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Abstract 28 

Transcriptional regulation by the Estrogen Receptor α (ER) has been investigated mainly in breast 29 

cancer cell lines but estrogens such as 17β-Estradiol (E2) exert numerous extra-reproductive effects, 30 

particularly in the liver where E2 exhibits both protective metabolic and deleterious thrombotic 31 

actions. To analyze the direct and early transcriptional effects of estrogens in the liver, we determined 32 

the E2-sensitive transcriptome and ER cistrome in mice following acute administration of E2 or 33 

placebo. These analyses revealed the early induction of genes involved in lipid metabolism, which fits 34 

with the crucial role of ER in the prevention of liver steatosis. Characterization of the chromatin state 35 

of ER binding sites (BSs) in mice expressing or not ER demonstrated that ER is not required per se 36 

for the establishment and/or maintenance of chromatin modifications at the majority of its BSs. This 37 

is presumably a consequence of a strong overlap between ER and Hepatocyte nuclear factor 4 α 38 

(Hnf4α) BSs. In contrast, 40% of the BSs of the pioneer factor Foxa2 were dependent upon ER 39 

expression, and ER expression also affected the distribution of nucleosomes harboring dimethylated 40 

H3K4 around Foxa2 BSs. We finally show that, in addition to a network of liver-specific transcription 41 

factors including Cebpα/β and Hnf4α, ER might be required for proper Foxa2 function in this tissue. 42 

 43 

 44 

 45 

 46 

.  47 



3 

Introduction 48 

Estrogen receptors (Esr1: ERα, termed ER throughout the manuscript; and Esr2: ERβ) are ligand-49 

dependent transcription factors that mediate the effects of estrogens such as 17-β estradiol (E2) (1,2). 50 

Estrogens control the development, differentiation and function of tissues involved in reproduction, 51 

but are also pleiotropic hormones controlling the metabolism and homeostasis of many other tissues. 52 

They can be harmful or beneficial according to the target tissue, with deleterious effects in the 53 

development of cancers of uterus and breast, but protective effects on the bones, arteries and 54 

metabolism since they reduce the incidence of osteoporosis, atheroma, and type 2 diabetes (3). 55 

The molecular actions of ER have been extensively studied in vitro in human cell lines, using 56 

mostly the prototypical breast cancer cell line, MCF-7. Over the last decade, genome-wide analyses 57 

obtained from such in vitro models have greatly challenged the historical view of proximal ER-58 

directed gene regulation (4-6) and it is now accepted that, in breast cancer cells, ER can dynamically 59 

engage between 15,000 and 30,000 binding sites (ER BSs) across the genome. Once tethered to 60 

chromatin at these sequences, ER regulates transcription of its target genes through the dynamic 61 

recruitment of multiple partners including cofactors of diverse families of proteins and components of 62 

the transcriptional machinery (7-10). Importantly, most of the ER BSs that have been determined so 63 

far are thought to be enhancers located away from the transcriptional start site (TSS) of annotated E2-64 

sensitive genes (11,12), although transcription of so-called enhancer RNAs (eRNAs) could occur at 65 

these places (13,14). The actions of pioneer TFs have also been demonstrated genome-wide as 66 

essential for the accuracy and frequency of ER binding. FOXA1 is one of the most studied of these 67 

proteins (6,11,15). It can bind to condensed chromatin to prepare it for the subsequent recruitment of 68 

other TFs, presumably by acting as a recruitment platform for histone modification and/or 69 

nucleosome remodelling complexes (16-18). 70 

Whether these mechanisms actually apply in vivo remains uncertain and requires careful attention. 71 

Genome-wide analysis of the ER cistrome in tissue explants from normal human mammary glands 72 

has demonstrated that ER binding events in these differentiated primary cells are much more 73 

restricted than those in cancer cell lines (19). In addition, although ERs and FOXA have been shown 74 

to cooperate in establishing the estrogen-dependent protection of the liver against hepatocellular 75 
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carcinoma (20,21), the nucleosome positions and chromatin structure around Foxa sites were also 76 

found to be independent of Foxa1 and Foxa2 expression in differentiated adult mouse liver (22). This 77 

leads one to wonder whether Foxa proteins do indeed exert a pioneering influence on ER activity and 78 

whether they use similar mechanisms in the liver as those in human mammary gland. 79 

As well as establishing these mechanistic aspects of ER function in vivo, studying the actions of 80 

E2 in the liver in vivo is also of utmost physiological interest since estrogens play important protective 81 

and deleterious roles. For example, E2 directly contributes to liver protection from the deleterious 82 

consequences of metabolic stresses such as a High Fat Diet (HFD) since it prevents HFD-induced 83 

liver steatosis through the activation of hepatocyte ER (23,24). On the other hand, exogenous 84 

estrogens administrated for oral contraception or hormone replacement therapy at menopause 85 

stimulate the production of angiotensinogen, sex hormone-binding globulin and circulating hepatic 86 

coagulation factors (25). These changes are greatly enhanced by the oral route due to hepatic first-87 

pass and appear to contribute, at least in part, to an increased risk of venous thrombosis and its life-88 

threatening complication, the pulmonary embolism (26). It is thus of major interest to describe and 89 

understand the mechanisms of action of estrogen in the liver, since this organ represents an important 90 

target for these hormones and can mediate both the desired (protection against liver steatosis) and 91 

deleterious (contribution to increased risk of venous thrombosis) actions of estrogens. However, so far 92 

the estrogen-sensitive liver transcriptome and the ER cistrome have been characterized only under 93 

chronic hormonal treatment (20,27-29). 94 

Given this, we aimed to decipher the early steps of the mechanisms engaged by ER at the 95 

chromatin level that control liver gene expression following acute administration of E2 in vivo. To 96 

differentiate between ER-dependent and ER-independent processes, and to understand chromatin 97 

events induced by an ER deficiency, we gathered data from wild-type or ER knock-out (ERKO) 98 

mouse livers. Here, we demonstrate that although the liver transcriptional response to E2 is fully 99 

dependent upon ER expression, an ER deficiency has no drastic consequences on enhancer chromatin 100 

signatures. However, we provide evidence that ER is required for Foxa2 binding at a subset of sites, 101 

and that a network of other TFs may protect Foxa2 sites from loss of chromatin functionality. 102 

 103 
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Materials and Methods 104 

Ethics statement 105 

All procedures involving experimental animals were performed in accordance with the principles 106 

and guidelines established by the “Institut National de la Santé et de la Recherche Médicale” 107 

(INSERM) and were approved by the local Animal Care and Use Committee. 108 

Mice 109 

ER-null mice (ERKO) from a C57BL/6 genetic background were generated as previously 110 

described (30) and were kindly provided by Prof P Chambon (Strasbourg, France). Female wild-type 111 

(ERWT) and ERKO mice littermates were obtained from the same parents. Mice were housed in 112 

groups of 5 per cage and kept in a temperature-controlled facility on an artificial 12h light-dark cycle. 113 

Genotyping was systematically performed on DNA prepared from tail biopsies using a mix of specific 114 

primers P4 (intron 1): 5’-GCTTTCCTGAAGACCTTTCATATGGTG-3’, P3 (antisense in intron 2): 115 

5’-GGCATTACCACTTCTCCTGGGAGTCT-3’, and mESR1ex2: 5’-116 

CAATCGACGCCAGAATGGCCGAG-3’. Mice were ovariectomized at 4 weeks of age and then 117 

treated by oral gavage with placebo (castor oil, 5% ethanol) or E2 (1 mg/kg) at 10 weeks of age. 118 

Following anesthesia by intraperitoneal injection of ketamine (100 mg/kg) and xylazine (10 mg/kg), 119 

mice were sacrificed 1 or 4 hours after gavage. Blood was collected by retroorbital puncture and livers 120 

were used immediately or snap-frozen in liquid nitrogen and stored at -80°C. 121 

RNA preparation 122 

Ovariectomized ERWT or ERKO mice were treated or not with E2 for 4 hours. Following the 123 

extraction of livers and tissue homogenization using a Precellys tissue homogenizer (Bertin 124 

Technology), total RNAs were prepared using GenElute Mammalian Total RNA Miniprep Kit 125 

(Sigma-Aldrich). For Rt-qPCR experiments, 1 µg total RNA was reverse transcribed using a High 126 

Capacity cDNA Reverse Transcription Kit (Applied Biosystems) and subjected to qPCR. 127 

Gene expression arrays 128 

We used the One-Color Quick Amp Labeling kit (Agilent) to synthesize and label cRNAs using 129 

200 µg RNA, according to the manufacturer’s instructions. 600 ng Cy3-labelled cRNA were 130 
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hybridized to a SurePrint G3 Mouse GE microarray (8X60K) at the GeT-TRIX Genopole facility 131 

(Toulouse, France). Slides were scanned immediately and data were analyzed with Feature Extraction 132 

Software 10.10.1.1 (Agilent) using the default parameters. All subsequent analyses were done under R 133 

(www.r-project.org) using packages of Bioconductor (www.bioconductor.org). We used the limma 134 

package for data normalization, selecting spots with a weight of one in at least three arrays from at 135 

least one experimental group, and carried out normalization using the quantile method. Experimental 136 

groups were compared by analysis of variances (t-test) and p-values were adjusted by the Benjamini 137 

and Hochberg (BH) method. Genes were considered as differentially expressed between two 138 

experimental conditions when their adjusted p-value was lower than 0.05 and their fold change greater 139 

than 1.5. The lists of all significantly regulated genes are given in Supplemental File 1. Functional 140 

annotations were performed under the web-platform webgestalt 141 

(http://bioinfo.vanderbilt.edu/webgestalt/) (31). Enrichments were calculated over the genome 142 

reference, using a BH-corrected p-value<0.0001 and considering only categories including at least 3 143 

genes. Comparative analysis with publicly-available datasets at the NCBI's Gene Expression Omnibus 144 

website (http://www.ncbi.nlm.nih.gov/geo/) (32) used the generated lists of genes from GSE57804 145 

(33), GSE13265 (27), GSE45346 (28), GSE36514 (29) and GSE23850 for human MCF-7 (34). 146 

MeDIP and hMeDIP assays 147 

Immunoprecipitation of methylated or hydroxymethylated cytosines (MeDIP or hMeDIP, 148 

respectively) were performed as described previously (35) on liver genomic DNA prepared using the 149 

DNeasy Blood Tissue Kit (Qiagen). We used 5 μg genomic DNA and 2 μg anti-5mC antibody or 15 150 

μg DNA and 5 μg anti 5-hmC antibody for MeDIP or hMeDIP, respectively. Immunoprecipitated 151 

DNA was purified via standard phenol-chloroform and ethanol precipitation procedures, and 152 

resuspended in 100 μl TE. Two μl of these samples were used for qPCR reactions. 153 

ChIP experiments 154 

Livers were extracted from animals 1 hour after oral administration of placebo or E2, then sliced 155 

into small pieces and disrupted in 5 ml PBS by pressure through a 21G syringe needle. Cells from one 156 

half of a liver were fixed in 10 ml PBS containing 1% formaldehyde for 10 min at room temperature. 157 

Cross-linking was then stopped by incubation with 0.125M glycine at room temperature. Cells were 158 
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washed twice with PBS and then lysed in 1 ml buffer [10 mM Tris-HCl (pH 8.0), 10 mM NaCl, 3 mM 159 

