T. G. Cotter, Apoptosis and cancer: the genesis of a research field, Nature Reviews Cancer, vol.112, issue.7, pp.501-507, 2009.
DOI : 10.1038/nrc2663

G. Putcha, J. Jr, and E. M. , ???Men are but worms:?????? neuronal cell death in C. elegans and vertebrates, Cell Death and Differentiation, vol.11, issue.1, pp.38-48, 2004.
DOI : 10.1038/sj.cdd.4401352

M. Hassan, H. Watari, A. Abualmaaty, Y. Ohba, and N. Sakuragi, Apoptosis and Molecular Targeting Therapy in Cancer, BioMed Research International, vol.298, issue.3, p.150845, 2014.
DOI : 10.1186/1471-2407-12-165

F. H. Igney and P. H. Krammer, DEATH AND ANTI-DEATH: TUMOUR RESISTANCE TO APOPTOSIS, Nature Reviews Cancer, vol.2, issue.4, pp.277-288, 2002.
DOI : 10.1038/nrc776

M. O. Hengartner, The biochemistry of apoptosis, Nature, vol.407, issue.6805, pp.770-776, 2000.
DOI : 10.1038/35037710

N. Morishima, K. Nakanishi, Y. Yasuhiko, and J. B. Chem, An Endoplasmic Reticulum Stress-specific Caspase Cascade in Apoptosis. CYTOCHROME c-INDEPENDENT ACTIVATION OF CASPASE-9 BY CASPASE-12, Journal of Biological Chemistry, vol.277, issue.37, pp.34287-34294, 2002.
DOI : 10.1074/jbc.M204973200

M. J. Bissell and W. Hines, Why don't we get more cancer? A proposed role of the microenvironment in restraining cancer progression, Nature Medicine, vol.23, issue.3, pp.320-329, 2011.
DOI : 10.1038/nm.2328

S. Elmore, Apoptosis: A Review of Programmed Cell Death, Toxicologic Pathology, vol.135, issue.2, pp.495-516, 2007.
DOI : 10.1016/S0092-8674(00)81382-3

R. J. Youle and A. Strasser, The BCL-2 protein family: opposing activities that mediate cell death, Nature Reviews Molecular Cell Biology, vol.94, issue.1, pp.47-59, 2008.
DOI : 10.1038/nrm2308

S. W. Lowe and W. Lin, Apoptosis in cancer, Carcinogenesis, vol.21, issue.3, pp.485-495, 2000.
DOI : 10.1093/carcin/21.3.485

K. Nakamura, Changes in Endoplasmic Reticulum Luminal Environment Affect Cell Sensitivity to Apoptosis, The Journal of Cell Biology, vol.15, issue.4, pp.731-771, 2000.
DOI : 10.1126/science.272.5262.738

H. Okada and T. W. Mak, Pathways of apoptotic and non-apoptotic death in tumour cells, Nature Reviews Cancer, vol.21, issue.8, pp.592-603, 2004.
DOI : 10.1038/nrc1412

A. Salminen, J. Ojala, and K. Kaarniranta, Apoptosis and aging: increased resistance to apoptosis enhances the aging process, Cellular and Molecular Life Sciences, vol.20, issue.6, pp.1021-1031, 2011.
DOI : 10.1007/s00018-010-0597-y

G. Jacquemin, Quercetin-mediated Mcl-1 and survivin downregulation restores TRAIL-induced apoptosis in non-Hodgkin's lymphoma B cells, Haematologica, vol.97, issue.1, pp.38-46, 2012.
DOI : 10.3324/haematol.2011.046466

B. Zhivotovsky and S. Orrenius, Cell death mechanisms: Cross-talk and role in disease, Experimental Cell Research, vol.316, issue.8, pp.1374-1383, 2010.
DOI : 10.1016/j.yexcr.2010.02.037

R. Kim, Recent advances in understanding the cell death pathways activated by anticancer therapy, Cancer, vol.98, issue.8, pp.1551-1560, 2005.
DOI : 10.1002/cncr.20947

