J. S. Sanghera and I. Aggarwal, Active and passive chalcogenide glass optical fibers for IR applications: a review, 256?257, 6?16. (2) Tanaka, K. Optical Nonlinearity in Photonic Glasses. J. Mater, 1999.
DOI : 10.1016/S0022-3093(99)00484-6

S. Shimakawa, K. Kolobov, A. Elliott, S. R. Zakery, A. Elliott et al., Photoinduced Effects and Metastability in Amorphous Semiconductors and Insulators. Adv. Phys Optical Properties and Applications of Chalcogenide Glasses: A Review, J. Non-Cryst. Solids Nat. Photonics, vol.16, issue.56, pp.633-643, 1995.

L. Brilland, D. Mechin, P. M. Moselund, and O. Bang, Thulium Pumped Mid-Infrared 0.9?9 ?m Supercontinuum Generation in Concatenated Fluoride and Chalcogenide Glass Fibers, Phase-Change Materials for Rewriteable Data Storage, pp.3959-3967, 2007.

D. J. Milliron, S. Raoux, R. M. Shelby, and J. Jordan-sweet, Solution-Phase Deposition and Nanopatterning of GeSbSe Phase- Change Materials Nonlinear Optical Properties of Chalcogenide Glass Fibers and Their Application to All-Optical Switching. Opt. Fiber Technol, The Journal of Physical Chemistry B Article DOI: 10.1021 352?356. (9) Asobe, M, pp.9204-9214, 1997.

P. Bulla, D. Luther-davies, B. Jackson, S. D. Anzueto-sa?nchezsa?nchez, and G. , Progress in Optical Waveguides Fabricated from Chalcogenide Glasses Chalcogenide Glass Raman Fiber Laser (12) Abedin, K. S. Observation of Strong Stimulated Brillouin Scattering in Single-Mode As 2 Se 3 Chalcogenide Fiber, Opt. Express Appl. Phys. Lett. Opt. Express J, vol.18, issue.13, pp.10266-10279, 2005.

H. Ma, C. Boussard-ple?-del, J. Lucas, P. Lucas, and D. Le-coq, Advances in Chalcogenide Glasses, J. Non-Cryst. Solids, issue.14, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01427349

C. Boussard-ple?-del, H. Lhermite, J. Charrier, K. Yanakata, and O. Loreal, Chalcogenide Glass Optical Waveguides for Infrared Biosensing Mid-IR Optical Sensor for CO 2 Detection Based on Fluorescence Absorbance of Dy 3+ :Ga 5 Ge 20 Sb 10 S 65 Fibers, Nazabal, V. Evanescent Wave Optical Micro-Sensor Based on Chalcogenide Glass, pp.7398-7411, 2009.

A. B. Seddon, In Towards Mid-Infrared Supercontinuum Generation: Ge-Sb-Se Mid-Infrared Step-Index Small-Core Optical Fiber, Proceedings of SPIE, Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XIV, 2014.

I. Gannot and P. Benda, Society of Photo-Optical Instrumentation Engineers (20) Ne? mec, Baudet, E, vol.8938, p.89380, 2014.

V. Nazabal, G. Lenz, J. Zimmermann, and T. Katsufuji, Optical Properties of (GeSe 2 ) 100?x (Sb 2 Se 3 ) x Glasses in near-and Middle-Infrared Spectral Regions, Mater. Res. Bull, vol.2014, issue.51, pp.176-179
URL : https://hal.archives-ouvertes.fr/hal-01001870

I. D. Aggarwal, J. M. Large-kerr-harbold, F. O. Ilday, F. W. Wise, B. G. Aitken et al., Effect in Bulk Se-Based Chalcogenide Glasses Highly Nonlinear Ge-As-Se and Ge-As-S?Se Glasses for All-Optical Switching, 822?824. (23) Olivier, M.; Tchahame, J. C.; Ne? mec, pp.254-276, 2000.

X. Zhang and Y. Xu, Third-Order Nonlinearity in Ge?Sb?Se Glasses at Mid-Infrared Wavelengths, 204?208. (25) Ganjoo. Structural Modification of Ge?Se Amorphous Films with the Addition of Sb, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01231154

V. Nazabal, N. Yamada, E. Ohno, and K. Nishiuchi, Photosensitivity of Pulsed Laser Deposited Ge-Sb-Se Thin Films, Opt. Mater. Express, vol.5, issue.27, p.781, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01166153

Z. Yang, P. Lucas, Z. Yang, T. Luo, S. Jiang et al., Pseudobinary Amorphous Thin Films for an Optical Disk Memory Tellurium-Based Far-Infrared Transmitting Glasses Single-Mode Low-Loss Optical Fibers for Long-Wave Infrared Transmission, Phase Transitions of GeTe-Sb 2 Te 330) Yang, p.3360, 1991.

M. Anne, B. Bureau, P. Lucas, S. Sen, B. G. Aitken et al., Atomic Structure and Chemical Order in Ge-As Selenide and Sulfoselenide Glasses: An X-Ray Absorption Fine Structure Spectroscopic Study Structural Investigations of Ge 5 As x Se 95?x and Ge 15 As x Se 85?x Glasses Using X-Ray Diffraction and Extended X-Ray Fine Structure Spectroscopy Short Range Order in Ge?As?Se Glasses, Opt. Express N. F. Electrons in Disordered Structures. Adv. Phys. Phys. Rev. B J. Phys.: Condens. Matter J. Alloys Compd Z.; Bureau, B, vol.16, issue.24 38580234, pp.49-144, 1967.