MgCl2, 0.5% Igepal] containing 1X protease inhibitors (Complete Inhibitors, Roche). Extraction of 160 

nuclei was then performed by applying 50 strokes of potter on the suspension in an ice-cold Dounce 161 

followed by further incubation for 5 min at 4°C. Nuclei suspensions were then centrifuged at 13,000 162 

rpm at 4°C. Following two washes in PBS, nuclei were lysed by incubation in 4 ml lysis buffer [10 163 

mM EDTA, 50 mM Tris-HCl (pH 8.0), 1% SDS, 0.5% Empigen BB (Sigma)] on ice for 10 min and 164 

sonification using a Branson 250 apparatus (3 pulses of 20 sec at 50% power, with at least 1 min on 165 

ice between each pulse). SDS was then neutralized by addition of 400 µl 10% Triton X-100 and 166 

chromatin was further sonicated by two additional 14 min sonications of the lysed nuclei in a 167 

BioRuptor apparatus (Diagenode) operating at high intensity with 30 sec on/off duty cycles. 168 

Chromatin was then cleared by a 10 min centrifugation at 10,000 x g and the supernatants were 169 

pooled for further use. ChIP experiments were performed using 300 µl of these chromatin 170 

preparations and 2 μg antibodies (Supplemental Table 1), as previously described (34,35). DNA was 171 

purified on NucleoSpin™ columns (Macherey-Nagel) using NTB buffer. Subsequent qPCR analysis 172 

used 2 μl of 5-fold diluted input material and 2 μl of ChIP samples. 173 

ChIP-seq 174 

All ChIP-seq were performed on livers from the same 5 individuals per genotype and treatment 175 

groups. We pooled DNA originating from 20 different ChIP experiments performed as described 176 

above, i.e. 4 ChIP experiments per mouse. Construction of libraries and sequencing using an Illumina 177 

HiSeq apparatus were conducted at the IGBMC sequencing facility (Strasbourg, France). Reads were 178 

aligned onto the indexed chromosomes of the mm9 genome using bowtie 0.12.7 (36) with parameters 179 

allowing at most two mismatches, and selected for unique mapping onto the genome. Sequencing 180 

statistics are given in Supplemental Table 2. Due to the small amounts of recovered DNA in the ER 181 

ChIP experiments performed on livers from placebo and E2-treated ovariectomized animals, we 182 

combined reads obtained in two runs of sequencing to reach a representative sequencing depth. 183 

Extracted reads were converted to .wig signal files using samtools 0.1.12a (37) and MACS 1.4.1 (38) 184 

with default parameters. To minimize the bias of diverging sequencing depths between different 185 

samples immunoprecipitated with the same antibody, the signal intensities of a given .wig were 186 
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normalized so as to be comparable to the .wig file with the highest sequencing depth. Peak callings 187 

were then performed as described in (35) with different p-values and peaks defined as being 188 

constituted of at least 4 adjacent signals within 65 bp above the threshold values. Peak callings for 189 

histone marks ChIP-seq were done with a stringent p-value= 1e
-12

. All repetitive sequences were 190 

eliminated from the identified genomic regions using lists obtained from the UCSC (blacklist; 191 

http://genome.ucsc.edu/cgi-bin). Bed files corresponding to the genomic coordinates of identified ER 192 

BSs and Foxa2 BSs are given in Supplemental File 2. Motif analysis was performed using the 193 

CentDist algoriths (http://biogpu.ddns.comp.nus.edu.sg/~chipseq/webseqtools2) and SeqPos tool on 194 

the cistrome web-platform (http://cistrome.org/ap/) (39), and illustrated within Wordles pictures 195 

(http://www.wordle.net/). For SeqPos analyses, we restricted the analyses to the top 5,000 sites when 196 

required, as defined by their maximum mean intensity in a 1 kb window centered on each region. 197 

When required Sequences were declared enriched with a p-value<0.05 and Z-score>2.5. All 198 

integrative analyses of the ChIP-seq data were performed using home-made scripts and algorithms 199 

from the cistrome web-platform. Analysis of publicly-available fastq ER ChIP-seq data at the GEO 200 

(32) or Array Express (http://www.ebi.ac.uk/arrayexpress/) (40) websites were performed under the 201 

same conditions. ER datasets analyzed were the GSE52351 (33), GSE36455 (41), E-MTAB-805 (20) 202 

and GSE25021 (42) for MCF-7 cells. Genomic regions identified by ChIP-chip assays (43) were 203 

extracted from the supplemental material of the manuscript and converted from mm5 to mm9 genome 204 

annotation. The .bed files corresponding to the cistromes of other transcription factors were all 205 

obtained from the cistrome finder system (http://cistrome.org/finder/; 44,45): Foxa1 (GSM427090; 206 

46), Cebpα (GSM548908; 47), Cebpβ (GSM427088; 46), Pparα (GSM864671; 48), Rxrα 207 

(GSM864674; 48), GR (common peaks from replicates GSM1122512 and GSM1122515; 49), Esrrα 208 

(GSM1067408; 50), NR1D1 (GSM647029; 51), NR1D2 (GSM840529; 52) , HDAC3 (common peaks 209 

from replicates GSM647022, GSM647023 and GSM647024; 51) , NCor1 (GSM647027; 51), CTCF 210 

(GSM722759; 53) excepting Hnf4α (GSE57807; 54) and NKx3-1 (common peaks from duplicate 211 

GSM878195 and GSM878196; 55) data, which were re-analyzed with our scripts.  212 

Real-time PCR (qPCR) and statistics 213 
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Sequences of all oligonucleotides used in this study are given in Supplemental Table 3 (RNAs) 214 

and Supplemental Table 4 (ChIPs). Oligonucleotides for RT-qPCR were designed using 215 

NCBI/Primer-Blast (http://www.ncbi.nlm.nih.gov/tools/primer-blast/). All other primers were 216 

designed using the Primer3 program (http://frodo.wi.mit.edu/primer3/) (56). All ChIP-qPCR 217 

experiments were carried out using a BioRad MyiQ apparatus with 1 μM oligonucleotide and a 218 

BioRad iQ SYBR Green supermix with 50 rounds of amplification followed by determination of 219 

melting curves. RT-qPCRs were performed on 96.96 Dynamic Arrays for the microfluidic BioMark 220 

system (Fluidigm Corporation) or using an ABI ViiA 7 apparatus. All statistical analyses of qPCR 221 

data were performed using GraphPad™ Prism software. Mann-Whitney non-parametric t-tests were 222 

used to determine significant variations from controls. Heatmaps of expression values and qPCR data 223 

were all generated using MeV (57). To normalize the data obtained from microarray experiments into 224 

a similar dynamic range, expression values shown within the heatmaps were normalized per mRNA 225 

as Normalized value= [(Value) – Mean(Row)]/[Standard deviation(Row)].  226 

Data deposition 227 

The microarray and ChIP-seq data generated in this study have been submitted to the NCBI Gene 228 

Expression Omnibus website (http://www.ncbi.nlm.nih.gov/geo/) (32) under accession No. 229 

GSE70350.  230 

 231 

Results 232 

Establishment of E2- and ER-dependent transcriptomes in liver 233 

Estrous cycle-dependent (58) or estrogen-sensitive transcriptomes in harvested livers (33) or in 234 

native animals treated by chronic administration of hormones (27,28) have already been documented. 235 

Here, we aimed to characterize the ER-dependent mechanisms of transcription regulation in the liver 236 

in vivo and to correlate these data with data on ER binding to chromatin at shorter times of treatment. 237 

Therefore, we chose to treat ovariectomized female ER+/+ (ERWT) and their ER-/- (ERKO) 238 

littermate mice through gavage with E2 or placebo (P) for 4 hours, in castor oil solution. These 239 

conditions were deliberately chosen in order to engage the hepatic first-pass which is likely to have a 240 
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role in E2-induced venous thrombosis (26), as opposed to transcutaneous hormone injections. Liver 241 

mRNAs from ERWT or ERKO mice treated or not with E2 in these experimental conditions were 242 

then isolated and microarray analysis was performed. Differentially expressed genes between two 243 

conditions were considered significant when their fold change in expression were >1.5 with an 244 

adjusted p-value of <0.05. The list of all significantly regulated genes is given within Supplemental 245 

File 1. Despite a relatively elevated inter-individual variation in gene expression levels (Fig. 1A), 246 

these analyses were able to identify 124 E2-regulated mRNAs in ERWT, which corresponded to 110 247 

unambiguously annotated unique genes (Fig. 1B). Importantly, in ERKO animals, the E2 treatment 248 

did not significantly affect the transcriptional regulation of any genes (Supplemental Fig. 1). This 249 

result confirms that ER is required for the response of all of the identified genes to an acute treatment 250 

with E2. Approximately 80 % of the identified genes in ERWT mice were up-regulated by E2 (Fig. 251 

1A) and were grouped into functional annotations relevant for lipid and alcohol metabolisms, growth 252 

factor signalling and other functional pathways specific of the liver (Table 1). Interestingly, although 253 

performed in different experimental settings, 48 (44%) of the identified E2-sensitive genes here were 254 

similar to those determined previously following 3 days of treatment with the ER agonist PPT 255 

{4,4’,4’’-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol} (28) (Supplemental Fig. 2). Our data also 256 

identified 194 mRNAs (129 genes) whose expressions were significantly different in ERKO 257 

compared to ERWT mice in the absence of E2 treatment (Fig. 1A and 1B). The ER coding gene Esr1 258 

was included in these 129 genes, thereby validating our analyses. These ER-dependent genes were 259 

identified as involved in cell growth/differentiation but also in lipid metabolic processes and 260 

mammary gland development (Table 1). Independent RT-qPCR experiments confirmed the observed 261 

changes in regulation for 91% of the 45 tested E2-regulated genes and 41.7% of the 12 tested ER-262 

dependent genes (Supplemental Fig. 3). As illustrated within the Venn diagram depicted in Fig. 1B, 263 

only 10 of the ER-dependent and E2- sensitive genes also exhibited an ER-dependent basal 264 

expression. This may indicate that the remaining 119 genes with an ER-dependent basal expression 265 

are regulated by E2 (or other endogenous estrogens/signals) under different conditions of time or diet 266 

than those used in our analyses. The differential expression of these 119 genes in livers from ERKO 267 

vs. ERWT mice could also be an indirect consequence of ER gene inactivation in liver, whereby 268 



11 

dysregulation of one or more of these genes may provoke the observed effects. However, only a small 269 

proportion of the ER-dependent genes found here are similar to those reported by another study 270 

performed in mice with liver-specific ablation of Esr1 expression (29). So it is possible that the 271 

changes in gene expression that we observed here between ERWT and ERKO livers are due to 272 

alterations of the function of (an)other tissue(s).  273 

Identification of ER binding sites in liver 274 

To determine whether ER is a direct transcriptional regulator of the E2- and/or ER-sensitive 275 

transcriptomes identified above, and to obtain mechanistic insights into these regulations, we next 276 

established the cistrome of ER in placebo and E2-treated livers. In particular, we aimed to determine 277 

whether ER is bound to chromatin in the absence of E2, as has been reported in cultured cancer cells 278 

(59-62). Indeed, ER cistromes have already been determined for mouse liver by ChIP-chip (43,58) or 279 

