C. Sonntag and U. Von-gunten, Chemistry of Ozone in Water and Wastewater Treatment: From Basic Principles to Applications, Water Intelligence Online, vol.11, p.2012
DOI : 10.2166/9781780400839

U. Gunten, Ozonation of drinking water: Part I. Oxidation kinetics and product formation, Water Research, vol.37, issue.7
DOI : 10.1016/S0043-1354(02)00457-8

F. J. Beltrán, Ozone Reaction Kinetics for Water and Wastewater Systems, 2004.

E. M. Aieta and P. Roberts, Application of mass-transfer theory to the kinetics of a fast gas-liquid reaction: chlorine hydrolysis, Environmental Science & Technology, vol.20, issue.1, p.44, 1986.
DOI : 10.1021/es00143a004

S. Ebrahimi, C. Picioreanu, R. Kleerebezem, J. J. Heijnen, and M. C. Van-loosdrecht, Rate-Based Modelling of SO 2 Absorption into Aqueous NaHCO 3 /Na 2 CO 3 Solutions Accompanied by the Desorption of CO 2, Chem. Eng. Sci, pp.58-3589, 2003.

G. Jing, L. Zhou, and Z. Zhou, Characterization and kinetics of carbon dioxide absorption into aqueous tetramethylammonium glycinate solution, Chemical Engineering Journal, vol.181, issue.182, pp.181-182
DOI : 10.1016/j.cej.2011.11.007

Y. Jia, Q. Zhong, X. Fan, and X. Wang, Kinetics of oxidation of total sulfite in the ammonia-based wet flue gas desulfurization process, Chemical Engineering Journal, vol.164, issue.1, p.132, 2010.
DOI : 10.1016/j.cej.2010.08.041

L. Kucka, E. Y. Kenig, and A. Gorak, Kinetics of the Gas???Liquid Reaction between Carbon Dioxide and Hydroxide Ions, Industrial & Engineering Chemistry Research, vol.41, issue.24, pp.41-5952, 2002.
DOI : 10.1021/ie020452f

P. D. Vaidya and E. Kenig, Absorption of CO 2 into Aqueous Blends of Alkanolamines Prepared from Renewable Resources, Chem. Eng. Sci, issue.11, pp.62-7344, 2007.

P. D. Vaidya and E. Kenig, Absorption Kinetics by Aqueous Solutions of N,N-Diethylethanolamine and N-Ethylethanolamine, Chemical Engineering & Technology, vol.26, issue.4, p.556, 2009.
DOI : 10.1002/ceat.200800573

G. Versteeg, L. Van-dijck, and W. Van-swaaij, AND ALKANOLAMINES BOTH IN AQUEOUS AND NON-AQUEOUS SOLUTIONS. AN OVERVIEW, Chemical Engineering Communications, vol.43, issue.1, p.113, 1996.
DOI : 10.1016/0009-2509(86)87020-8

R. Littel, W. Van-swaaij, and G. Versteeg, Kinetics of Carbon Dioxide with tertiary Amines in aqueous solution, AIChE Journal, vol.36, issue.11, p.1633, 1999.
DOI : 10.1002/aic.690361103

J. Vilmain, V. Courousse, P. Biard, M. Azizi, and A. Couvert, Kinetic study of hydrogen sulfide absorption in aqueous chlorine solution, Chemical Engineering Research and Design, vol.92, issue.2, p.92, 0191.
DOI : 10.1016/j.cherd.2013.07.015

URL : https://hal.archives-ouvertes.fr/hal-00875684

L. Kucka, J. Richter, E. Y. Kenig, and A. Górak, Determination of gas???liquid reaction kinetics with a stirred cell reactor, 17) Vaidya, P. D.; Kenig, E. Y. Gas?Liquid Reaction Kinetics: A Review of Determination Methods, p.163, 2003.
DOI : 10.1016/S1383-5866(02)00179-X

F. J. Beltrán, L. A. Fernández, P. Álvarez, and E. Rodriguez, Comparison Of Ozonation Kinetic Data From Film and Danckwerts Theories, Ozone: Science & Engineering, vol.20, issue.5, p.403, 1998.
DOI : 10.1080/10874506.01919512.1998

