlations
functions number i.

In the following, we will average g(i) on 250 cycles of
oscillations, i.e. on sequences of acquisition 0.31 s.

C. Amplitude and phase measurements

In this Section, we demonstrate that we can determine
the imposed variation of amplitude and phase — at a
given location — from our model of combinations of cor-
relations functions.

The amplitude of the strain is obtained from (12a) as:
γ2(r) = C ×

[
2 − g(1) − g(1)

]
. We perform experiments

where the amplitude of the strain is varied. For this, we
change the level of excitation of the loudspeaker. In our
experiments, we remain always below 90 dB of acoustic
level in air, hence the pressure amplitude in air is below
1 Pa, and it is even lower in foam because only a fraction
of acoustic energy is transmitted to the foam. Hence, we
remain in the regime of linear acoustics. Indeed, since
foam is mostly made of gas, the order of magnitude of
its bulk modulus is given by the atmospheric pressure,
105 Pa, and deviations from linear acoustics are expected
only when the pressure amplitude of the acoustic wave
becomes a significant fraction of the bulk modulus.

FIG. 4. Symbols: 1 − (g(1) + g(2))/2 as a function of the
amplitude of excitation of the acoustic wave. The straight
line is of slope 2.

Fig. 4 shows the evolution of 1 − (g(1) + g(2))/2 as
the function of the excitation amplitude. Every symbol
correspond to one measurement of duration 0.31 s. We
see that the decorrelation increases with the amplitude
of the acoustic excitation. The straight line is line of
slope 2, showing that 1 − (g(1) + g(2))/2 varies as γ2 at
least at small amplitudes. This is in agreement with (4).
It should be remained that (4) has been obtained in the
limit of small phase shifts, and deviations to the γ2 are
expected at large strain amplitudes.

The phase of the strain is obtained from (12b). In
order to test this relation, we proceed as follow: we fix the
amplitude of the acoustic wave, and we begin to acquire

images with a given phase shift ψ
(imp)
0 (see Sec. III A).

Fig. 5a shows the evolution of g(i) as a function of the

imposed phase shift ψ
(imp)
0 . We see that the correlation

functions evolves with the imposed phase shift. As it
may be seen from (9) and (10), advancing the imposed
phase of π/2 has the same effect of the permutations of
g(1) with g(2) and of g(3) with g(4), reflecting the ωt+ψ0
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FIG. 5. (a) Variations of g(i) as a function of an imposed
phase shift. i = 1: black, 2: red, 3: green and 4: blue.
Symbols are results from measurements and continuous curves
are sinusoids of period π for eyes guidelines. (b) Computed
phase shift as a function of the imposed one. Symbols are
measurements and the line is the linear fit with a slope 1.

dependence of (9). The phase is obtained from (12b) as:

Ψ0 =
1

2
arccot

[( g(1) − g(2)

2− g(1) − g(2)
)
/
( g(3) − g(4)

2− g(3) − g(4)
)]
(16)

The unwrapped phase Ψ0 calculated from the data of
Fig. 5a is plotted on Fig. 5b. As it may be seen, the
phase of the acoustic wave is measured with high pre-
cision. This shows that the phase of the strain may be
extracted from DWS synchronized with the strain source
with great accuracy.

D. Application to the measurement of phase
velocity in a foam

Building on the previous experimental proofs of con-
cept at a single position, we investigated how the phase
evolve inside a foam as a function of the distance of prop-
agation into our cylindrical cell. This is the relevant ex-
periment in terms of foam acoustics, as it should provide
information which can be compared to previous ones. In
practice, the laser and the camera are therefore trans-
lated of a distance ∆x = 2 mm between successive mea-
surements. The ageing time of the foam is here 45 mn.
This is a short enough time to avoid drainage and to pre-
vent liquid fraction variations in the scanned part of the

foam [33].

FIG. 6. Sound phase as a function of the distance of propaga-
tion: comparison between the measured phase (symbol) and
the model of Eq. (17).