ChIP-seq methods in intact (20) or harvested liver cells (33), however these have not been carried out 280 

in the absence of E2. Hence, we conducted ChIP-seq experiments to establish the cistrome of ER in 281 

livers from ovariectomized E2- or placebo- (P) treated wild-type mice. We used chromatin prepared 282 

from livers of ovariectomized E2-treated ERKO individuals as a control. To reduce any cistrome 283 

variation due to individual animal specificities, we pooled and sequenced the DNA fragments purified 284 

from ChIP experiments performed on chromatin prepared from five different animals. Sequenced 285 

reads were aligned onto the genome and enriched regions were identified at different p-values (Fig. 286 

2A). To determine the appropriate threshold enabling a comparison between the different cistromes, 287 

we calculated their overlap with decreasing significance (Fig. 2B). As expected, the overlap between 288 

two sets of genomic regions paralleled the threshold stringency. For instance, at a p-value of 10
-15

, 80% 289 

of the 87 ER BSs identified in placebo-treated ERWT animals were common with the 948 identified 290 

in E2-treated ERWT mice. In all subsequent analyses, we used ER cistromes determined with a 10
-5

 291 

p-value threshold, which constituted the inflexion point for all overlapping ER BSs determined under 292 

the different conditions. At this threshold value, 3,857 ER BSs were identified in livers from E2-293 

treated ERWT animals, 857 under control conditions, and 54 in ERKO (Fig. 2C). Using a similar 294 

approach we also confirmed that the ER cistromes from the liver overlap poorly with those reported 295 
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for the aorta and uterus (Supplemental Fig. 4) (33,41). Interestingly, 476 ER BSs detected in 296 

placebo-treated ERWT mice were not identified in E2-treated samples. Surprisingly, 14 additional 297 

regions were declared as specific to ERKO livers (Fig. 2C). Heatmaps of ChIP-seq binding values 298 

(Fig. 2D) as well as mean binding values (Fig. 2E) confirmed the presence of an ERKO-specific 299 

signal at these genomic regions (sub-panel #2 in Fig. 2D), indicating that these 14 BSs were likely not 300 

generated by a peak-calling approximation. These graphs also confirmed the specific binding of ER in 301 

ERWT livers either treated with E2 or placebo on corresponding ER BSs. This demonstrates that the 302 

placebo-specific ER BSs are not indicative of a residual binding of ER on the strongest sites observed 303 

in E2-treated livers. Finally, we observed that ER binding to the 345 ER BSs identified in placebo and 304 

E2-treated livers from ERWT animals was enhanced in hormone-stimulated conditions (Fig. 2E).  305 

Examination of ERKO and placebo-specific ER BSs 306 

To validate the conclusions that could be made from our ChIP-seq data, we used qPCR to analyse 307 

ER binding to genomic regions presumed to either (i) bind ER in ERWT animals in both presence or 308 

absence of E2 (series #1); (ii) specifically recruit ER placebo-treated ERWT mice (series #3); or (iii) 309 

bind an ER-like protein in ERKO mice (series #2). We also took five randomly chosen sequences that 310 

did not recruit ER (#0 regions). The heatmaps in Fig. 3 summarize the results of these experiments 311 

(mean data and statistics are shown in Supplemental Fig. 5) which were performed on ChIP samples 312 

prepared from four mouse livers (numbers on the top of the panel) that differed from those processed 313 

for ChIP-seq to generate independent data. A fraction of the pool of DNA that was subjected to high-314 

throughput sequencing (HTS) served as a control. The promoter of the Rplp0 gene was used as a 315 

normalizing ER-negative region, and two genomic regions located at the vicinity of the E2-regulated 316 

Gdf15 gene were used as controls: one mobilized ER (Gdf15.3) and one did not (Gdf15.2). The results 317 

of these experiments confirmed the expected binding of ER to ER BSs from the #1 series of genomic 318 

regions, and not to those from the #0 series (Fig. 3A, left side of the panel). Moreover, these data 319 

showed an elevated level of variation concerning the binding of ER to the #2 and #3 regions detected 320 

in the different samples. For instance, in only two of the samples (one being the HTS sample), a 321 

protein recognized by the antibody used in these assays was specifically recruited (enrichment>2) to 322 
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four of the five tested #2 regions supposedly specific for ERKO livers. These observations led us to 323 

hypothesize that the antibodies targeting the C-terminal region of ER used for the ChIP-seq may 324 

purify a small number of non-specific genomic targets. High variations in enrichment levels were also 325 

evidenced between the five samples in the case of the ERWT placebo-specific ER BSs. Hence, we 326 

performed ChIP-qPCR assays with a specific antibody directed against the N-terminal region of ER 327 

on the same preparations of chromatin. As shown within the heatmap on the right side of the Fig. 3A 328 

(mean data and statistics are provided in Supplemental Fig. 5), whilst we were able to validate the 329 

binding of ER to the #1 series of genomic regions using this different antibody, this was not the case 330 

on the ERKO-specific ER BSs (#2 sites). These data indicated that the ER binding sites detected in 331 

ERKO mice may have represented a false-positive background of the ChIP-seq experiments, due 332 

either to the antibody or the pipeline used for processing the sequencing tags. Furthermore, as shown 333 

in Table 2, no specific motif related to an ER binding could be detected in ERKO sites, contrasting 334 

with the classical sequences found in the ER BSs identified in ERWT mice, such as FOX, HNF4, SP1 335 

and AP1/AP2 motifs (full motif analysis is provided within the Supplemental Fig. 6 and 336 

Supplemental File 3). ERKO sites were therefore excluded from the subsequent analyses described 337 

in this manuscript. Likewise, the results obtained from these ChIP-qPCR experiments performed with 338 

the N-terminal antibody did not validate any of the 5 tested ER BSs specific for placebo-treated 339 

ERWT livers (compare the results obtained for the #3 series of genomic regions on left and right sides 340 

of Fig. 3A). This indicated that either none of the ER BSs falling in this placebo-specific category 341 

constitute actual sites of ER binding or that these sites may be subjected to extreme inter-individual 342 

variation. Hence, we conducted ChIP-qPCR on 14 more genomic regions of this #3 category using 343 

liver chromatin prepared from additional animals (5 treated with placebo and 3 with E2). Results of 344 

these experiments, illustrated within Fig. 3B, showed that 2 of these 14 sites (#3.18 and #3.19) were 345 

not detected in these independent experiments using the anti C-terminal antibody and that 5 (#3.7, 346 

#3.11, #3.17, #3.20 and #3.21) of the remaining 12 ERBSs were enriched in the DNA fractions 347 

enriched with the anti-N-terminal antibody.  348 

In conclusion, as in human cancer cells, a mobilization of ER on chromatin can be detected in the 349 

absence of ligand in livers from ovariectomized mice. The existence of genuine placebo-only sites 350 
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was also confirmed in our ChIP-qPCR experiments. However, their number, as determined from our 351 

ChIP-seq data, may be biased or even overestimated i) because of the use of a C-terminal antibody 352 

that can generate false-positive regions with low-level of enrichments (such as the 54 ERKO sites); 353 

and/or ii) because the N-terminal epitope targeted by the antibody used in our confirmation ChIP-354 

qPCR experiments is not accessible for chromatin-bound ER in placebo conditions. 355 

ER BSs are “enriched” in the proximity of liver-specific genes 356 

Interestingly, in E2- and placebo-treated animals, 14.5% and 12.9% of the identified ER BSs 357 

respectively were found at a short distance (<3kb) from the promoters of annotated genes (Fig. 4A). 358 

When compared to the ER cistromes determined for human breast cancer cells, such an enrichment 359 

was clearly different from those identified for ER in the liver, uterus and, albeit to a lower extent, the 360 

aorta (Fig. 4B and Supplemental Fig. 7). Indeed, in E2-treated MCF-7 breast cancer cells, only 2 to 4% 361 

of the ER BSs identified were located in the vicinity of gene promoters (<3kb) (Fig. 4B). Note that an 362 

additional hour of treatment of mouse with E2 (2 hours in total) did not affect the distribution of ER 363 

BSs across the genome (data not shown). Importantly, GREAT (63) functional annotation of the ER 364 

cistrome in the liver also indicated that genes located proximal to and/or in relation to the identified 365 

ER BSs were clearly associated with liver-specific expression, function and diseases, such as lipid 366 

homeostasis and responses to insulin (Table 3). These data showed that the E2-mediated regulation of 367 

the rate of gene transcription in mouse liver may involve more proximal mechanisms than in human 368 

cancer cell lines, i.e. through binding of ER and its coregulators in the vicinity of the TSS. This 369 

hypothesis was confirmed by the observation that 28% of liver E2-regulated genes exhibited at least 370 

one ER BS within a 0-5kb window around their TSS, compared to 13% in MCF-7 cells (Fig. 4C). 371 

Interestingly, 75% of the genes characterized by an ER-dependent basal expression were located at 372 

distances >25kb from any ER BS (Fig. 4C). Again, this may reflect either an indirect effect of ER loss 373 

on the transcriptional rate of these particular genes, or their preferential long-range regulation. Finally, 374 

apart from a slight increase for genes within a 1-5 kb window, the strength of gene regulation by E2 375 

could not be correlated with the distance between their TSS and the ER BSs neither in mouse liver nor 376 

MCF-7 cell lines (Fig. 4D). 377 
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ER loss impacts the chromatin status of the promoters of its target genes 378 

A loss of ER binding at some genomic regions could be either the source or a consequence of 379 

drastic changes in chromatin structure at these sites, including post-translational modifications of 380 

histones and DNA modifications. The nucleosomes located in active regulatory elements like 381 

enhancers exhibit histone marks such as H3K4me1, H3K4me2 and H3K27ac (64-66), and their DNA 382 

is globally characterized by low levels of CpG methylation that is inversely correlated to their 383 

hydroxymethylation status (35,67,68). Thus, we performed ChIP-seq experiments that aimed to 384 

determine the genome-wide location of nucleosomes marked with the H3K27ac or H3K4me2 385 

modifications. As shown within Fig. 5A, the mean enrichment of these two marks around ER BSs (as 386 

defined by the sum of ER BSs detected in placebo- and E2-treated animals) exhibited biphasic curves 387 

around the center of the ER BSs, reflecting the existence of modified nucleosomes surrounding 388 

poised/activated genomic regions (69-72). Importantly, the relative enrichment of ER BSs in 389 

H3K4me2 and H3K27ac were relatively similar in ERWT and ERKO mice (Fig. 5B). Furthermore, 390 

less than 3% of the ERBSs were overlapping with either the 4,084 or 2,137 genomic regions losing 391 

their H3K4me2 or H3K27ac marks in ERKO livers (Supplementary Fig. 8). This suggested that the 392 

binding of ER to its sites is not required for the establishment and/or maintenance of these chromatin 393 

modifications. Note that the presence of the two chromatin marks H3K4me2/H3K27ac slightly but 394 

significantly decreased at the promoter regions of genes transcriptionally down-regulated in ERKO 395 

livers (Fig. 5C), and conversely increased in the promoters of up-regulated ones. Interestingly, 396 

variations in H3K4me2 and H3K27ac contents were more coordinated in the promoters of up-397 

regulated genes than in those of down-regulated genes (Fig. 5D). This indicates that the promoter 398 

regions of genes undergoing a “gain of function” in ERKO livers may be subjected to stronger 399 

chromatin remodelling than genes with a reduced transcriptional activity in ERKO.  400 