J. L. Sotelo, F. J. Beltrán, and M. Gonzalez, Ozonation of aqueous solutions of resorcinol and phloroglucinol. 1. Stoichiometry and absorption kinetic regime, Industrial & Engineering Chemistry Research, vol.29, issue.12, 1990.
DOI : 10.1021/ie00108a009

J. L. Sotelo, F. J. Beltrán, M. Gonzalez, and J. Garcia-araya, Ozonation of aqueous solutions of resorcinol and phloroglucinol. 2. Kinetic study, Industrial & Engineering Chemistry Research, vol.30, issue.1, p.222, 1991.
DOI : 10.1021/ie00049a034

S. C. Cardona, F. López, A. Abad, and J. Navarro-laboulais, On bubble column reactor design for the determination of kinetic rate constants in gas-liquid systems, The Canadian Journal of Chemical Engineering, vol.86, issue.1, p.491, 2010.
DOI : 10.1007/s11144-005-0292-4

F. J. Beltrán, P. M. Alvarez, B. Legube, and H. Allemane, Chemical degradation of aldicarb in water using ozone, Journal of Chemical Technology AND Biotechnology, vol.2, issue.3, pp.62-272, 1995.
DOI : 10.1002/aic.690010222

E. B. Rinker, S. S. Ashour, M. C. Johnson, G. J. Kott, R. G. Rinker et al., Kinetics of the aqueous-phase reaction between ozone and 2,4,6-trichlorophenol, AIChE Journal, vol.28, issue.8, p.1802, 1999.
DOI : 10.1002/aic.690450815

V. Augugliaro and L. Rizzuti, The pH dependence of the ozone absorption kinetics in aqueous phenol solutions, Chemical Engineering Science, vol.33, issue.11, pp.33-1441, 1978.
DOI : 10.1016/0009-2509(78)85193-8

R. Littel, G. Versteeg, and W. Van-swaaij, Physical absorption into non-aqueous solutions in a stirred cell reactor, Chemical Engineering Science, vol.46, issue.12, p.3308, 1991.
DOI : 10.1016/0009-2509(91)85036-W

URL : http://doc.utwente.nl/73001/1/Littel91physical.pdf

G. Versteeg and P. Blauwhoff, Van Swaaij, W. The Effect of Diffusivity on Gas-Liquid Mass Transfer in Stirred Vessels. Experiments at Atmospheric and Elevated Pressures, Chem. Eng. Sci, p.42, 1103.

C. Luzi, S. Bressa, G. Mazza, and G. Barreto, A supporting formulation for introducing gas???liquid reactions, Education for Chemical Engineers, vol.9, issue.3, p.50
DOI : 10.1016/j.ece.2014.04.001

A. K. Bin and M. Roustan, Mass Transfer in Ozone Reactors. Presented at the IOA International specialised symposium, fundamental and engineering concepts for ozone reactor design, pp.99-131, 2000.

P. Mandel, Modelling Ozonation Processes for Disinfection by-Product Control in Potable Water Treatment : From Laboratory to Industrial Units, 2010.
URL : https://hal.archives-ouvertes.fr/tel-00564767

B. Thienpont, A. Tingaud-sequeira, E. Prats, C. Barata, P. J. Babin et al., Zebrafish Eleutheroembryos Provide a Suitable Vertebrate Model for Screening Chemicals that Impair Thyroid Hormone Synthesis, Environmental Science & Technology, vol.45, issue.17, p.7525, 2011.
DOI : 10.1021/es202248h

H. Bader and J. Hoigne, Determination of ozone in water by the indigo method, Water Research, vol.15, issue.4, pp.15-1573, 1981.
DOI : 10.1016/0043-1354(81)90054-3

A. Ortiz, L. M. Galán, D. Gorri, A. B. De-haan, and I. Ortiz, Kinetics of reactive absorption of propylene in RTIL-Ag+ media, Separation and Purification Technology, vol.73, issue.2, pp.73-106, 2010.
DOI : 10.1016/j.seppur.2010.03.008