Fig. 6 shows the evolution of the phase as a func-
tion of the depth. The phase shift is roughly 4π, cor-
responding to two acoustic wavelengths. In this ex-
periment, the bottom “wall” is the top surface of the
drained liquid in the bottom of the glass cylinder. It is
located at a the distance H = 202 mm. We see that,
far from the bottom of the foam, the phase evolves lin-
early with the distance; however, small oscillations of
the phase occurs as the surface of the drained liquid
is approached. Rather than only focusing on the linear
regime away from the bottom, we can take into account
all these features by including interferences between the
propagating and reflected wave into the cylinder. Let
ui(x) = u0 exp[−(jka + βa)x] be the incident acoustic
wave, with u0 the amplitude, ka the wave vector of the
acoustic wave and βa the attenuation coefficient. The re-
flected wave is ur(x) = Ru0 exp (jka + βa)x with R the
complex reflection coefficient. We set that, at the bot-
tom, the drained liquid is a perfectly reflecting surface,
which yields the boundary condition: ur(H)+ui(H) = 0.
This assumption comes from the fact that the acous-
tic impedance Z = ρc of a foam is orders of magni-
tude lower than that of the liquid, because both ρ and
c are much lower in foam than liquid. It follows that
R = e−2(jka+βa)H , and that the argument of u = ur + ui
is:

arg u = −jkax− arctan
e−2βa(H−x) sin 2ka(H − x)

1 + e−2βa(H−z) cos 2ka(H − x)
.

(17)
The plain line of Fig. 6 shows the evolution of arg(u)

as the function of the distance as predicted by (17). The
free parameters are ka, βa and a constant phase which is
added to arg(u). The shown adjustment is obtained with
ka = 0.09 mm−1 and βa = 0.009 mm−1. The value of the
velocity is thus v = ω/ka = 56 m/s. These values fully
agree with the previous studies. For the velocity, it is
expected to have a value following the Wood’s law, valid
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for these bubble sizes and frequencies [18, 19]. Indeed,
the Wood’s law predicts a velocity of 55 m/s for φl=0.05.
Although we have not monitored the variation of liquid
fraction, the fact that this value is so close to the experi-
mental value also suggests that drainage has not modified
much the profile of liquid fraction over the height of the
foam probed in Fig. 6. Also, Pierre et al. [19] have shown
by acoustic measurements in an impedance tube that at
800 Hz, the attenuation coefficient equals 8 ± 1 m−1 for
SDS foams, a value insensitive (at this frequency) to the
liquid fraction, which is in excellent agreement with our
measurement.

IV. REMARKS ON THE METHODS AND ON
THE EXPERIMENTAL TESTS

Following the experimental tests demonstrating the
feasibility of measuring the amplitude and the phase of
a acoustic wave propagating into a foam, we want to
point out a few other remarks on this synchronized DWS
method.

A. Corrections of internal dynamics

We want here to give some information about the sen-
sitivity of the determination of the correlation functions.
The first point to address is the effect of the internal
dynamics of the scattering medium on the correlation
functions. Fig. 3 shows the evolutions of the correlation

functions g
(i)
I with time. The fluctuations are due to the

internal dynamics of the system. Indeed, it is well known
that reorganizations occurs in foam which create varia-
tions on path lengths [10, 11]. When those fluctuations
of correlations are small compared to the decorrelations
due to the acoustic wave, their effects may be safely ne-
glected. However, in the case of very small strains, their
effects must be taken into account. A simple way consists
in considering that the internal and the acoustic waves
dynamics are uncorrelated. Defining ∆φint(t, t + τ) the
variation of phase due to the internal dynamic, (4) be-
comes:

gE(t, t+ τ) ' 1−A
[
〈∆φ2(t, t+ τ)〉+ 〈∆φ2int(t, t+ τ)〉

]
,

(18)
with ∆φ(t, t + τ) the phase shift due to the acoustic
wave. Since ∆φ(t, t + T ) = 0, we have gE(t, t + T ) '
1 − A〈∆φ2int(t, t + T )〉. If the internal dynamic is due
to many independent rearrangements which occurs at
a constant rate between t and t + T , we expect that
〈∆φ2int(t, t+ τ)〉 = (τ/T )〈∆φ2int(t, t+ T )〉, and then:

1−A〈∆φ2(t, t+ τ)〉 ' (19)

gE(t, t+ τ)+
τ

T

[
1− gE(t, t+ T ))

]
.

Since all the correlation functions g
(i)
I with i 6= 0 are

measured on a the same mean delay τ = T/2, we may re-

move the internal dynamics by computing a “corrected”
value:

g
(i6=0)
I;corr =

√
g
(i6=0)
I (4n) +

1

2

[
1−

√
g
(0)
I (4n)

]
. (20)

FIG. 7. Symbols: uncorrected (top) and corrected (bottom)

values of g
(i)
I as a function of an imposed phase shift. Curves

are sinusoidal guidelines. Color codes are the same as for
Fig. 3

The effect of such a correction is striking on a small
amplitude measurement. Fig. 7 shows a measurement
where the phase is controlled and the amplitude of the
acoustic wave is very small. If the internal dynamics
is not corrected, one can hardly detect the evolutions
of g(i) with the imposed phase. However as far as the
internal dynamics is corrected using (20), the variations
are clearly visible. This shows that acoustic propagation
may be probed even if the internal dynamic dominates
the variations of path lengths.