Hnf4α may protect ERBSs from losing their chromatin functional state in ERKO liver  401 

In order to examine the possibility that some variations of chromatin functionality could occur in a 402 

specific sub-population of ER BSs, we clustered the profiles of H3K4me2 and H3K27ac 403 

modifications around these genomic regions (heatmaps of ChIP-seq signals in Fig. 6A). With the 404 

exception of the ER BSs classified within clusters 7, 9 and possibly 4 (mean signals are shown in Fig. 405 
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6B), no variations in H3K4me2 signals were apparent in ERKO compared to ERWT mice. 406 

Interestingly, in these two/three cases the enrichment levels of ER BSs in H3K4me2 did not 407 

significantly differ but the shape of the curves shifted from biphasic to monophasic shapes (see 408 

enlarged view in the corresponding panels). A similar shift was also observed in the case of the cluster 409 

4, but to a slighter extent. This suggests that the ER BSs included within clusters 7, 9 and possibly 4 410 

were changing their functionality/poised state. However, we did not observe any variations in 411 

H3K27ac levels in these clusters (Supplemental Fig. 9), indicating that this loss in functionality may 412 

only affect the stability and/or the presence of an H3K4me2-marked nucleosome at the center of the 413 

ER BS. 414 

To validate these genome-wide observations and give further details on the exact loss of 415 

functionality of ER BSs in ERKO mice, we next evaluated the enrichment of ten ER BSs with 416 

H3K4me1, H3K4me2 and H3K27ac by ChIP-qPCRs using chromatin prepared from the same E2-417 

treated ERWT and ERKO animals as previously described. The results of these experiments (data and 418 

statistics in Supplemental Fig. 10) are illustrated as heatmaps of enrichment in Fig. 7A. These data 419 

indicate that the presence of mono- or di-methylated H3K4 around the 10 tested ER BSs was not 420 

drastically affected in ERKO livers when compared to ERWT ones. The same results were observed 421 

for their K27 acetylation status. However, interestingly, in ERKO mice a small but significant 422 

increase in both H3K4me1 and me2 content was observed at the #1.3 ER BS, and an increase in 423 

H3K4me2 was seen at the #3.1 ER BS. These small increases in H3 modifications may be in 424 

accordance with the fact that, on some ER BSs, the shift from biphasic to monophasic shapes of 425 

enrichment observed by ChIP-seq actually reflects a more stable central H3K4me2-marked 426 

nucleosome. Finally, we envisioned that increased amounts of 5-mC or a decreased presence of 5-427 

hmC on enhancer DNA may have accounted for the observed loss of functionality of ER BSs in 428 

ERKO mice. To test this hypothesis, we performed (hydroxy-) methylated DNA immunoprecipitation 429 

experiments (abbreviated to MeDIP and hMeDIP) and evaluated the enrichment of sites of interest of 430 

these two modified bases using qPCR. The results of these assays (Supplemental Fig. 10, 431 

summarized in Fig. 7B) indicated that the 10 tested enhancers were poorly enriched in 5-mC, and that 432 

the loss of ER had no general impact on these levels, apart from a slight but not significant increase in 433 
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the #1.2 ER BS in ERKO mice. In most cases, the amount of the active 5-hmC mark was also similar 434 

between ERWT and ERKO mice, except for a slight decrease in the #1.2 and an increase in the #1.3 435 

ER BSs that paralleled their levels of H3K4me2. It could therefore be proposed that the #1.3 enhancer 436 

is in fact a counter-example gaining some chromatin functionality. 437 

Interestingly, clusters 4, 8 and 9 include ER BSs located away from TSSs and could thus be 438 

defined as putative enhancers (Fig. 6A). However, we did not find evidence of any motif for a 439 

transcription factor specific to cluster 8 or 9 that could explain why changes in H3K4me2 enrichment 440 

occur in the latter and not the former (motif analysis provided within Supplemental File 4). We 441 

previously observed that ER BSs were highly enriched in HNF4 motifs (see Table2 and 442 

Supplemental Figure 6), another nuclear receptor, crucial for liver functions (73). This led us to 443 

determine whether its presence may protect ER BSs from losing their chromatin functionality in 444 

ERKO livers. As previously performed for ER, we determined Hnf4α cistrome with different p-values 445 

to allow comparison between the different conditions, using data from another study (54). As shown 446 

within Fig. 8A and illustrated within the heatmap in Fig. 8B, we found that up to almost 77% of ER 447 

BSs were actually overlapping with Hnf4 α BSs. Importantly, when this overlap was lower for ER 448 

BSs belonging to clusters 7 and 9 (Fig. 8C), which are changing their functionality/poised state in 449 

ERKO livers. Therefore, this tie in with our hypothesis of a protective role of Hnf4 α against the loss 450 

of H3K4me2 mark on lost ER BSs.  451 

In summary, together these observations indicate that a loss of ER in the liver does not strongly 452 

impact the chromatin status of its BSs: only those with a reduced overlap with Hnf4α binding seem to 453 

present a less stable H3K4me2-marked nucleosome at their center. 454 

A proportion of the mouse liver Foxa2 cistrome is ER-dependent 455 

Our genomic data are in favor of ER acting on chromatin regions whose activation is independent 456 

of ER-binding. This could reflect the possible actions of an ortholog of a pioneering factor such as 457 

human FOXA1 (15,19). Foxa proteins are expressed in mouse liver, including the related Foxa1 and 458 

Foxa2 (74,75), and these proteins have been found to serve as a scaffold for ER to regulate gene 459 

transcription in the liver and prevent hepatocarcinogenesis (20,21). Hnf4α binding in mouse liver is 460 

also conditioned (at least on part of its sites) during development by Foxa2 (76,77). We therefore 461 
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sought to investigate the role of these proteins in the creation of an ER cistrome and mapped their 462 

binding sites by ChIP-seq using liver chromatin preparations from the same animals as those used for 463 

the ER ChIP-seq experiments. We first observed that the Foxa1 and Foxa2 cistromes were very 464 

similar, due to a cross-reaction of Foxa1 antibodies against the Foxa2 protein (data not shown). The 465 

Foxa1 cistrome was therefore not analyzed in the subsequent step. As previously, we determined the 466 

Foxa2 cistromes with different p-values. Whatever the significance level used, we observed that the 467 

Foxa2 cistrome was reduced in ERKO mice compared to ERWT mice (Fig. 9A), with 5,991 Foxa2 468 

BSs determined at a 10
-4

 p-value for ERKO compared to 11,767 for ERWT mice. As depicted within 469 

Fig. 9B, depending upon the p-value, 12 to 30% of ER BSs were found to recruit Foxa2, 470 

corresponding to 6-12% of the entire Foxa2 cistrome. Up to almost 90% of the Foxa2 sites identified 471 

in ERKO mice were also determined as Foxa2-positive in wild-type animals. At a fixed p-value of 10
-

472 

4
, we identified 7,746 lost Foxa2 BSs (Fig. 9C). Importantly, only a sixth of these lost sites 473 

(688+491=1,179) were ER-positive (Fig. 9C). These data indicate that the loss of Foxa2 binding 474 

could be, at least in part, an indirect effect of ER depletion. The Foxa2 ChIP-seq signal was 475 

apparently lower in ERKO mice than in ERWT mice at conserved sites (see heatmap in Fig. 9D and 476 

mean values in Fig. 9E), indicating that Foxa2 binding events might also be less frequent in livers not 477 

expressing ER. However, although independent ChIP-qPCR experiments mostly recapitulated the 478 

expected results on gained and lost Foxa2 sites (Supplemental Fig. 11, Fig. 9F), a significantly 479 

reduced mobilization of this factor was observed for only 1 (#4.7) out of 10 tested conserved Foxa2 480 

BSs (Fig. 9F). We hypothesize that the highly heterogeneous enrichments obtained for the different 481 

samples may have hindered the detection of possible differences. Importantly, although our 482 

microarray data indicated that Foxa2 mRNA expression was 10% lower in ERKO livers, this 483 

regulation was neither systematic nor significant as assessed by independent RT-qPCR and Western 484 

blot experiments (Supplemental Fig. 3 and Supplemental Fig. 12). 485 

Variations in the H3K4me2 content of nucleosomes included in lost Foxa2 BSs  486 

To better comprehend the possible events occurring at Foxa2 BSs in ERKO vs. ERWT livers, we 487 

used our ERWT and ERKO H3K27ac and H3K4me2 ChIP-seq data to determine the relative genome-488 

wide enrichment of Foxa2 BSs in these chromatin modifications that indicate active/poised enhancers. 489 
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As described previously for lost ER BSs, changes were observed only at Foxa2 BSs located within 490 

putative enhancers (data not shown). We therefore focused our analysis on BSs situated >5 kb from 491 

any annotated gene promoter and aligned the mean H3K4me2 and H3K27ac ChIP-seq signals to these 492 

sites (Fig. 10A). Data obtained indicate that there was a loss of the biphasic shape of enrichment in 493 

H3K4me2 in ERKO compared to ERWT mice at these lost Foxa2 BSs (seen enlarged view in Fig. 494 

10A). In contrast, both the shape and level of enrichment of these sites in H3K27ac were unaffected 495 

(Fig. 10A). To evaluate a possible direct link between ER expression and these changes in chromatin 496 

modifications at Foxa2 BSs, we subdivided lost Foxa2 BSs into those which concomitantly recruited 497 

ER or those which did not (Fig. 10B). In contrast to their unchanged H3K27ac levels, we observed 498 

that the enrichment of both categories of sites in H3K4me2 was lower in ERKO livers compared to 499 

ERWT. Importantly, this was also associated with the disappearance of the biphasic shape of 500 

H3K4me2 enrichment (Fig. 10B), a biphasic-to-monophasic change that was observed neither at 501 

conserved Foxa2 BSs nor at novel ones (Fig. 10A). This demonstrated that the observed changes were 502 

not generated due to a bias of the normalization of the ChIP-seq signals but rather reflected a 503 

significant change in the enrichment of nucleosomes surrounding or centered on lost Foxa2 BSs in 504 

H3K4me2. Furthermore, such a change in shape was not observed at the BSs determined in mouse 505 

liver for other transcription factors such as Ctcf, Pparα, Rxrα, GR and Esrrα (not shown). 506 

Independent ChIP-qPCR experiments (data and statistics provided in Supplemental Fig. 10) 507 

following the enrichment of some Foxa2 BSs in H3K4me1 and H3K4me2 mostly recapitulated the 508 

conclusions obtained from genome-wide studies, i.e. that there is a reduction in the amount of 509 

methylated H3K4 in nucleosomes surrounding lost Foxa2 BSs in livers from ERKO mice (Fig. 10C). 510 

