. Ml, The reaction mixture was placed at 80 °C for 3 days. The desired product was obtained as a yellow oil (11.8 g, 98% yield) 1 H NMR (500 MHz, trimethoxysilyl)propyl isocyanate (10.3 g, 9.6 mL CDCl 3 , 298 K): ? 0.47 (d, J = 8.6 Hz, 4H, CH 2 CH 2 Si), 1.44 (m, 4H, CH 2 CH 2 Si), 2.98 (m, 4H, CH 2 CH 2 NHCO), 3.39 (s, 18H, SiOCH 3 ), 4.47 (s, 4H, CH=CHCH 2 O), 5.53 (m, 2H, CH=CH) (Figure S9). 13 C{ 1 H} NMR (125 MHzCH 2 CH 2 Si), 43.2 (CH 2 CH 2 NHCO)OCONH) (Figure S10). ESI-HRMS: [M+Na] + (C 18 H 32 N 2 O 10 NaSi 2 ) calcd (g.mol ?1 )Figure S11). FTIR (cm ?1 ), pp.521-521, 1963.

. Synthesis, Under argon atmosphere, a 50 mL round-bottom Schlenk flask, equipped with a magnetic stir bar, was charged sequentially with N,N'-diethyl-2-butene-1,4- diamine (421 mg, 0.5 mL, 3.0 mmol) and 3-(trimethoxysilyl)

T. W. Greenle, Adhesion Science and Technology, A, p.339, 1975.

Y. Nomura, A. Sato, S. Sato, H. Mori, and T. Endo, Synthesis of novel moisture-curable polyurethanes end-capped with trialkoxysilane and their application to one-component adhesives, Journal of Polymer Science Part A: Polymer Chemistry, vol.15, issue.13, pp.2689-2704, 2007.
DOI : 10.1002/pola.22025

A. Hirao, T. Hatayama, T. Nagawa, M. Yamaguchi, K. Yamaguchi et al., Polymerization of monomers containing functional silyl groups. 2. Anionic living polymerization of (4-alkoxysilyl)styrenes, Macromolecules, vol.20, issue.2, pp.242-247, 1987.
DOI : 10.1021/ma00168a002

A. Hirao, T. Nagawa, T. Hatayama, K. Yamaguchi, and S. Nakahama, Polymerization of monomers containing functional silyl groups. 1. Anionic living polymerization of (4-vinylphenyl)dimethyl-2-propoxysilane, Macromolecules, vol.18, issue.11, pp.2101-2105, 1985.
DOI : 10.1021/ma00153a003

K. Tekenaka, A. Hirao, T. Hattori, and S. Nakahama, Polymerization of monomers containing functional silyl groups. 6. Anionic polymerization of 2-(trialkoxysilyl)-1,3-butadiene, Macromolecules, vol.22, issue.4, pp.1563-1567, 1989.
DOI : 10.1021/ma00194a010

K. Tekenaka, K. Kato, A. Hirao, T. Hattori, and S. Nakahama, Polymerization of monomers containing functional silyl groups. 8. Catalytic hydrogenation of poly(2-silyl-substituted-1,3-butadiene)s, Macromolecules, vol.23, issue.15, pp.3619-3625, 1990.
DOI : 10.1021/ma00217a014

H. Ozaki, A. Hirao, and S. Nakahama, Polymerization of monomers containing functional silyl groups. 11. Anionic living polymerization of 3-(tri-2-propoxysilyl)propyl methacrylate, Macromolecules, vol.25, issue.5, pp.1391-1395, 1992.
DOI : 10.1021/ma00031a005

M. Kobayashi, T. Chiba, K. Tsuda, and M. Takeishi, Anionic polymerization ofN,N-dialkylacrylamides containing alkoxysilyl groups in the presence of Lewis acids, Journal of Polymer Science Part A: Polymer Chemistry, vol.29, issue.13, pp.2754-2764, 2005.
DOI : 10.1002/pola.20761

A. Hirao and S. Nakahama, Anionic living polymerization of monomers with functional silyl groups, Progress in Polymer Science, vol.17, issue.3, pp.283-317, 1992.
DOI : 10.1016/0079-6700(92)90018-T

W. E. Lindsell, K. Radha, and I. Soutar, Synthesis and characterisation of methoxysilyl terminated polybutadienes, Polymer International, vol.24, issue.1, pp.1-6, 1991.
DOI : 10.1002/pi.4990250102

