R. Mccreery, Advanced Carbon Electrode Materials for Molecular Electrochemistry, Chemical Reviews, vol.108, issue.7
DOI : 10.1021/cr068076m

J. Simonet and H. Lund, Electrochemical behaviour of graphite cathodes in the presence of tetraalkylammonium cations, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.75, issue.2, pp.719-730, 1977.
DOI : 10.1016/S0022-0728(77)80211-8

C. Dano and J. Simonet, Cathodic reactivity of graphite with carbon dioxide: an efficient formation of carboxylated carbon materials, Journal of Electroanalytical Chemistry, vol.564, issue.15, pp.115-136, 2004.
DOI : 10.1016/j.jelechem.2003.10.012

G. M. Jenkins and K. Kawamura, Structure of Glassy Carbon, Nature, vol.37, issue.5299, pp.175-176, 1971.
DOI : 10.1038/231175a0

P. Harris, Fullerene-related structure of commercial glassy carbons, Philosophical Magazine, vol.42, issue.29, pp.3159-3167, 2004.
DOI : 10.1016/0009-2614(86)80661-3

V. Jouikov and J. Simonet, Novel method for grafting alkyl chains onto glassy carbon
URL : https://hal.archives-ouvertes.fr/hal-00659078

V. Jouikov and J. Simonet, Electrochemical conversion of glassy carbon into a poly-nucleophilic reactive material. Applications for carbon chemical functionalization. A mini-review, Electrochemistry Communications, vol.45, pp.32-36, 2014.
DOI : 10.1016/j.elecom.2014.05.015

URL : https://hal.archives-ouvertes.fr/hal-01151720

A. K. Geim and K. Novoselov, The rise of graphene, Nat Mater, vol.6, pp.183-191, 2007.
DOI : 10.1142/9789814287005_0002

A. Geim, Graphene: Status and Prospects, Science, vol.324, issue.5934, pp.1530-1534, 2009.
DOI : 10.1126/science.1158877

X. Y. Yang, X. Dou, A. Rouhanipour, L. J. Zhi, H. J. Rader et al., Two-Dimensional Graphene Nanoribbons, Journal of the American Chemical Society, vol.130, issue.13, pp.4216-4217, 2008.
DOI : 10.1021/ja710234t

A. Ambrosi, C. C. Chua, A. Bonanini, and M. Pumera, Electrochemistry of Graphene and Related Materials, Chemical Reviews, vol.114, issue.14, pp.7150-7188, 2014.
DOI : 10.1021/cr500023c

W. Sirisaksoontorn, A. A. Adenuga, V. T. Remcho, and M. Lerner, Preparation and Characterization of a Tetrabutylammonium Graphite Intercalation Compound, Journal of the American Chemical Society, vol.133, issue.32, pp.12438-12438, 2011.
DOI : 10.1021/ja2053539

Y. L. Zhong and T. Swager, Electrochemical Functionalization, Journal of the American Chemical Society, vol.134, issue.43, pp.17896-17899, 2012.
DOI : 10.1021/ja309023f

W. Sirisaksoontorn and M. Lerner, Preparation of a Homologous Series of Tetraalkylammonium Graphite Intercalation Compounds, Inorganic Chemistry, vol.52, issue.12, pp.7139-7144, 2013.
DOI : 10.1021/ic400733k

A. J. Cooper, N. R. Wilson, I. A. Kinloch, and R. Dryfe, Single stage electrochemical exfoliation method for the production of few-layer graphene via intercalation of tetraalkylammonium cations, Carbon, vol.66, pp.340-350, 2014.
DOI : 10.1016/j.carbon.2013.09.009

Y. Yang, F. Lu, Z. Zhou, W. Song, Q. Chen et al., Electrochemically cathodic exfoliation of graphene sheets in room temperature ionic liquids N-butyl, methylpyrrolidinium bis(trifluoromethylsulfonyl)imide and their electrochemical properties, Electrochimica Acta, vol.113, pp.9-16, 2013.
DOI : 10.1016/j.electacta.2013.09.031

C. Low, F. C. Walsh, M. H. Chakrabarti, M. A. Hashim, and M. Hussain, Electrochemical approaches to the production of graphene flakes and their potential applications, Carbon, vol.54, pp.1-21, 2013.
DOI : 10.1016/j.carbon.2012.11.030

J. Simonet, Composite materials {glassy carbon/graphene/zero-valent metal (Pd 0 )} for building three-dimensional redox electrodes, Electrochem Commun, vol.42, pp.34-37, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01025916