These effects were small, which may reflect the slight reduction observed in the amplitude of the 511 

mean profiles of the whole-genome data. Furthermore, due to the limited resolution of ChIP-qPCR 512 

experiments, the transition from a biphasic to monophasic distribution over a 1.5-2 kb window may 513 

have little or even no impact on the qPCR-mediated amplification of a DNA fragment located within 514 

a Foxa2 BS. Interestingly, we also observed a reduction in the acetylation of H3K27 on four of these 515 

sites, which was not expected from the whole-genome ChIP-seq data. MeDIP evaluation of the 5-mC 516 

amounts present within lost Foxa2 BSs also showed no variations between ERWT and ERKO livers 517 
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(Supplemental Fig. 10; Fig. 10D). Altogether, these data indicate that the Foxa2-positive enhancers 518 

which were lost in ERKO livers did not undergo complete chromatin closure. This conclusion is 519 

reinforced by the fact that only two of the 15 tested Foxa2 BSs (#4.6 and #1.2) had reduced amounts 520 

of 5-hmC in ERKO livers (Fig. 10D). 521 

Liver-specific transcription factor networks may secure FoxA2 cistrome 522 

In order to gain further insights into the mechanisms responsible for the loss of Foxa2 BSs in 523 

ERKO liver, we next examined whether particular transcription factors could either protect the 524 

conserved Foxa2 BSs from loss, or be responsible for the loss. Reassuringly, the most enriched motifs 525 

in each group were those recognized by Foxa2 and other members of the Forkhead family of TFs 526 

(Table 4, example Wordle picture is given in Figure 11A for lost FoxA2 BSs; full analysis is 527 

provided within Supplemental File 3). Besides Forkhead motifs, the sequences of the three Foxa2 528 

BSs’ category included similar sets of motifs for TF binding. The most frequently identified 529 

sequences were those recruiting CEBP, HNF4α and other NRs such as RXR, RAR, NR1D1/D2, or the 530 

tumor suppressor NKX3-1. Importantly, CEBPA/B and HNF4α are known “liver-enriched” 531 

transcription factors (78-80). When examined more precisely, 38 or 68 motifs were specifically 532 

identified within lost or conserved Foxa2BSs respectively (Supplemental Fig.13). However, the 533 

different sets of TFs binding to these specific motifs do not create networks that can be associated 534 

with specific functions, as evaluated by their annotations through STRING (81; see Supplemental 535 

Fig.13) Furthermore, the expression levels of the transcription factors associated with these DNA 536 

sequences were not significantly affected by the inactivation of the Esr1 gene (Supplemental Fig. 13).  537 

Finally, we compared our different categories of Foxa2 BSs to the available cistromes of other TF 538 

determined by others in mouse livers. Those included Cebpα and Cebpβ, Hnf4α, other nuclear 539 

receptors, repressive co-regulators (Hdac and Ncor1) and Ctcf. We also included Nkx3-1 in our 540 

analyses since its motif was the most enriched in all Foxa2 BSs categories following FKH motifs. 541 

Furthermore, NKX3-1 was demonstrated to act as an inhibitor of ER activity in human cancer cells 542 

(82). Note however that the only available cistrome of this factor in mouse was determined in prostate. 543 

We also integrated a Foxa1 cistrome, although it may not be totally specific and include FoxA2 BSs. 544 

Strikingly, we observed that the overlaps of the conserved Foxa2 BSs with the cistromes of Foxa1, 545 
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ER, Hnf4α, Nkx3-1, Cebpα, Cebpβ and Rxrα were significantly higher as compared to what was 546 

observed for lost or gained Foxa2 BSs (Fig. 11B). This indicates that the binding of (at least) one of 547 

these other TFs -excluding ER of course- to genomic regions may help to preserve Foxa2 binding at 548 

these sequences. Interestingly, Hnf4α, Cebpα and Cebpβ were also found to be more often recruited 549 

on sites conserving their H3K4me2 or H3K27ac levels rather than on genomic regions with reduced 550 

or gained enrichment in these chromatin marks in ERKO livers (Supplemental Fig. 14). This 551 

suggests that this combination of factors may generally prevent changes of chromatin functionality to 552 

occur on the sites they engage in ERKO livers. 553 

 554 

Discussion 555 

The objectives of this study were dual: i) to identify mechanisms of actions of hepatic ER in vivo 556 

and in particular to test whether it can exert some influence in the absence of its ligand, and ii) to 557 

characterize short-term changes in liver response to estrogens following acute E2 administration that 558 

could explain how E2 could have opposite influences in liver.  559 

Indeed, a number of studies have demonstrated in rodents that E2 has protective roles against 560 

metabolic abnormalities: ovariectomy, whole body ER knock-out (ERKO) and aromatase KO, are all 561 

associated with increased body weight, impaired glucose tolerance, insulin resistance (IR) and liver 562 

steatosis (23,24,83). In contrast, the administration of estrogens by the oral route prescribed for 563 

contraception or for hormonal replacement therapy at menopause is associated with an increased risk 564 

of venous thrombosis and pulmonary embolism, presumably due to the impact of E2 on liver 565 

coagulation factor expression or activity. Here, we characterized in mouse liver sets of E2- and ER-566 

dependent genes which were associated with lipogenesis, but none with coagulation. Accordingly, the 567 

genes predicted to be controlled by enhancer regions losing or gaining the active chromatin marks 568 

H3K4me2 and H3K27ac in ERKO livers were associated with liver-specific functions (Supplemental 569 

Fig. 8). These observations tied in with the crucial role of ER in E2-mediated prevention of liver 570 

steatosis in mice fed with high fat diet. They also highlight species differences in the regulation of 571 

coagulation factors by E2 between human and mouse (84). We observed that 48 of the 110 E2-572 
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regulated genes identified here were also regulated following chronic estrogen treatment for three 573 

days (36). This number drastically decreased to only two common genes after a two week treatment 574 

(37) or even one when comparing our list with a dataset generated from isolated liver cells (33). This 575 

latter observation could be explained by the adaptation of the liver cell transcriptome following cell 576 

culture, a transcriptome that also depends on the culture conditions (85,86). These differences 577 

between the estrogen-sensitive transcriptomes following chronic or acute treatment of hormones 578 

indicate that each mode of administration or time of treatment has a differential physiological impact. 579 

Using conditions of short-term E2 administration and freshly-dissected liver, we detected ER 580 

binding to less than 4,000 genomic regions by ChIP-seq. This contrasts with the much larger ER 581 

cistromes determined in cultured human mammary cell lines such as MCF-7 cells (11,12). 582 

Interestingly, although we used chromatin prepared from livers treated for different times, our data are 583 

in agreement with some other studies that have also found limited ER cistromes in liver (43,58). 584 

Furthermore, it is tempting to speculate that this limited number of ER BSs could be the cause of the 585 

lower number of E2-regulated genes identified here in liver as compared to classical in vitro model 586 

such as cultured MCF-7 cells (up to 1,500 regulated genes; see 34 and ref 87). A large set of ER BSs 587 

was also determined in isolated mouse liver cells (33), which presented 3-fold more E2-sensitive 588 

genes than determined here following acute E2 treatment of liver. Importantly, although ~2-fold less 589 

numerous, 60% of the E2-bound ER BSs determined here were in common with those determined in 590 

(33). As discussed above, the discrepancy in the number of ER BSs could also be a direct 591 

consequence of the conditions of E2-treatment or liver cell differentiation. These conditions might, for 592 

instance, influence the expression of chaperone proteins such as p23, whose over-expression in MCF-593 

7 breast cancer cells is reported to enhance the number of ER BSs (88). However, we determined that 594 

72% of the 5,526 ER BSs identified by our pipeline using a ChIP-seq dataset generated from the liver 595 

of non-ovariectomized females (20) were in common with the different ER cistromes determined in 596 

E2-treated livers from ovariectomized females (Supplemental Fig. 4). This suggests that the ER 597 

cistrome may present some robustness in liver, contrasting with an intrinsically more versatile hepatic 598 

transcriptome generated by (i) a cellular heterogeneity; and (ii) a high number of individual-specific 599 

regulatory influences (metabolic/detoxification…). Importantly, as is the case for all other reported 600 



23 

ER cistromes in liver, a significant fraction of the ER BSs identified here were found to be located in 601 

relatively close proximity to E2 regulated genes (7 to 12%), compared to MCF-7 data (2%). A general 602 

consequence of the organization of the genome within the nucleus is the existence of chromatin loops 603 

(89) that link distant regulatory elements such as ER BSs to their target genes (90) within large (1 Mb) 604 

topologically associating chromatin domains (TADs) (91). Although long-range interactions between 605 

enhancers and gene promoters do of course exist in mouse liver (92,93), our data point to the 606 

hypothesis that their multiplicity and possible functional redundancy (34,94) might be curtailed in 607 

vivo for E2-transcriptional responses within this tissue. This could also be true in the uterus, in which 608 

almost 16% of the ER BSs were located <3 kb from gene TSSs (Supplemental Fig. 7) (41). 609 

Additionally, enhanced stability of the loops between enhancers and TSSs may also increase the 610 

number of detected binding events at promoters, which would have to be considered as phantom 611 

imprints of this stable chromatin organization. However, the observed enrichment of these proximal 612 

ER BSs in motifs that are able to directly recruit ER (EREs, AP1 or Sp1) partly excludes this 613 

hypothesis.  614 

We have also determined that ER could be detected at approximately 850 ER BSs in untreated 615 

livers from ovariectomized female mice, 40% of them also being engaged by ER in the presence of 616 

E2. However, the existence and functionality of the remaining 476 placebo-specific ER BSs remains 617 

unclear. These placebo-specific sites were not found enriched at the proximity of genes whose 618 

expression was repressed by E2, and less than 2% of them were located closer than 10 kb from the 619 

TSS of any annotated gene (data not shown). Furthermore, independent ChIP assays performed with 620 

an antibody directed against the N-terminal region of ER were able to confirm an ER commitment at 621 

only 5 of the 19 randomly chosen regions falling into the placebo-specific condition. This could 622 

reflect a problem of specificity of the antibody directed against the C-terminal region of the protein, 623 

since it was able to purify 40 genomic regions supposedly binding to ER in ERKO livers. 624 

Alternatively, the epitopes targeted by the anti N-terminal antibody may be less accessible than those 625 

recognized by the C-terminal antibody, although the recent structure of a DNA-bound ER complexed 626 

with cofactors would suggest the opposite (95). Finally, we can also postulate that the placebo-627 

specific ER BSs may specifically recruit the ERα 46 or ERα 36 isoforms of ER which are devoid of 628 
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its N-terminal region and are known to be expressed in mouse liver (96-98). Investigating this 629 

hypothesis will require the whole-genome cartography of the binding events of these isoforms to be 630 

established using specific antibodies combined with the generation of corresponding mouse models 631 

expressing only one of the three ER isoforms. 632 

Comparing the transcriptomes and the distribution of H3K4me2 and H3K27ac chromatin marks 633 

within the genome of ERWT and ERKO livers raised several novel insights into the roles of ER in 634 

mouse liver. First, from a chromatin point of view, we observed that the enrichment of genes 635 

promoters in active marks globally paralleled their differential expression in ERKO as compared to 636 

ERWT livers. This correlation was slightly more important for up-regulated than down-regulated 637 

genes, suggesting that chromatin changes accompanying genes with higher transcriptional activity are 638 

more drastic than those observed for genes with reduced activity. Second, among the 129 genes 639 

differently expressed in the livers of ERKO vs. ERWT mice, only 10 were also regulated by E2 in 640 

