Skip to Main content Skip to Navigation
Journal articles

A Multilayer LTCC Solution for Integrating 5G Access Point Antenna Modules

Abstract : An integrated solution for the development of multilayer antenna modules for fifth-generation (5G) communications, based on low temperature cofired ceramic (LTCC), is presented. The design exploits the 3-D integration capabilities of the LTCC process, enabling the realization of a full-corporate feed network (CFN) in vertical configuration. A novel implementation of the CFN employing dielectric-embedded parallel plate waveguides (PPWs) is proposed. The PPW lines are delimited by via-rows. As opposed to standard substrate-integrated waveguide feed networks, guided fields are orthogonal to the via-rows and propagate along the vertical axis of the structure. The CFN feeds four long slots, without any coupling structure, and provides broadband operation. The final prototype comprises 18 LTCC tapes, with a total thickness of 3.4 mm. The measured -10-dB impedance bandwidth spans from 51.2 to 66 GHz (>25.2%). The module generates a fixed broadside beam, but multibeam operation in H-plane can be easily achieved. In the 50-66-GHz band, the peak gain is 14.25 dBi and the average first side-lobe level in H-plane is -20.6 dB. The proposed technology and the design concept are suited for highly integrated millimeter-wave systems, such as access points in the future V-band high data-rate wireless networks. © 1963-2012 IEEE.
Complete list of metadatas

https://hal-univ-rennes1.archives-ouvertes.fr/hal-01368149
Contributor : Laurent Jonchère <>
Submitted on : Monday, September 19, 2016 - 10:23:13 AM
Last modification on : Tuesday, October 6, 2020 - 3:09:45 AM

Identifiers

Citation

F. Foglia Manzillo, M. Ettorre, M.S. Lahti, K.T. Kautio, D. Lelaidier, et al.. A Multilayer LTCC Solution for Integrating 5G Access Point Antenna Modules. IEEE Transactions on Microwave Theory and Techniques, Institute of Electrical and Electronics Engineers, 2016, 64 (7), pp.2272--2283. ⟨10.1109/TMTT.2016.2574313⟩. ⟨hal-01368149⟩

Share

Metrics

Record views

432