D. Derouet, S. Forgeard, and J. Brosse, Synthesis of alkoxysilyl-terminated polyisoprenes by means of 'living' anionic polymerization, 2. Synthesis of trialkoxysilyl-terminated 1,4-polyisoprenes by reaction of polyisoprenyllithium with various functional trialkoxysilanes selected as end-capping reagents, Macromolecular Chemistry and Physics, vol.200, issue.1, pp.10-24, 1999.
DOI : 10.1002/(SICI)1521-3935(19990101)200:1<10::AID-MACP10>3.0.CO;2-V

C. Lee, S. Joo, and M. Gong, Polymeric humidity sensor using polyelectrolytes derived from alkoxysilane cross-linker, Sensors and Actuators B: Chemical, vol.105, issue.2, pp.150-158, 2005.
DOI : 10.1016/S0925-4005(04)00397-1

K. Takenaka, S. Kawamoto, M. Miya, H. Takeshita, and T. Shiomi, Polymerization of 1,3-dienes containing functional groups: 8. Free-radical polymerization of 2-triethoxysilyl- 1,3-butadiene, Polymer International, vol.4, issue.7, pp.891-895, 2010.
DOI : 10.1002/pi.2802

P. P. Matloka, J. C. Sworen, F. Zuluaga, and K. B. Wagener, Chain-End and Chain-Internal Crosslinking in ?Latent Reactive? Silicon Elastomers, Macromolecular Chemistry and Physics, vol.113, issue.2, pp.218-226, 2005.
DOI : 10.1002/macp.200400335

C. W. Bielawski, T. Morita, and R. H. Grubbs, Synthesis of ABA Triblock Copolymers via a Tandem Ring-Opening Metathesis Polymerization:?? Atom Transfer Radical Polymerization Approach, Macromolecules, vol.33, issue.3, pp.678-680, 2000.
DOI : 10.1021/ma990625l

M. K. Mahanthappa, F. S. Bates, and M. A. Hillmyer, Synthesis of ABA Triblock Copolymers by a Tandem ROMP???RAFT Strategy, Macromolecules, vol.38, issue.19, pp.7890-7894, 2005.
DOI : 10.1021/ma051535l

B. R. Maughon, T. Morita, C. W. Bielawski, and R. H. Grubbs, Synthesis of Cross-Linkable Telechelic Poly(butenylene)s Derived from Ring-Opening Metathesis Polymerization, Macromolecules, vol.33, issue.6, pp.1929-1935, 2000.
DOI : 10.1021/ma9907340

K. Sill and T. Emrick, Bis-dendritic polyethylene prepared by ring-opening metathesis polymerization in the presence of bis-dendritic chain transfer agents, Journal of Polymer Science Part A: Polymer Chemistry, vol.30, issue.22, pp.5429-5439, 2005.
DOI : 10.1002/pola.20995

H. Martinez and M. A. Hillmyer, Carboxy-Telechelic Polyolefins in Cross-Linked Elastomers, Macromolecules, vol.47, issue.2, pp.479-485, 2014.
DOI : 10.1021/ma402397b

C. W. Bielawski, D. Benitez, T. Morita, and R. H. Grubbs, Synthesis of End-Functionalized Poly(norbornene)s via Ring-Opening Metathesis Polymerization, Macromolecules, vol.34, issue.25, pp.8610-8618, 2001.
DOI : 10.1021/ma010878q

J. B. Matson and R. H. Grubbs, Monotelechelic Poly(oxa)norbornenes by Ring-Opening Metathesis Polymerization Using Direct End-Capping and Cross-Metathesis, Macromolecules, vol.43, issue.1, pp.213-221, 2010.
DOI : 10.1021/ma9019366

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2943665

N. Hanik and A. F. Kilbinger, pre-functionalized ROMP initiators, Journal of Polymer Science Part A: Polymer Chemistry, vol.2003, issue.19, pp.4183-4190, 2013.
DOI : 10.1002/pola.26832

J. B. Matson, S. C. Virgil, and R. H. Grubbs, Pulsed-Addition Ring-Opening Metathesis Polymerization: Catalyst-Economical Syntheses of Homopolymers and Block Copolymers, Journal of the American Chemical Society, vol.131, issue.9, pp.3355-3362, 2009.
DOI : 10.1021/ja809081h