ERWT. On the one hand, this observation could reflect the fact that the remaining 119 genes are 641 

indirectly regulated by ER, i.e. that one or more proteins or RNAs regulated by ER and/or E2 is 642 

required for the correct expression of these genes. Note that this faulty regulatory component could be 643 

expressed in the liver itself but since we used whole body ER knock-out (KO) mice it could also be 644 

expressed in other organs and indirectly influence the signalling cascades in the liver. This hypothesis 645 

is supported by the fact that these genes do not have any ER BSs in their vicinity. On the other hand, 646 

this observation also indicates that ER is not absolutely required for the basal expression of the 647 

majority of the E2-sensitive genes in the liver. This demonstrates in vivo that ER has to be considered 648 

as a regulator of transcription rather than a required factor for the transcription of these genes. Such a 649 

conclusion can also be drawn from our MeDIP-qPCR and H3K4me2/H3K27ac ChIP-seq data, which 650 

demonstrated that ER is not required per se for the establishment and/or maintenance of chromatin 651 

modifications at the majority of its binding sites. Moreover, we found that ER BSs with reduced 652 

chromatin functionality in ERKO are less frequently associated with the liver master regulator Hnf4α 653 

(76-80).  654 

These observations pointing at a secondary role of ER for the functionality of liver chromatin are 655 

also perfectly compatible with the notion that ER and other TFs act subsequent to the required 656 
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preliminary actions of pioneering factors such as FOXA proteins, or other partners such as GATA, 657 

C/EBP, etc (15,99,100) which determine the functionalization and accessibility of chromatin. 658 

However, contrasting with this pioneering view, we found that Foxa2 mobilization was affected in 659 

ERKO livers, even at ER-negative Foxa2 BSs identified in ERWT mice. Importantly, independent 660 

RT-qPCR or Western blot experiments did not consistently reproduce the 10% drop in Foxa2 661 

expression in ERKO livers detected by our microarray data. It is possible that the heterogeneity of the 662 

liver transcriptome and its dependence on the mouse diet may have hindered the detection of 663 

variations in Foxa2 expression. To get further information on a putative ER-mediated regulation of 664 

Foxa2, we hypothesized that if ER was controlling the expression of Foxa2 there might be genes 665 

regulated in the same way in ERKO and Foxa2KO mice. Comparison of our dataset with those 666 

available for a liver-specific double Foxa1/Foxa2 KO (22) revealed that 21 of the 721 Foxa-dependent 667 

mRNAs also had reduced expression in ERKO mice (data not shown). These genes exhibited no 668 

annotation towards a specific pathway or biological process. Although we cannot formerly exclude 669 

the possibility that Foxa2 expression may be influenced by the loss of ER expression, so far there is 670 

no clear evidence of a particular functional consequence of this putative direct relationship. 671 

Nevertheless, a 10% drop in Foxa2 expression may not be sufficient to explain a 50% loss in 672 

Foxa2 BSs. An in depth motif analysis associated with a comparison of Foxa2 BSs with the available 673 

cistromes of other TFs allowed us to provide an hypothetical model in which the binding of a network 674 

of other TFs on shared BSs may protect these sites from totally losing FoxA2 engagement and 675 

chromatin functionality. These factors are Hnf4α, Nkx3-1, Cebpα, Cebpβ and Rxrα and possibly 676 

Foxa1. Although we cannot ascertain the perfect specificity of our Foxa1 cistrome because of 677 

antibodies cross-reactivity with Foxa2, it may be interesting to note that 188 putative “ERKO-specific” 678 

Foxa1 sites were determined as lost Foxa2 BSs (data not shown). Interestingly, we also determined 679 

that regions that totally lost their central H3K4me2-enriched nucleosome were including DNA 680 

recognition motifs for Tead and Tcfap2 factors (Supplementary Fig. 14). AP2 is a pioneer factor, 681 

and may exert here a direct function in controlling chromatin opening. Tead factors, and in particular 682 

Tead 2 are involved in Foxa2/Hnf4α enhancer selection during hepatocyte differentiation (76). These 683 

two factors may therefore be integrated into the network of TFs that protect against chromatin 684 
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changes in ERKO livers. However, whether these factors direct the mobilization of chromatin 685 

modifiers that specifically prevent FoxA2 disengagement remains to be directly evaluated. Candidate 686 

modifiers could be proposed from our H3K4me2 ChIP-seq data showing a shift from a biphasic to a 687 

perfectly centered monophasic shape on some ER BSs and lost FoxA2 BSs. Two mechanisms could 688 

explain these observations: either the central nucleosome is preferentially modified by an H3K4 689 

methylase in ERKO livers (or the adjacent ones are not modified at all), or the absence of ER or 690 

FoxA2 directly or indirectly affects nucleosome positioning. In MCF-7 cells, ER genomic activity 691 

was shown to depend on the H3K methylases SMYD3, SETD1A, MLL1 or MLL2 (10,101-104), and 692 

even on its direct methylation by SMYD2 (105,106). However, mRNA encoding the orthologs of 693 

these proteins did not exhibit significant changes in ERKO relative to ERWT livers (not shown). The 694 

same was also true concerning the expression of histone chaperones involved in nucleosome 695 

positioning and dynamics, such as Spt16h and Ssrp1, components of FACT (107), or Spt6h and 696 

nucleolin (108).  697 

In conclusion, we have demonstrated here that the actions of ER and the acute administration of 698 

E2 in mouse liver in vivo have particular characteristics. Another important outcome of this study is 699 

the fact that ER is not absolutely required for the basal expression of the majority of the E2-sensitive 700 

genes in the liver and that it appears to be dispensable for the establishment and/or maintenance of 701 

chromatin modifications at the majority of its binding sites, where other TFs such as Hn4α may 702 

preserve functional competence. In contrast, ER was found required for the binding of the Foxa2 703 

factor. Taken together, together, our results indicate that the loss of ER expression in livers from 704 

ERKO mice affects the distribution of H3K4me2-enriched nucleosomes around both ER BSs and 705 

Foxa2 BSs. The underlying mechanisms still remain to be understood, although they are likely 706 

independent of the transcriptional regulation of chromatin actors. Importantly, besides its genomic 707 

influences, ER exerts membrane- and/or cytoplasmic-based actions on intracellular kinase 708 

transduction pathways (109). Hence, it would be interesting to test whether ER could regulate the 709 

activity of Foxa2 or H3K4 methylases at the post-translational level in liver using specific mouse 710 

models expressing ER forms devoid of either nuclear- (110,111) or membrane-based regulatory 711 

abilities (112,113).  712 
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FIGURE LEGENDS 1067 

Figure 1. Characterization of the E2-dependent genes in livers from ERWT and ERKO mice. A, 1068 

Heatmap illustrating the mean expression values determined for E2-sensitive genes (left side) in 1069 

placebo- (P) and 17β estradiol (E2)-treated ERWT animals or for genes whose expression was 1070 

different between placebo-treated ERWT and ERKO mice (right side). Each column corresponds to 1071 

data obtained for one animal. For the sake of clarity, expression values for each gene were normalized 1072 

by the mean and standard deviation. The percentages of up- and down-regulated genes are indicated 1073 

on the sides of each heatmap. B, Venn diagram depicting the overlap between genes regulated by E2 1074 

in ERWT livers and genes whose expression differed between ERWT and ERKO mice. 1075 

Figure 2. Characterization of the ER cistrome in mouse liver. A, ER ChIP-seq experiments were 1076 

performed on chromatin prepared from placebo- (P) or E2-treated ERWT and ERKO livers. We 1077 

systematically used different p-values at the peak-calling step to determine the ER cistrome under the 1078 

different conditions. This panel represents the number of identified ER BSs as a function of the p-1079 

values used. The color code used in panel A is the same for the next ones. B, Overlap of the different 1080 

ER cistromes obtained at diverse p-values. C, Venn diagram illustrating the common and specific ER 1081 

BSs using ER cistromes determined at a p-value of 10
-5

. D, Heatmap representation of the ChIP-seq 1082 

signal aligned to the center of ER BSs clustered depending on their overlap determined in panel C. E, 1083 

Mean ER ChIP-seq signals obtained in ERWT or ERKO mouse livers at the 150 center base pairs of 1084 

the BSs categories indicated beneath the graph. The upper histogram shows mean values ± SD 1085 

measured on the sites of interest whilst the bottom graph shows mean values ± SD of 10 trials carried 1086 

out on 10 different sets of a corresponding number of random sites. 1087 

Figure 3. Validation of ER BSs. (A and B) ER ChIP-qPCR experiments were performed on livers 1088 

from independent animals (numbers on the top of the panel) to validate ChIP-seq data. In Panel A, a 1089 

fraction of the pool of DNA that was subjected to high-throughput sequencing (HTS) was used as a 1090 

control. We used two panels of antibody: one directed against the C-terminal region of ER (left side 1091 

of panels A and B) and the other targeting the N-terminal domain of the protein (A and B, right side). 1092 

The mobilization of ER was evaluated on a series of genomic regions representing clusters of ER BSs 1093 

engaged by ER in the presence of E2 or not (#1) or BSs specific for ERKO (#2) or ERWT P (#3) 1094 
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conditions. The results of these experiments are illustrated as a heatmap of values normalized to those 1095 

of the promoter of the Rplp0 gene, which is an ER-negative region. We also used additional negative 1096 

and positive controls, located nearby the E2-sensitive Gdf15 gene: Gdf15.2 and Gdf15.3, respectively. 1097 

In panel B, the results of the experiments were hierarchically clustered to improve the clarity of the 1098 

heatmap. The distance metric expressed as Pearson correlation is indicated on the right side of the 1099 

panel. N.D stands for not determined. 1100 

Figure 4. Specific features of the ER cistrome in mouse liver. A, Distribution of ER BSs determined 1101 

in E2- or placebo-treated ERWT mouse liver towards annotated gene promoters and TTSs, exons and 1102 

introns, and intergenic (distal) regions. B, Number of ER BSs located within a 1kb or 3kb window 1103 

around the TSS of annotated genes in ERWT (P+E2) mouse liver when compared to ER binding data 1104 

obtained in human breast cancer MCF-7 cells. Calculations were also made using an equivalent 1105 

number of random regions with similar characteristics than the test ER cistrome determined in ERWT 1106 

livers. C, Bar chart summarizing the distribution of distances separating E2-regulated genes in breast 1107 

cancer cell lines or in ERWT mice liver or ER-dependent genes from their closest ER BS. Results are 1108 

expressed as the percentage of the total population of genes considered. D, Fold-changes in gene 1109 

expression by E2 in MCF-7 and ERWT mouse liver and in ERKO vs. ERWT liver are expressed as a 1110 

function of their proximity to an ER BS. Distribution of values are depicted within the left part of the 1111 

panel, while means ± SD are plotted on the right side of the panel. 1112 

Figure 5. Coordinated changes in H3K4me2 and H3K27ac levels at promoters of ER-dependent 1113 

genes. A, Alignment of H3K4me2 and H3K27ac ChIP-seq signals generated from chromatin prepared 1114 

from E2-treated livers of ERWT (red line) or ERKO (blue line) mice on a -5kbp/+5kbp window 1115 

around the center of the ER BSs. B and C, Mean H3K4me2 and H3K27ac ChIP-seq signals at a -1116 

500/+500 bp window around the center of ERBSs (B) or within a 4 kb window centered around the 1117 

TSS of genes with lower or higher expression in ERKO livers (down-or up-regulated, respectively). D, 1118 