C. Holohan, S. Van-schaeybroeck, D. B. Longley, and P. G. Johnston, Cancer drug resistance: an evolving paradigm, Nature Reviews Cancer, vol.14, issue.10, pp.714-726, 2013.
DOI : 10.1038/nrc3599

M. M. Gottesman, T. Fojo, and S. E. Bates, MULTIDRUG RESISTANCE IN CANCER: ROLE OF ATP-DEPENDENT TRANSPORTERS, Nature Reviews Cancer, vol.2, issue.1, pp.48-58, 2002.
DOI : 10.1038/nrc706

U. Sartorius and P. Krammer, Upregulation of bcl-2 is involved in the mediation of chemotherapy resistance in human small cell lung cancer cell lines, International Journal of Cancer, vol.56, issue.5, pp.584-592, 2002.
DOI : 10.1002/ijc.10096

Y. Zhao, Glycogen Synthase Kinase 3?? and 3?? Mediate a Glucose-Sensitive Antiapoptotic Signaling Pathway To Stabilize Mcl-1, Molecular and Cellular Biology, vol.27, issue.12, pp.4328-4339, 2007.
DOI : 10.1128/MCB.00153-07

L. Flanagan, XIAP impairs Smac release from the mitochondria during apoptosis, Cell Death & Disease, vol.30, issue.6, p.49, 2010.
DOI : 10.1038/cddis.2010.26

L. Flanagan, High levels of X-linked Inhibitor-of-Apoptosis Protein (XIAP) are indicative of radio chemotherapy resistance in rectal cancer, Radiation Oncology, vol.111, issue.8, p.131, 2015.
DOI : 10.1186/s13014-015-0437-1

J. S. Riley, Prognostic and therapeutic relevance of FLIP and procaspase-8 overexpression in non-small cell lung cancer, Cell Death and Disease, vol.9, issue.12, p.951, 2013.
DOI : 10.1016/0065-2571(84)90007-4

K. Kim, A novel in vitro model of human mesothelioma for studying tumor biology and Page, p.24

L. A. Liotta and E. C. Kohn, The microenvironment of the tumour-host interface, Nature, vol.411, issue.6835, pp.375-379, 2001.
DOI : 10.1038/35077241

M. H. Barcellos-hoff and S. Ravani, Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells, Cancer Res, vol.60, pp.1254-1260, 2000.

G. Khan, Epstein-Barr virus, cytokines, and inflammation: A cocktail for the pathogenesis of Hodgkin's lymphoma?, Experimental Hematology, vol.34, issue.4, pp.399-406, 2006.
DOI : 10.1016/j.exphem.2005.11.008

E. M. Maggio, Common and differential chemokine expression patterns in rs cells of NLP, EBV positive and negative classical hodgkin lymphomas, International Journal of Cancer, vol.9, issue.5, pp.665-672, 2002.
DOI : 10.1002/ijc.10399

M. Fischer, Expression of CCL5/RANTES by Hodgkin and Reed-Sternberg cells and its possible role in the recruitment of mast cells into lymphomatous tissue, International Journal of Cancer, vol.37, issue.Suppl 1, pp.197-201, 2003.
DOI : 10.1002/ijc.11370

C. Hedvat, Macrophage-Derived Chemokine Expression in Classical Hodgkin???s Lymphoma: Application of Tissue Microarrays, Modern Pathology, vol.14, issue.12, pp.1270-1276, 2001.
DOI : 10.1038/modpathol.3880473

R. Stein, Antiproliferative activity of a humanized anti-CD74 monoclonal antibody, hLL1, on B-cell malignancies, Blood, vol.104, issue.12, pp.3705-3711, 2004.
DOI : 10.1182/blood-2004-03-0890

H. Hanamoto, Expression of CCL28 by Reed-Sternberg Cells Defines a Major Subtype of Classical Hodgkin's Disease with Frequent Infiltration of Eosinophils and/or Plasma Cells, The American Journal of Pathology, vol.164, issue.3, pp.997-1006, 2004.
DOI : 10.1016/S0002-9440(10)63187-2