B. Sensitivity and comparison with the
stroboscopic method

We want here to quantify the uncertainties on the de-
termination of the amplitude and of the phase. We focus
on the noise on measurements during 250 oscillations cy-
cles. Due to the multispeckle scheme used here, the mea-
surement of correlation functions are averaged on many
coherence areas. We record images of 13120 pixels, and
the coherence area of ≈ 4 pixels. We then have ≈ 3000
coherence areas on every image. Because the scattering
medium used here has a internal dynamics, the speckle
pattern evolves slowly. The typical timescale of this evo-
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lution may be measured in a experiment where no oscilla-
tions take place, and we found an evolution time ≈ 0.1 s,
which is 1/3 of the experiment duration. With both the
time and the multispeckle averages, one phase and ampli-
tude measurement is averaged on ≈ 3×3000 realizations.

The noise for the phase determination is estimated as
the difference between the measured and the imposed
phase in a experiment where the phase is imposed. We
found a typical noise of 0.02 rad, which does not seem
to depend strongly on the amplitude of oscillation. The
standard deviations on the values of 1 − (g(1) + g(2))/2
are typically of order 10−3 when signals are uncorrected
from internal dynamics and of 2× 10−4 when the signals
are corrected. We may then expect to measure 1−gE on
typically 3 orders of magnitude.

An alternative method to characterize mechanical
wave in light diffusing medium has been proposed re-
cently by Wintzenrieth et al [23]. When a scattering
medium is submitted to a strain modulation, the contrast
of the time-averaged speckle pattern is lowered compared
to contrast of the same static medium. This has been
used to detect ultrasonic waves in optical tomography
measurements [34]. By synchronizing the beginning of
the light acquisition with the acoustic wave, and by mea-
suring the visibility of the speckle pattern, the phase of
the strain modulation may be obtained [23]. A quanti-
tative comparison between this method and the method
reported in this study is not straightforward. Such a
comparison requires quantitative models for the different
sources of noises, for instance noises due to internal dy-
namics of the scattering medium, or noise due to sensors,
and this analysis is far from being trivial. Nevertheless,
we may notice that the visibility methods correspond
to measurements of correlation functions integrated over
time. If gE(t) is the electric field correlation function

the visibility is V (T ) = 1
T

∫ T
0

2(1− t
τ )|gE(t)|2dt [9]. It is

then easy to show that gE(t) is related to the second time

derivative of the visibility: |gE(t)|2 = 1
2
d2[V (t)t2]

dt2 . Gen-
erally speaking, a time derivative is a source of noise.
Hence, we may expect that synchronized acquisitions,
which avoid such derivatives, allow to obtain correla-
tion functions with a better signal-to-noise ratio. This
is in agreement with the fact that we are able to mea-
sure 1 − gE on typically 3 orders of magnitude, while
Wintzenrieth et al. [23] obtains a dynamical range for
1− gE of one order of magnitude. This is also confirmed
by numerical simulations where we compared correlations
functions obtain directly by correlation of signal, and
by correlation functions obtained by time-derivative of
visibility. However, only an experimental comparison of
the two methods on different experimental systems may
quantitatively confirm these differences.

C. Structure of the sheared layer

The method explained in this paper permits to mea-
sure the amplitude and the phase of a sheared zone. We

discuss in this subsection the origin and the structure of
the shear created by an acoustic wave near a solid sur-
face which is perpendicular to the propagation direction
of the acoustic wave. In a previous paper [22], we have
considered the experimental situation of an acoustic wave
propagating into a foam. The wave propagates parallel
to the wall. Because of the non-slip boundary condition
at the boundary, the acoustic displacement cancels at the
wall. The variation of the displacement with the distance
from the wall occurs in a viscoelastic boundary layer,
which depends on the rheology of the material. We treat
the foam as a continuous visco-elastic fluid, with ρ the
density and G = G0 exp j∆ the visco-elastic modulus of
the material. Let u(z, t) = Re[u(z)eiωt] be the acoustic
displacement, and u0 = limz→∞ u(z) the displacement
far from the wall. The force balance writes:

ρ
∂2U(z, t)

∂t2
= G

∂2U(z, t)

∂z2
, (21)

with U(z, t) = u(z, t)− u0. The solution of (21) is:

U(z, t) = U0 exp (jωt) exp (κz), (22)

with U0 + u0 the amplitude of displacement at z = 0
and κ = κ0 exp jϕ. We have κ0 = ω

√
ρ/G0 and

ϕ = (π − ∆)/2. The strain is γ = ∂U(z, t)/∂z =
U0κ exp (jωt) exp (κz), and we obtain:

|γ(z)| = κ0 exp [−κ0 cos(ϕ)z] (23a)

Ψ0(z) = ϕ+ κ0 sin(ϕ)z. (23b)

In this model, the amplitude and the phase of the
strain depend on z. As explained in [22], it is this sheared
layer that is probed with light scattering. In Sec. II, we
made the hypothesis that the deformation is homoge-
neous into the volume probed by the light. Using this

hypothesis, every term of the sum
∑s/l∗

j=1 〈∆φ2j 〉 of phase

shift used in (3) is the same: 〈∆φ2〉. The deformation
being in fact heterogenous, we must consider average val-
ues of 〈∆φ2〉 on volumes Vs probed by paths of length s:∑s/l∗

j=1 〈∆φ2j 〉 = (s/l∗)〈∆φ2〉Vs . Because long paths probe
larger volumes than short paths, the volume Vs depends
on s.

The fact that the phase of the strain is heterogeneous
has an interesting consequence. Indeed, let us consider a
segment of the random walk located at a distance z from
the wall. The variance of the phase shift (8) depends on
z:

〈∆φ2(z)〉 ∝ γ2(z) sin2(ωτ/2) sin2[ωt+ ωτ/2 + Ψ0(z)].(24)

Since Ψ0 depends on z, 〈∆φ2(z)〉 cannot be canceled si-
multaneously at every z. It follows that the correlation
function g(i) with i 6= 0 cannot be equal to one. This is
what is observed on the Fig. 5a: the maximum values of
the correlation functions are not 1. Complementary ex-
periments with foam of high interfacial viscoelasticity [32]
exhibit higher values of correlation recovery. This prop-
erty may be used as a useful non-destructive method to
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estimate the value of ϕ and will be discussed in a forth-
coming paper.

Finally, we can justify the assumption on the displace-
ment field made to derive (7) from (6). At the fre-
quency of 800 Hz, the thickness ξ = 1/κ0 cos(ϕ) of the
sheared layer is about 2 mm [22], whereas the acous-
tic wavelength in the foam is λa = 2π/ka = 6 cm (see
Sec. III D). Hence, ξ/λa � 1, and to a good approxima-
tion, the displacement field in the sheared layer writes :
A(r, t) = [α(z) cos(ωt)+β(z) sin(ωt)]ex, with ex the unit
vector in the direction of propagation. Hence, ∇α and
∇β are both along ez.

V. CONCLUSION

We have investigated the situation of a turbid media
undergoing a periodical shear, and wondered if and how
the amplitude and the phase of this deformation could be
locally measured by light scattering. We have proposed
a new approach — named here “synchronized DWS” —
which requires to acquire four different correlations func-
tions. Then by combining these correlations, the ampli-
tude and the phase can be derived, at any locations. This
approach has been successfully tested by experiments on
foams, where a sinusoidal shear is obtained as an acoustic
wave is propagating. In a first set of tests, we have found
an excellent agreement between the imposed forcing and
the measurements. These first results fully validated the
principles and our formalism. Further experiments al-
lowed us to scan a foam as a function of the distance
of propagation of the sound. It turns out that we have
been able to monitor the phase of the deformation along
a few wavelengths. The full analysis — including in-

terference effects at the bottom of the vessel — allowed
us to quantify the phase velocity and the sound atten-
uation. The obtained values are in excellent agreement
with previous measurements, and definitively confirms
that this approach based on the measurement by DWS of
the acoustic deformation is relevant. Moreover, we have
shown that possible internal dynamics and heterogeneity
in space do not prevent these types of measurements, as
they can also be taken into account.

In the future, these results can be pursued along differ-
ent routes. For instance, this method may be used to get
information about the shear layer in a direction perpen-
dicular to the displacement. We saw in Sec. IV C that the
structure of this sheared layer depends on the rheological
properties of the material. Correlation data should then
permit to obtain informations about high frequency rhe-
ological properties with λa . l∗. A deeper understanding
will be required to clarify the links between the correla-
tion data and the viscoelasticity of the material. As well,
measurements can be done not only in the direction of
propagation, but also in the orthogonal one. It is thus
possible to create a 2D mapping of the amplitude and of
the phase; this might be especially relevant in the cases
where sound could be diffracted by obstacles or slits.
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