The fold-change of mean H3K27 values calculated for each of the promoters of down-or up-regulated 1119 

genes in ERKO livers are plotted against variations of mean H3K4me2 signals. Values shown are 1120 

expressed as the log2 of the fold-changes. 1121 
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Figure 6. Affected profile of H3K4me2 enrichment of a fraction of ERBSs in ERKO livers. A, 1122 

Heatmap representation of a k-mean clusterization of H3K4me2 and H3K27ac ChIP-seq signals 1123 

obtained in ERWT and ERKO mice livers on ERWT ER BSs. The distribution of clustered ER BSs 1124 

towards annotated genes’ transcriptional start and termination sites (TSS and TTS, respectively), 1125 

intragenic and intergenic (Distal) regions is indicated on the right side of each clusters, as well as the 1126 

numbers of genomic sites within each cluster. B, Alignments of H3K4me2 and H3K27ac ChIP-seq 1127 

mean signals within a -5kbp/+5kbp window centered on ER BSs of each clusters as defined from the 1128 

k-mean analysis. Signals obtained in E2-treated livers of ERWT or ERKO mice are illustrated as a red 1129 

or blue line, respectively. Insets represent magnified views of the center of the graphs and illustrate 1130 

the observed shift from biphasic to monophasic curves of enrichment in H3K4me2. 1131 

Figure 7. Chromatin status of ER BSs in ERWT and ERKO mouse livers. A, Independent anti- 1132 

H3K4me1, H3K4me2 and H3K27ac ChIP-qPCR experiments were performed to validate ChIP-seq 1133 

data. The presence of these marks on ER BSs from series #1 and #3, as defined in Fig. 3, is depicted 1134 

within the illustrated heatmaps. Numbers on the top refer to the animals from which the chromatin 1135 

preparations originated. Experiments were done twice per individual. Mean enrichment values 1136 

calculated per individual are shown as normalized to a control negative ChIP experiment using the 1137 

same chromatin samples. B, Heatmap illustrating the mean enrichment of indicated ER BSs in 5-mC 1138 

and 5-hmC as tested by MeDIP- and hMeDIP-qPCR experiments, respectively. The values included 1139 

within these graphs were obtained from three independent experiments performed on two different 1140 

DNA samples originating from two different ERWT or ERKO animals. Data were normalized to 1141 

values obtained using an internal negative control devoid of CpGs. Significant reduced (green) or 1142 

gained (red) enrichment in histone marks or DNA modifications ERKO livers are indicated in the 1143 

heatmaps on the right side of each panels. Calculated p-values from Mann-Whitney t-tests are 1144 

indicated within the heatmap as follows: *< 0.05; **<0.01. 1145 

Figure 8. Overlap of ER and Hnf4α cistromes. A, Overlap of the ER BSs determined in E2-treated 1146 

ERWT livers with those of Hnf4α obtained at diverse p-values. B, Heatmap representation of ER and 1147 

Hnf4α ChIP-seq signals within a -5kbp/+5kbp window centered on ER BSs. Regions are sorted by 1148 

their rank in ER ChIP-seq signal. C, Heatmap representing the overlap between the clusters of ER 1149 
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BSs as determined in Fig. 6 with Hnf4α BSs determined at a p-value of 10
-5

. The numbers indicated 1150 

represent the calculated overlaps.  1151 

Figure 9. The Foxa2 cistrome is partially ER-dependent. A, Foxa2 ChIP-seq experiments were 1152 

performed on chromatin prepared from E2-treated ERWT and ERKO livers. As carried out previously, 1153 

we systematically used different thresholds to determine the number of Foxa2 BSs in each of the 1154 

experimental conditions (orange and grey lines for ERWT and ERKO animals respectively). The 1155 

number of ER BSs in ERWT (red curve) is given as reference. The color code used in panel A is the 1156 

same for the next ones. B, Overlap of the different Foxa2 cistromes at diverse p-values with ER BSs 1157 

or Foxa2 BSs determined in E2-treated ERWT livers (left and middle graphs), or Foxa2 BSs in E2-1158 

treated ERKO livers (right). C, Venn diagram illustrating the overlap of ER BSs with Foxa2 BSs in 1159 

ERWT or ERKO mice at the chosen p-value of 10
-4

. D, Heatmap of Foxa2 normalized ChIP-seq 1160 

signals obtained from ERWT or ERKO chromatin on conserved, lost or gained Foxa2 BSs. E, Mean 1161 

Foxa2 ChIP-seq signals obtained in ERWT or ERKO mouse livers (orange or grey bars, respectively) 1162 

at the 150 center base pairs of Foxa2 BSs. The upper histogram shows mean values ± SD measured 1163 

for conserved, gained or lost sites. Calculations were also carried out for 10 different sets of a 1164 

corresponding number of random sites. Means ± SD of these 10 random trials are illustrated within 1165 

the bottom histogram. F, Anti-Foxa2 ChIP-qPCR experiments were performed on four liver 1166 

chromatin samples originating from independent E2-treated ERWT or ERKO mice. A fraction of the 1167 

pooled DNA sample that was subjected to HTS was also evaluated in parallel. The upper heatmap 1168 

shows the values obtained on indicated tested genomic regions normalized to those obtained from a 1169 

non-specific control (promoter of the Rplp0 gene) and to the control ChIP sample. Significant reduced 1170 

(green) or gained (red) mobilization of Foxa2 in ERKO livers is indicated in the lower heatmap. 1171 

Calculated p-values from Mann-Whitney t-tests are indicated as follows: *< 0.05; **<0.01. 1172 

Figure 10. Chromatin status of Foxa2 BSs in ERWT and ERKO mouse livers. A and B, Alignment of 1173 

mean H3K4me2 (left side of the panel) or H3K27ac signals on categorized Foxa2 BSs. Insets 1174 

represent magnified views of the center of the graphs and illustrate the observed shift from biphasic to 1175 

monophasic curves of enrichment in H3K4me2. C, Heatmap representation of results obtained in 1176 

independent anti H3K4me1, H3K4me2 and H3K27ac ChIP-qPCR experiments. The presence of these 1177 
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marks was followed in livers from ERWT and ERKO animals (numbers on the right refer to 1178 

individuals) at the indicated conserved or lost Foxa2 BSs. Experiments were done twice per individual. 1179 

Mean fold enrichment values shown are expressed as relative to a control negative ChIP experiment 1180 

using the same chromatin samples. D, Summary of MeDIP- and hMeDIP-qPCR assays, illustrated as 1181 

in panel B. The values included within these graphs were obtained in three independent experiments 1182 

performed on two different DNA samples originating from two different ERWT or ERKO animals. 1183 

Significant reduced (green) or gained (red) enrichment in histone marks or DNA modifications in 1184 

ERKO livers are indicated in the lower heatmaps. Calculated p-values from Mann-Whitney t-tests are 1185 

indicated as follows: *< 0.05; **<0.01. 1186 

Figure 11. Multiple TFs may protect Foxa2 BSs from loss-of function in ERKO livers. A, Wordle 1187 

graphics (http://www.wordle.net/website) of enriched motifs for transcription factors binding within 1188 

lost Foxa2 BSs; as determined by the SeqPos algorithm (http://cistrome.org/ap/). B, Overlap of 1189 

categorized Foxa2 BSs with the cistromes of different transcription factors, all determined in mouse 1190 

liver except Nkx3-1 BSs which were identified in mouse prostate. 1191 



Table 1. E2- and ER-dependent liver transcriptomes associated functions. 
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lipid metabolic process 0.063 

regulation of fibroblast growth factor receptor signaling pathway 0.063 

fibroblast growth factor receptor signaling pathway 0.063 

negative regulation of cellular response to growth factor stimulus 0.063 

negative regulation of fibroblast growth factor receptor signaling pathway 0.063 

alcohol metabolic process 0.063 

intracellular signal transduction 0.063 

enzyme linked receptor protein signaling pathway 0.063 

small molecule metabolic process 0.078 

organic substance metabolic process 0.078 

cellular response to fibroblast growth factor stimulus 0.078 

polyol metabolic process 0.078 

response to fibroblast growth factor stimulus 0.078 
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negative regulation of biological process 0.0008 

growth 0.0008 

oxidation-reduction process 0.0008 

negative regulation of cellular process 0.0014 

mammary gland development 0.0014 

regulation of growth 0.0020 

mammary gland alveolus development 0.0052 

mammary gland lobule development 0.0052 

developmental process 0.0052 

positive regulation of cell differentiation 0.0052 

metabolic process 0.0052 

multicellular organismal development 0.0081 

reactive oxygen species metabolic process 0.0081 

negative regulation of growth 0.0081 

lipid metabolic process 0.0090 

positive regulation of reactive oxygen species metabolic process 0.0090 

single-organism metabolic process 0.0090 

positive regulation of developmental process 0.0090 

positive regulation of glucose import 0.0090 

organ development 0.0091 

regulation of body fluid levels 0.0091 

system development 0.0091 

anatomical structure development 0.0091 

regulation of glucose metabolic process 0.0091 

gastrulation with mouth forming second 0.0091 
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 Adipogenesis  (Wiki) 0.0021 

Metabolic pathways (Kegg) 0.0024 

Cytokine-cytokine receptor interaction (Kegg) 0.0036 

E
R

-d
e

p
e

n
d

e
n

t 
(-

E
2

) 

Adipogenesis (Wiki) 6.53e-06 

IL-3 Signaling (Wiki) 2.97e-05 

Leptin Insulin Overlap (Wiki) 5.94e-05 

ErbB signaling (Wiki) 0.0008 

PPAR signaling (Wiki) 0.0022 

IL-6 signaling (Wiki) 0.0032 

Amino Acid metabolism (Wiki) 0.0032 

Androgen Receptor Signaling (Wiki) 0.0035 

Metabolic pathways (Kegg) 2.43e-08 

Adipocytokine signaling (Kegg) 0.0001 

Glycine, serine and threonine metabolism (Kegg) 0.0003 

Fatty acid metabolism (Kegg) 0.0005 

Type II diabetes mellitus (Kegg) 0.0005 

Jak-STAT signaling pathway (Kegg) 0.0009 

Bile secretion (Kegg) 0.0011 

Retinol metabolism (Kegg) 0.0012 

PPAR signaling pathway (Kegg) 0.0012 

Arachidonic acid metabolism (Kegg) 0.0014 

Hepatitis C (Kegg) 0.0042 

Insulin signaling pathway (Kegg) 0.0042 

Functional annotations are shown for GO Biological processes and for a compilation of Wiki and Kegg pathways. Adjusted Bonferroni p-

values are indicated (adjP). 



Table 2. Enriched DNA Motifs in identified ERBSs. 