U. Kapp, Interleukin 13 Is Secreted by and Stimulates the Growth of Hodgkin and Reed-Sternberg Cells, The Journal of Experimental Medicine, vol.3, issue.12, pp.1939-1985, 1999.
DOI : 10.1084/jem.182.6.1655

B. F. Skinnider, Interleukin 13 and interleukin 13 receptor are frequently expressed by Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma, Blood, vol.97, issue.1, pp.250-255, 2001.
DOI : 10.1182/blood.V97.1.250

F. Jundt, Reed-Sternberg cells induce fibroblasts to secrete eotaxin, a potent chemoattractant for T cells and eosinophils, Blood, vol.94, pp.2065-71, 1999.

D. T. Umetsu, L. Esserman, T. A. Donlon, R. H. Dekruyff, and R. Levy, Induction of proliferation of human follicular (B type) lymphoma cells by cognate interaction with CD4+ T cell clones, J. Immunol, vol.144, pp.2550-2557, 1990.

B. Schiemann, An Essential Role for BAFF in the Normal Development of B Cells Through a BCMA-Independent Pathway, Science, vol.293, issue.5537, pp.2111-2114, 2001.
DOI : 10.1126/science.1061964

J. Moreaux, J. Veyrune, J. De-vos, and B. Klein, APRIL is overexpressed in cancer: link with tumor progression, BMC Cancer, vol.23, issue.10, p.83, 2009.
DOI : 10.1200/JCO.2005.03.134

URL : https://hal.archives-ouvertes.fr/inserm-00369505

P. Amé-thomas, Human mesenchymal stem cells isolated from bone marrow and lymphoid organs support tumor B-cell growth: role of stromal cells in follicular lymphoma pathogenesis, Blood, vol.109, issue.2, pp.693-702, 2007.
DOI : 10.1182/blood-2006-05-020800

C. Dierks, Essential role of stromally induced hedgehog signaling in B-cell malignancies, Nature Medicine, vol.8, issue.8, pp.944-951, 2007.
DOI : 10.1038/nm1614

T. Lwin, Lymphoma cell adhesion-induced expression of B cell-activating factor of the TNF family in bone marrow stromal cells protects non-Hodgkin's B lymphoma cells from apoptosis, Leukemia, vol.107, issue.1, pp.170-177, 2009.
DOI : 10.1038/leu.2008.266

K. S. Subramaniam, Cancer-Associated Fibroblasts Promote Proliferation of Endometrial Cancer Cells, PLoS ONE, vol.119, issue.7, p.68923, 2013.
DOI : 10.1371/journal.pone.0068923.s003

Y. Mao, E. T. Keller, D. H. Garfield, K. Shen, and J. W. , Stromal cells in tumor microenvironment and breast cancer, Cancer and Metastasis Reviews, vol.18, issue.2, pp.303-315, 2013.
DOI : 10.1007/s10555-012-9415-3

X. Huang, Expression of HLA Class I and HLA Class II by Tumor Cells in Chinese Classical Hodgkin Lymphoma Patients, PLoS ONE, vol.71, issue.5, p.10865, 2010.
DOI : 10.1371/journal.pone.0010865.t004

E. Schuuring, Extensive genetic alterations of the HLA region , including homozygous deletions of HLA class II genes in B-cell lymphomas arising in Extensive genetic alterations of the HLA region , including homozygous deletions of HLA class II genes in B-cell lymphoma, pp.3569-3577, 2014.