J. Bednarc?-ik, Short-Range Order in Ge-As-Te Glasses, J. Am. Ceram

S. Jo?va?rijo?va?jo?va?ri, P. Kaban, I. Steiner, J. Beuneu, B. Jo?va?rijo?va?jo?va?ri et al., Wrong Bonds " in Sputtered Amorphous Ge 2 Sb 2 Te 5 Ab Initio Comparison of Bonding Environments and Threshold Behavior in Ge x As 10 Se 90?x and Ge x Sb 10 Se 90?x Glass Models Topology of Covalent Non-Crystalline Solids I: Short-Range Order in Chalcogenide Alloys, Local Order in Amorphous Ge 2 Sb 2 Te 5 and GeSb 2 Te 440) Thorpe, M. F. Continuous Deformations in Random Networks, pp.1625-1632, 1979.

K. Tanaka and 1. , Structural phase transitions in chalcogenide glasses, Physical Review B, vol.39, issue.2, pp.355-370, 1983.
DOI : 10.1103/PhysRevB.39.1270

J. Bicerano, S. R. Ovshinsky, T. Wang, R. P. Wang, B. Luther-davies et al., Chemical Bond Approach to the Structures of Chalcogenide Glasses with Reversible Switching Properties EXAFS Study of the Local Order in Ge-As-Se Glasses. Phys. Procedia 2013 Optical and Structure Properties of Amorphous Ge-Sb-Se Films for Ultrafast All-Optical Signal Processing Correlation between Structural and Physical Properties in Ge?Sb?Se Glasses, A. Structural Interpretation of the Infrared and Raman Spectra of Glasses in the Alloy System Ge 1?x S x . Phys. Rev. Structural Investigation on Ge x Sb 10 Se 90?x Glasses Using X-Ray Photoelectron Spectra, pp.5134-5146, 1974.

K. Gunasekera, P. Boolchand, M. Micoulaut, D. C. Sati, A. Kovalskiy et al., Elastic Phases of Ge x Sb x Se 100?2x Ternary Glasses Driven by Topology Structure of Sb x Ge 40?x Se 60 Glasses around 2.67 Average Coordination Number, J. Phys. Chem. B J. Phys. Chem. B J. Non-Cryst. Solids Aldon, L. EXAFS Study of the Local Structure in Ge?As?Te Glasses. J. Non- Cryst. Solids C, vol.120, issue.3585051, pp.9204-9214, 2000.

O. Magdysyuk, N. Vo, M. Hart, L. Connor, B. Humphreys et al., I12: The Joint Engineering, Environment and Processing (JEEP) Beamline at Diamond Light Source Complete Elliptical Ring Geometry Provides Energy and Instrument Calibration for Synchrotron-Based Two-Dimensional X-Ray Diffraction, J. Synchrotron Radiat J. Appl. Crystallogr. J, vol.22, issue.46, pp.1249-1260, 2015.

I. Sikharulidze, PDFgetX2: A GUI- Driven Program to Obtain the Pair Distribution Function from X-Ray Powder Diffraction Data (55) Kendig, A. P.; Pings, C. J. X-Ray Absorption Factors for Cylindrical Samples in Annular Sample Cells Exposed to Incident Beams of Limited Width A Method for Converting Experimental X-Ray Intensities to an Absolute Scale The Fourier Transform Method for Normalizing Intensities, 153?173. (57) Warren, B. E. X-Ray Diffraction A New Version of the RMC + + Reverse Monte Carlo Programme, Aimed at Investigating the Structure of Covalent Glasses. J. Optoelectron. Adv, pp.853-858, 1957.

M. Klementev, K. V. Mcgreevy, R. L. Pusztai, L. 3. Ankudinov, A. L. Ravel et al., Reverse Monte Carlo Simulation: A New Technique for the Determination of Disordered Structures Real- Space Multiple-Scattering Calculation and Interpretation of X-Ray- Absorption near-Edge Structure. Phys. Rev (65) Winterer, M. Reverse Monte Carlo Analysis of Extended X-Ray Absorption Fine Structure Spectra of Monoclinic and Amorphous Zirconia VIPER (Visual Processing in EXAFS Researches) for Windows (68) Pethes, I. Short Range Order in Ge-Ga-Se Glasses The Periodic Table by WebElements https, 299?301. (67) Salmon, P. S. Structure of Liquids and Glasses in the Ge-Se Binary System 578?584. (69) Itoh, K. Short-and Medium-Range Order in Sb?Se Glasses, pp.7565-7576, 1988.

G. S. Cargill, F. Spaepen, D. Gazzillo, G. Pastore, and S. Enzo, Description of Chemical Ordering in Amorphous Alloys Chemical Short-Range Order in Amorphous Ni-Ti Alloys: An Integral Equation Approach with a Non-Additive Hard-Sphere Model, 3469?3487. (74) Cowley, J. M. X-Ray Measurement of Order in Single Crystals of Cu 3 Au, pp.91-97, 1950.