ERWT E2 ERWT P ERKO 

CentDist SeqPos CentDist SeqPos CentDist SeqPos 
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Factor 

Z-
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ERE 63.3457 ESR1 -54.177 ERE 19.8389 ESR1  -16.769 

No Motif 

identified 

 SREBF1  -2.823 

AR 27.5415 ESR2 -48.709 AR 9.2016 ESR2  -15.407  E2F6  -2.55 

CEBP 19.9196 NR1H4 -41.196 SP1 7.07288 PPARG  -10.533    

CREB 17.3222 NR2F1 -38.985 CREB 6.725 Nr1d2  -9.025    

NF1 14.969 Nr1d2 -35.506 AP2 6.55955 PPARG::RXRA  -7.921    

FOX 14.6542 Rxra -34.347 NRF 6.27122 Rxra  -7.705    

LRH1 14.6223 PPARG -30.851 E2F 6.00375 NR1H4  -7.519    

SP1 13.5031 PPARA -30.684 MINI 5.66217 NR2F1  -7.021    

PAX 13.3069 Esrrb -28.943 HIC1 5.1859 RORB  -6.933    

E2F 13.2217 Nr1d1 -27.169 CEBP 5.1783 Nr1d1  -6.739    

FXR 12.0634 Nr2f2 -25.821 ETS 5.10736 PPARA  -6.595    

AP4 12.014 RORB -25.117 EGR 5.08289 AR  -4.809    

AP2 11.8928 RARA -25.044 SP3 5.00439 Zscan10  -4.476    

HIC1 11.8863 PPARG::RXRA -24.754 ZF5 4.87866 Zfp161  -4.295    

HEN 11.097 ESRRA -23.913 P53 4.82231 EGR3  -4.147    

AP1 10.8325 Hnf4a -23.697 LMAF 4.81312 HMGN1  -4.1    

ARP1 10.6548 NR0B1 -22.347 NF1 4.71645 ZSCAN4  -4.014    

ZF5 10.6078 RXRB -21.033 EBOX 4.64247 NR3C1  -3.894    

MEF3 10.5625 NR4A1 -20.62 GGG 4.44056 Rarg  -3.742    

MINI 10.5463 NR2C2 -20.308 FOX 4.33386 NR0B1  -3.544    

EBOX 10.5284 Rxrg -20.177 CP2 4.1856 GMEB2  -3.438    

MIF1 10.3304 RORA -20.112 SMAD 4.04632 NR2C2  -3.433    

GGG 10.2881 Rarg -19.838 EBF 3.95207 EGR4  -3.42    

SMAD 10.1529 Nr5a2 -19.729 DEAF1 3.93445 Esrrb  -3.401    

LEF 9.80931 Cebpb -18.033 PAX 3.88007 E2F3  -3.353    

HNF1 9.73785 Cebpa -17.783 CAAT 3.86651 MTF1  -3.329    

HNF6 9.55107 CEBPE -17.524 HEN 3.86643 NR3C2  -3.179    

ATCGAT 9.48478 SF1 -16.74 STAT 3.81298 RXRB  -3.161    

BACH 9.09395 AR -16.689 AP4 3.76367 PAX2  -3.14    

CACCC 9.07574 NR6A1 -16.346 DBP 3.75713 Mafb  -3.116    

DBP 8.80169 CEBPD -16.334 SRF 3.58963 E2F2  -3.069    

NRF 8.75417 THRB -15.294 KAISO 3.5676 TP63  -2.723    

VMAF 8.74793 CEBPG -15.105 CACCC 3.55511 PGR  -2.622    

P53 8.57691 NR3C1 -14.897 MEIS1 3.54119 NANOG  -2.603    

LMAF 8.54137 VDR -14.558 IK 3.32866 VDR  -2.529    

CAAT 8.30663 NR3C2 -14.523 LRH1 3.1906 Egr2  -2.509    

CP2 8.17824 NR2F6 -14.179 WT1 3.17195      

  NR4A2 -14.073 ZNF219 3.14613      

  ESRRG -13.415 RFX 3.0712       

  ATF2 -13.373 STAF 2.9954      

  ATF2::JUN -13.185        

  ATF6 -12.984        

  THRA -12.737        

  Jdp2 -12.54        

  THRB -12.515        

  CREB3 -11.811        

  RARB -11.735        

  NFIX -11.73        

  NFIB -11.623        

  ATF4 -10.996        

  NR2E3 -10.893        

  Creb5 -10.694        

  PAX2 -10.551        

  ATF1 -10.415        

  NFIC -10.269        

  BATF3 -10.214        

  ATF7 -10.207        

  Foxa2 -9.851        

  PGR -9.837        

  FOXA1 -9.831         

  Creb3l2 -9.414         

  NR1I2 -9.322         

  NFIL3 -9.241         

  Pax3 -9.197         

 

 

Motif analysis was performed using CentDist (http://biogpu.ddns.comp.nus.edu.sg/~chipseq/webseqtools2) and SePos 

(http://cistrome.org/ap/) algorithms. Sequences were declared enriched by when p-value<0.05  and Z-score>2.5. Only the 

65 best sequences characterized by SeqPos are shown for ERBSs identified in E2-treated ERWT animals. Full analyses are 

depicted in the Supplemental File 3.  



Table 3. Functional annotations of genes proximal to ERBSs from ERWT livers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Functional annotations were determined by GREAT [http://bejerano.stanford.edu/great/public/html/index.php (51)] using basic 

parameters (basal criteria for associating genomic regions with genes). 

 

 

 Term p-value 

M
G

I 
E

x
p

re
ss

io
n

 TS23_liver; lobe 4.22e-40 

TS26_liver 6.67e-32 

TS26_liver and biliary system 1.03e-31 

TS24_liver 1.56e-27 

TS24_liver and biliary system 2.66e-24 

TS15_septum transversum; hepatic component 1.11e-15 

TS23_adrenal gland; medulla 3.13e-13 

G
O

 B
io

lo
g

ic
a

l 
P

ro
ce

ss
 organic acid metabolic process 3.69e-49 

carboxylic acid metabolic process 2.74e-48 

cellular ketone metabolic process 6.43e-48 

lipid metabolic process 7.95e-48 

cellular response to hormone stimulus 1.87e-43 

cellular response to peptide hormone stimulus 1.25e-40 

monocarboxylic acid metabolic process 7.54e-38 

cellular response to insulin stimulus 4.52e-37 

response to peptide hormone stimulus 7.26e-36 

response to insulin stimulus 2.78e-35 

G
O

 M
o

le
cu

la
r 

F
u

n
ct

io
n

 lyase activity 7.09e-15 

monocarboxylic acid binding 4.91e-14 

heme binding 2.99e-13 

apolipoprotein binding 6.24e-13 

transferring acyl groups 5.44e-11 

carboxylic acid binding 1.85e-12 

steroid binding 5.63e-12 

vitamin binding 2.74e-11 

steroid hydroxylase activity 1.69e-10 

ligand-regulated transcription factor activity 1.02e-09 

M
o

u
se

 P
h

e
n

o
ty

p
e

 

abnormal lipid homeostasis 9.28e-75 

abnormal lipid level 1.01e-71 

abnormal circulating lipid level 8.51e-70 

abnormal liver physiology 8.41e-63 

abnormal hepatobiliary system physiology 8.27e-62 

abnormal triglyceride level 4.24e-61 

decreased cholesterol level 1.01e-52 

abnormal circulating cholesterol level 5.19e-52 

abnormal cholesterol level 1.09e-51 

abnormal cholesterol homeostasis 4.65e-50 



Table 4. Enriched DNA Motifs in categorized FoxA2 BSs. 

Conserved  Gained  Lost  

Factor Z-Score Factor Z-Score Factor Z-Score 

Foxa2 -91.617 Foxa2 -23.414 Foxa2 -59.79 

FOXA1 -90.958 FOXA1 -23.058 FOXA1 -59.536 

FOXI1 -81.908 FOXI1 -22.795 FOXI1 -56.216 

Foxg1 -80.449 FOXB1 -21.524 Foxg1 -54.751 

FOXB1 -78.905 FOXP1 -21.512 FOXP1 -52.788 

FOXP1 -78.788 Foxg1 -21.297 Nkx3-1 -52.633 

FOXD2 -75.482 Foxk1 -20.161 FOXB1 -50.984 

FOXD3 -74.081 FOXL1 -19.777 FOXL1 -50.971 

FOXL1 -73.89 FOXD2 -19.095 FOXD2 -48.341 

Nkx3-1 -72.907 Nkx3-1 -18.785 FOXD3 -47.994 

Foxk1 -72.123 FOXD3 -18.614 Foxk1 -47.988 

FOXD1 -70.968 FOXD1 -17.878 FOXD1 -46.354 

FOXC2 -67.3 FOXP3 -17.007 FOXP3 -44.639 

FOXC1 -66.927 FOXO3 -16.517 FOXO3 -43.621 

FOXO3 -66.241 FOXC2 -15.411 FOXC2 -39.98 

FOXP3 -64.662 FOXC1 -14.102 FOXC1 -35.118 

FOXF2 -51.748 FOXF2 -13.535 FOXF2 -34.484 

Foxj1 -51.576 CEBPD -12.481 Foxj1 -33.619 

FOXJ3 -45.412 Cebpb -12.292 Foxf1a -29.292 

Foxf1a -40.616 CEBPE -12.152 FOXJ3 -26.531 

FOXH1 -32.447 Cebpa -11.812 FOXH1 -22.446 

CEBPE -27.482 Foxj1 -11.6 Hnf4a -15.71 

Cebpb -27.19 CEBPG -11.278 Cebpb -15.134 

CEBPA -26.856 FOXJ3 -9.067 CEBPA -14.552 

CEBPD -26.765 Foxf1a -8.978 CEBPE -14.418 

HNF4A -26.219 Hnf4a -8.801 CEBPD -14.338 

Foxq1 -24.216 FOXH1 -8.068 CEBPG -13.844 

CEBPG -22.81 RXRB -7.845 NR2C2 -13.376 

FOXG1 -19.912 RXRA -7.44 Rxrb -12.575 

NR2C2 -19.459 NR2F6 -7.128 NR2F1 -11.973 

FOXJ2 -19.292 PPARA -7.113 Ppara -11.972 

RXRB -19.023 HLF -7.05 NR2F6 -11.776 

NR2F6 -18.985 NFIL3 -6.95 NR1H4 -11.079 

RARA -17.842 RARA -6.798 Nr1d2 -10.656 

NR2F1 -17.813 NR2C2 -6.428 RARA -10.297 

Nr2f2 -16.99 DBP -6.041 Foxq1 -10.091 

NR1H4 -16.511 Nr1d2 -5.836 FOXJ2 -9.851 

NR2E3 -16.142 ATF4 -5.821 Rxra -9.762 

NR4A1 -16.003 NR1H4 -5.659 NFIX -9.739 

Nr1d2 -15.912 NR2F1 -5.438 Nr2f2 -9.385 

Ppara -15.867 ZSCAN4 -5.432 ZSCAN4 -9.131 

SRY -15.493 Pparg -4.988 NFIC -8.927 

ZNF435 -15.351 Nr2f2 -4.944 FOXO6 -8.69 

NFIL3 -15.241 Creb5 -4.864 Zscan10 -8.445 

ESRRA -15.067 NFIB -4.757 NR4A1 -8.393 

ATF4 -14.596 ATF7 -4.756 ESRRA -8.372 

FOXO4 -14.388 TEF -4.756 NFIB -8.199 

FOXO6 -13.684 NR2E1 -4.534 HEY1 -8.186 

NFIC -13.639 Foxq1 -4.379 NR2E3 -8.143 

Rxra -13.167 NFIX -4.329 Esrrb -8.116 

      

 

Motif analysis was performed using SeqPos algorithm (http://cistrome.org/ap/). Sequences were declared enriched by 

when p-value<0.05  and Z-score>2.5. Only the best 50 sequences characterized are shown. Full analyses are depicted in the 

Supplemental File 3. 
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