M. Challa-malladi, Combined Genetic Inactivation of ??2-Microglobulin and CD58 Reveals Frequent Escape from Immune Recognition in Diffuse Large B Cell Lymphoma, Cancer Cell, vol.20, issue.6, pp.728-768, 2011.
DOI : 10.1016/j.ccr.2011.11.006

A. Diepstra, HLA-G protein expression as a potential immune escape mechanism in classical Hodgkin???s lymphoma, Tissue Antigens, vol.87, issue.3, pp.219-226, 2008.
DOI : 10.1016/j.humimm.2003.08.357

C. S. Verbeke, U. Wenthe, R. Grobholz, and H. Zentgraf, Fas Ligand Expression in Hodgkin Lymphoma, The American Journal of Surgical Pathology, vol.25, issue.3, pp.388-94, 2001.
DOI : 10.1097/00000478-200103000-00014

G. Dotti, Human cytotoxic T lymphocytes with reduced sensitivity to Fas-induced apoptosis, Blood, vol.105, issue.12, pp.4677-84, 2005.
DOI : 10.1182/blood-2004-08-3337

M. R. Green, Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma, Blood, vol.116, issue.17, pp.3268-3277, 2010.
DOI : 10.1182/blood-2010-05-282780

R. Yamamoto, PD-1 PD-1 ligand interaction contributes to immunosuppressive microenvironment Page

L. M. Francisco, PD-L1 regulates the development, maintenance, and function of induced regulatory T cells, The Journal of Experimental Medicine, vol.63, issue.13, pp.3015-3029, 2009.
DOI : 10.1016/j.molimm.2007.08.013

Z. Yang, A. J. Novak, S. C. Ziesmer, T. E. Witzig, and S. M. Ansell, Attenuation of CD8+ T-Cell Function by CD4+CD25+ Regulatory T Cells in B-Cell Non-Hodgkin's Lymphoma, Cancer Research, vol.66, issue.20, pp.10145-10152, 2006.
DOI : 10.1158/0008-5472.CAN-06-1822

P. Ame-thomas, Characterization of intratumoral follicular helper T cells in follicular lymphoma: role in the survival of malignant B cells, Leukemia, vol.24, issue.5, pp.1053-1063, 2012.
DOI : 10.1038/leu.2011.301

URL : https://hal.archives-ouvertes.fr/inserm-00666043

L. Cattaruzza, Functional coexpression of Interleukin (IL)-7 and its receptor (IL-7R) on Hodgkin and Reed-Sternberg cells: Involvement of IL-7 in tumor cell growth and microenvironmental interactions of Hodgkin's lymphoma, International Journal of Cancer, vol.13, issue.5, pp.1092-1101, 2009.
DOI : 10.1002/ijc.24389

H. Herbst, Frequent expression of interleukin-10 by Epstein-Barr virus-harboring tumor cells of Hodgkin's disease, Blood, vol.87, pp.2918-2947, 1996.

E. D. Flick, K. A. Chan, P. M. Bracci, and E. A. Holly, Original Contribution Use of Nonsteroidal Antiinflammatory Drugs and Non-Hodgkin Lymphoma : A Population-based Case-Control Study, pp.497-504, 2006.

G. A. Fitzgerald, COX-2 and beyond: approaches to prostaglandin inhibition in human disease, Nature Reviews Drug Discovery, vol.5, issue.11, pp.879-890, 2003.
DOI : 10.1038/384644a0

T. Wun, H. Mcknight, and J. M. Tuscano, Increased cyclooxygenase-2 (COX-2): a potential role in the pathogenesis of lymphoma, Leukemia Research, vol.28, issue.2, pp.179-190, 2004.
DOI : 10.1016/S0145-2126(03)00183-8

A. Gallouet, COX-2-Independent Effects of Celecoxib Sensitize Lymphoma B Cells to TRAIL-Mediated Apoptosis, Clinical Cancer Research, vol.20, issue.10, pp.2663-2673, 2014.
DOI : 10.1158/1078-0432.CCR-13-2305

URL : https://hal.archives-ouvertes.fr/hal-00974518

S. Paydas, M. Ergin, G. Seydaoglu, S. Erdogan, and S. Yavuz, Pronostic significance of angiogenic/lymphangiogenic, anti-apoptotic, inflammatory and viral factors in 88 cases with diffuse large B cell lymphoma and review of the literature, Leukemia Research, vol.33, issue.12, pp.1627-1662, 2009.
DOI : 10.1016/j.leukres.2009.02.015