T. Morita, B. R. Maughon, C. W. Bielawski, and R. H. Grubbs, A Ring-Opening Metathesis Polymerization (ROMP) Approach to Carboxyl- and Amino-Terminated Telechelic Poly(butadiene)s, Macromolecules, vol.33, issue.17, pp.6621-6623, 2000.
DOI : 10.1021/ma000013x

L. M. Pitet and M. A. Hillmyer, Carboxy-Telechelic Polyolefins by ROMP Using Maleic Acid as a Chain Transfer Agent, Macromolecules, vol.44, issue.7, pp.2378-2381, 2011.
DOI : 10.1021/ma102975r

S. Ji, T. R. Hoye, and C. W. Macosko, Controlled Synthesis of High Molecular Weight Telechelic Polybutadienes by Ring-Opening Metathesis Polymerization, Macromolecules, vol.37, issue.15, pp.5485-5489, 2004.
DOI : 10.1021/ma0493067

S. Ji, T. R. Hoye, and C. W. Macosko, Diamino telechelic polybutadienes for solventless styrene???butadiene???styrene (SBS) triblock copolymer formation, Polymer, vol.49, issue.24, pp.5307-5313, 2008.
DOI : 10.1016/j.polymer.2008.09.026

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2607032

L. M. Pitet, M. A. Amendt, and M. A. Hillmyer, Nanoporous Linear Polyethylene from a Block Polymer Precursor, Journal of the American Chemical Society, vol.132, issue.24, pp.8230-8231, 2010.
DOI : 10.1021/ja100985d

C. W. Bielawski, O. A. Scherman, and R. H. Grubbs, Highly efficient syntheses of acetoxy- and hydroxy-terminated telechelic poly(butadiene)s using ruthenium catalysts containing N-heterocyclic ligands, Polymer, vol.42, issue.11, pp.4939-4945, 2001.
DOI : 10.1016/S0032-3861(00)00504-8

M. A. Hillmyer, S. T. Nguyen, and R. H. Grubbs, Utility of a Ruthenium Metathesis Catalyst for the Preparation of End-Functionalized Polybutadiene, Macromolecules, vol.30, issue.4, pp.718-721, 1997.
DOI : 10.1021/ma961316n

R. M. Thomas and R. H. Grubbs, Synthesis of Telechelic Polyisoprene via Ring-Opening Metathesis Polymerization in the Presence of Chain Transfer Agent, Macromolecules, vol.43, issue.8, pp.3705-3709, 2010.
DOI : 10.1021/ma902749q

R. J. Corriu, J. J. Moreau, P. Thepot, and M. W. Man, New mixed organic-inorganic polymers: hydrolysis and polycondensation of bis(trimethoxysilyl)organometallic precursors, Chemistry of Materials, vol.4, issue.6, pp.1217-1224, 1992.
DOI : 10.1021/cm00024a020

I. J. P-'poo and H. Schanz, while the ROMP reaction was entirely inhibited using 2 or more equiv of DMAP; see: S, times the reactivity of the catalyst, pp.14200-14212, 2007.

J. A. Love, J. P. Morgan, T. M. Trnka, and R. H. Grubbs, A Practical and Highly Active Ruthenium-Based Catalyst that Effects the Cross Metathesis of Acrylonitrile, Angewandte Chemie International Edition, vol.41, issue.21, pp.4035-4037, 2002.
DOI : 10.1002/1521-3773(20021104)41:21<4035::AID-ANIE4035>3.0.CO;2-I

S. B. Garber, J. S. Kingsbury, B. L. Gray, and A. H. Hoveyda, Efficient and Recyclable Monomeric and Dendritic Ru-Based Metathesis Catalysts, Journal of the American Chemical Society, vol.122, issue.34, pp.8168-8179, 2000.
DOI : 10.1021/ja001179g

C. W. Bielawski, O. A. Scherman, and R. H. Grubbs, Highly efficient syntheses of acetoxy- and hydroxy-terminated telechelic poly(butadiene)s using ruthenium catalysts containing N-heterocyclic ligands, Polymer, vol.42, issue.11, pp.4939-4945, 2001.
DOI : 10.1016/S0032-3861(00)00504-8

L. M. Pitet and M. A. Hillmyer, Carboxy-Telechelic Polyolefins by ROMP Using Maleic Acid as a Chain Transfer Agent, Macromolecules, vol.44, issue.7, pp.2378-2381, 2011.
DOI : 10.1021/ma102975r