M. Roustan, Transferts Gaz-Liquide Dans Les Procédés De Traitement Des Eaux Et Des Effluents Gazeux, 2003.

J. Rejl, V. Linek, T. Moucha, and L. Valenz, Methods standardization in the measurement of mass-transfer characteristics in packed absorption columns, Chemical Engineering Research and Design, vol.87, issue.5, pp.40-76, 2007.
DOI : 10.1016/j.cherd.2008.09.009

Q. Liu, L. M. Schurter, C. E. Muller, S. Aloisio, J. S. Francisco et al., Kinetics and Mechanisms of Aqueous Ozone Reactions with Bromide, Sulfite, Hydrogen Sulfite, Iodide, and Nitrite Ions, Inorg. Chem, pp.40-4436, 2001.

W. J. Decoursey, Absorption with chemical reaction: development of a new relation for the Danckwerts model, Chemical Engineering Science, vol.29, issue.9, pp.29-1867, 1974.
DOI : 10.1016/0009-2509(74)85003-7

P. Biard and A. Couvert, Overview of mass transfer enhancement factor determination for acidic and basic compounds absorption in water, Chemical Engineering Journal, vol.222, p.444, 2013.
DOI : 10.1016/j.cej.2013.02.071

URL : https://hal.archives-ouvertes.fr/hal-00904227

P. N. Johnson and R. A. Davis, Diffusivity of Ozone in Water, Journal of Chemical & Engineering Data, vol.41, issue.6, pp.41-1485, 1996.
DOI : 10.1021/je9602125

W. J. Masschelein, Fundamental Properties of Ozone in Relation to Water Sanitation and Environmental Applications. Presented at the IOA International specialised symposium, fundamental and engineering concepts for ozone reactor design, pp.1-21, 2000.

E. C. Fuller and R. H. Crist, The Rate of Oxidation of Sulfite Ions by Oxygen, Journal of the American Chemical Society, vol.63, issue.6, p.1644, 1941.
DOI : 10.1021/ja01851a041

P. M. Wilkinson, B. Doldersum, P. H. Cramers, and L. L. Van-dierendonck, The kinetics of uncatalyzed sodium sulfite oxidation, Chemical Engineering Science, vol.48, issue.5, pp.48-933, 1993.
DOI : 10.1016/0009-2509(93)80331-J

A. K. Bi?, Towards the Use of a Non-Woven Fiber Paper as Original Support, Efficient Catalytic Ozonation by Ruthenium Nanoparticles Supported on SiO 2 or TiO, pp.374-419, 2006.

J. Ferre-aracil, S. Cardona, and J. Navarro-laboulais, Determination and Validation of Henry???s Constant for Ozone in Phosphate Buffers Using Different Analytical Methodologies, Ozone: Science & Engineering, vol.45, issue.1, p.106, 2015.
DOI : 10.1021/ic9807442

T. Mizuno and H. Tsuno, Evaluation of Solubility and the Gas-Liquid Equilibrium Coefficient of High Concentration Gaseous Ozone to Water, Ozone: Science & Engineering, vol.32, issue.1, 2010.
DOI : 10.1080/01919510903482376

W. J. Massman, A Review of the Molecular Diffusivities of H 2 O, NO, and NO 2 in Air, O 2 and N 2 near STP, p.1111, 1998.

J. Hoigne and H. Bader, Rate constants of reactions of ozone with organic and inorganic compounds in water???II, Water Research, vol.17, issue.2, p.185, 1983.
DOI : 10.1016/0043-1354(83)90099-4

M. D. Gurol and S. Nekouinaini, Kinetic behavior of ozone in aqueous solutions of substituted phenols, Industrial & Engineering Chemistry Fundamentals, vol.23, issue.1, p.54, 1984.
DOI : 10.1021/i100013a011

J. L. Sotelo, F. J. Beltrán, F. J. Benitez, and J. Beltrán-heredia, Henry's law constant for the ozone-water system, Water Research, vol.23, issue.10, p.1239, 1989.
DOI : 10.1016/0043-1354(89)90186-3

I. Somiya, Guideline for Measurement of Ozone Concentration in the Process Gas from an Ozone Generator, Ozone: Sci. Eng, vol.18, p.209, 1996.