V. Jouikov and J. Simonet, Efficient cathodic carboxylation of graphene, Electrochemistry Communications, vol.43, pp.67-70, 2014.
DOI : 10.1016/j.elecom.2014.03.013

URL : https://hal.archives-ouvertes.fr/hal-01151350

S. Moussaoui, D. Brie, C. Carteret, A. Mohammad-djafari, R. Fischer et al., Application of Bayesian Non-negative Source Separation to Mixture Analysis in Spectroscopy, AIP Conference Proceedings, pp.237-244
DOI : 10.1063/1.1835218

URL : https://hal.archives-ouvertes.fr/hal-00456989

F. Quilès, C. Nguyeng-trung, C. Carteret, and H. B. , Hydrolysis of Uranyl(VI) in Acidic and Basic Aqueous Solutions Using a Noncomplexing Organic Base: A Multivariate Spectroscopic and Statistical Study, Inorganic Chemistry, vol.50, issue.7, pp.2811-2823, 2011.
DOI : 10.1021/ic101953q

C. Carteret, A. Dandeu, S. Moussaoui, H. Muhr, H. B. Plasari et al., Polymorphism Studied by Lattice Phonon Raman Spectroscopy and Statistical Mixture Analysis Method. Application to Calcium Carbonate Polymorphs during Batch Crystallization, Crystal Growth & Design, vol.9, issue.2, pp.807-812, 2009.
DOI : 10.1021/cg800368u

URL : https://hal.archives-ouvertes.fr/hal-00371620

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri et al., Raman Spectrum of Graphene and Graphene Layers, Physical Review Letters, vol.97, issue.18, p.187401, 2006.
DOI : 10.1103/PhysRevLett.97.187401

URL : https://hal.archives-ouvertes.fr/hal-00130091

A. Ferrari and D. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene, Nature Nanotechnology, vol.62, issue.4, pp.235-246, 2013.
DOI : 10.1088/0031-8949/2012/T146/014006

URL : https://hal.archives-ouvertes.fr/hal-00844853

A. V. Baranov, A. N. Bekhterev, Y. S. Bobovich, and V. Petrov, Interpretation of certain characteristics in Raman spectra of graphite and glassy carbon, Opt Spectrosk, vol.62, issue.5, pp.1036-1042, 1987.

C. Thomsen and S. Reich, Double Resonant Raman Scattering in Graphite, Physical Review Letters, vol.85, issue.24, pp.5214-5217, 2000.
DOI : 10.1103/PhysRevLett.85.5214

J. S. Park, R. A. Saito, R. Kong, J. Dresselhaus, G. Dresselhaus et al., <mml:math altimg="si42.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:mrow><mml:msup><mml:mrow><mml:mi>G</mml:mi></mml:mrow><mml:mrow><mml:mo>???</mml:mo></mml:mrow></mml:msup></mml:mrow></mml:math> band Raman spectra of single, double and triple layer graphene, Carbon, vol.47, issue.5, pp.1303-1310, 2009.
DOI : 10.1016/j.carbon.2009.01.009

M. M. Lucchese, F. Stavale, M. Ferreira, E. H. Vilani, C. Moutinho et al., Quantifying ion-induced defects and Raman relaxation length in graphene, Carbon, vol.48, issue.5, pp.1592-1597, 2010.
DOI : 10.1016/j.carbon.2009.12.057

H. Wilhelm, M. Lelaurain, E. Mcrae, and H. B. , Raman spectroscopic studies on well-defined carbonaceous materials of strong two-dimensional character, Journal of Applied Physics, vol.84, issue.12, pp.6552-6558, 1998.
DOI : 10.1063/1.369027

L. M. Malard, M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, and . Raman-spectroscopy-in-graphene, Raman spectroscopy in graphene, Physics Reports, vol.473, issue.5-6, pp.51-87, 2009.
DOI : 10.1016/j.physrep.2009.02.003

V. Jouikov, N. Stéphant, P. Poizot, and J. Simonet, The silver???graphene electrode. Building, stability, and catalytic efficiency, Electrochemistry Communications, vol.51, pp.125-128, 2015.
DOI : 10.1016/j.elecom.2014.12.018

URL : https://hal.archives-ouvertes.fr/hal-01115302

A. F. Young and L. Levitov, Capacitance of graphene bilayer as a probe of layer-specific properties, Physical Review B, vol.84, issue.8, p.85441, 2011.
DOI : 10.1103/PhysRevB.84.085441