D. Wang and R. N. Dubois, Eicosanoids and cancer, Nature Reviews Cancer, vol.133, issue.3, pp.181-193, 2010.
DOI : 10.1038/nrc2809

A. Shehzad, J. Lee, and Y. S. Lee, signaling promotes promonocytic leukemia cell survival via COX-2 expression and MAPK pathway, BMB Reports, vol.48, issue.2, pp.109-114, 2015.
DOI : 10.5483/BMBRep.2015.48.2.081

H. Mizuno, Mast cells promote the growth of Hodgkin's lymphoma cell tumor by modifying the tumor microenvironment that can be perturbed by bortezomib, Leukemia, vol.22, issue.10, pp.2269-76, 2012.
DOI : 10.1038/leu.2012.81

H. Han, Early growth response gene (EGR)-1 regulates leukotriene D4-induced cytokine transcription in Hodgkin lymphoma cells, Prostaglandins & Other Lipid Mediators, vol.121, issue.9, 2015.
DOI : 10.1016/j.prostaglandins.2015.06.004

W. Zhang, Leukotriene B4 receptor inhibitor LY293111 induces cell cycle arrest and apoptosis in human anaplastic large-cell lymphoma cells via JNK phosphorylation, Leukemia, vol.17, issue.11, pp.1977-84, 2005.
DOI : 10.1016/0006-2952(95)00078-E

H. Ji, TNFR1 mediates TNF-??-induced tumour lymphangiogenesis and metastasis by modulating VEGF-C-VEGFR3 signalling, Nature Communications, vol.2, p.4944, 2014.
DOI : 10.1038/ncomms5944

A. Acebes-huerta, Lenalidomide Induces Immunomodulation in Chronic Lymphocytic Leukemia and Enhances Antitumor Immune Responses Mediated by NK and CD4 T Cells, BioMed Research International, vol.25, issue.9, p.265840, 2014.
DOI : 10.1038/onc.2009.117

C. P. Pallasch, Sensitizing Protective Tumor Microenvironments to Antibody-Mediated Therapy, Cell, vol.156, issue.3, pp.590-602, 2014.
DOI : 10.1016/j.cell.2013.12.041

K. Hariharan, Galiximab (anti-CD80)-induced growth inhibition and prolongation of survival in vivo of B-NHL tumor xenografts and potentiation by the combination with fludarabine, Int. J. Oncol, vol.43, pp.670-676, 2013.

A. Younes, A pilot study of rituximab in patients with recurrent, classic Hodgkin disease, Cancer, vol.98, issue.2, pp.310-314, 2003.
DOI : 10.1002/cncr.11511

J. Ruan, Imatinib disrupts lymphoma angiogenesis by targeting vascular pericytes, Blood, vol.121, issue.26, pp.5192-5202, 2013.
DOI : 10.1182/blood-2013-03-490763

S. Bhatt, CD30 targeting with brentuximab vedotin: a novel therapeutic approach to primary effusion lymphoma, Blood, vol.122, issue.7, pp.1233-1242, 2013.
DOI : 10.1182/blood-2013-01-481713

A. Orimo and R. A. Weinberg, Stromal Fibroblasts in Cancer: A Novel Tumor-Promoting Cell Type, Cell Cycle, vol.5, issue.15, pp.1597-1601, 2006.
DOI : 10.4161/cc.5.15.3112

J. Juarez, CXCR4 antagonists mobilize childhood acute lymphoblastic leukemia cells into the peripheral blood and inhibit engraftment, Leukemia, vol.106, issue.6, pp.1249-1257, 2007.
DOI : 10.1038/sj.leu.2402608

B. Y. Chang, Egress of CD19+CD5+ cells into peripheral blood following treatment with the Bruton tyrosine kinase inhibitor ibrutinib in mantle cell lymphoma patients, Blood, vol.122, issue.14, pp.2412-2424, 2013.
DOI : 10.1182/blood-2013-02-482125

M. Castells, Implication of tumor microenvironment in chemoresistance: Tumor-associated