S. L. Chown and S. W. Nicolson, Insect physiological ecology: Mechanisms and patterns, 2004.

H. Colinet, B. J. Sinclair, P. Vernon, and D. Renault, Insects in Fluctuating Thermal Environments, Annu. Rev. Entomol, vol.60, pp.123-140, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01090471

O. Nedved, D. Lavy, and H. A. Verhoef, Modelling the time-temperature relationship in cold injury and effect of high-temperature interruptions on survival in a chillsensitive collembolan, Funct. Ecol, vol.12, pp.816-824, 1998.

D. Renault, O. Nedved, F. Hervant, and P. Vernon, The importance of fluctuating thermal regimes for repairing chill injuries in the tropical beetle Alphitobius diaperinus (Coleoptera : Tenebrionidae) during exposure to low temperature, Physiol. Entomol, vol.29, pp.139-145, 2004.
URL : https://hal.archives-ouvertes.fr/halsde-00154670

H. Colinet, D. Renault, T. Hance, and P. Vernon, The impact of fluctuating thermal regimes on the survival of a cold-exposed parasitic wasp, Aphidius colemani, vol.31, pp.234-240, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00086062

H. Colinet, T. T. Nguyen, C. Cloutier, D. Michaud, and T. Hance, Proteomic profiling of a parasitic wasp exposed to constant and fluctuating cold exposure, Insect Biochem. Mol. Biol, vol.37, pp.1177-1188, 2007.

H. Colinet and T. Hance, Male Reproductive Potential of Aphidius colemani (Hymenoptera: Aphidiinae) Exposed to Constant or Fluctuating Thermal Regimens, Environ. Entomol, vol.38, pp.242-249, 2009.

C. P. Chen and D. L. Denlinger, Reduction of cold injury in flies using an intermittent pulse of high-temperature, Cryobiology, vol.29, pp.138-143, 1992.

V. H. Dollo, S. X. Yi, and R. E. Lee, High temperature pulses decrease indirect chilling injury and elevate ATP levels in the flesh fly, Sarcophaga crassipalpis, Cryobiology, vol.60, pp.351-353, 2010.

G. D. Yocum, J. P. Rinehart, and W. P. Kemp, Duration and frequency of a high temperature pulse affect survival of emergence-ready Megachile rotundata (Hymenoptera: Megachilidae) during low-temperature incubation, J. Econ. Entomol, vol.105, pp.14-19, 2012.

Z. Han? and O. Nedv?d, Chill injury at alternating temperatures in Orchesella cincta (Collembola: Entomobryidae) and Pyrrhocoris apterus (Heteroptera: Pyrrhocoridae), Eur. J. Entomol, vol.96, pp.165-168, 1999.

H. Colinet, L. Lalouette, and D. Renault, A model for the time -temperature -mortality relationship in the chill-susceptible beetle, Alphitobius diaperinus, exposed to fluctuating thermal regimes, J. Therm. Biol, vol.36, pp.403-408, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00654081

N. M. Teets and D. L. Denlinger, Physiological mechanisms of seasonal and rapid coldhardening in insects, Physiol. Entomol, vol.38, pp.105-116, 2013.

A. R. Cossins, Temperature Adaptation of Biological Membranes, 1994.

J. R. Hazel and R. Hazel, Thermal Adaptation in Biological Membranes: Is homeoviscous adaptation the explanation?, Annu. Rev. Physiol, vol.57, pp.19-42, 1995.

V. , Cell structural modifications in insects at low temperatures, 2010.

V. Ko?tál, J. Vambera, and J. Bastl, On the nature of pre-freeze mortality in insects: water balance, ion homeostasis and energy charge in the adults of Pyrrhocoris apterus, J. Exp. Biol, vol.207, pp.1509-1521, 2004.

V. Ko?tál, M. Yanagimoto, and J. Bastl, Chilling-injury and disturbance of ion homeostasis in the coxal muscle of the tropical cockroach (Nauphoeta cinerea), Comp. Biochem. Physiol. B Biochem. Mol. Biol, vol.143, pp.171-179, 2006.

H. A. Macmillan, C. M. Williams, J. F. Staples, and B. J. Sinclair, Reestablishment of ion homeostasis during chill-coma recovery in the cricket Gryllus pennsylvanicus, Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.20750-20755, 2012.

H. A. Macmillan, J. L. Andersen, S. A. Davies, and J. Overgaard, The capacity to maintain ion and water homeostasis underlies interspecific variation in Drosophila cold tolerance, Sci. Rep, vol.5, p.18607, 2015.

G. D. Yocum, J. Zdarek, K. H. Joplin, R. E. Lee, D. C. Smith et al., Alteration of the eclosion rhythm and eclosion behavior in the flesh fly, Sarcophaga crassipalpis, by low and high temperature stress, J. Insect Physiol, vol.40, pp.13-21, 1994.

J. S. Hosler, J. E. Burns, and H. E. Esch, Flight muscle resting potential and species-specific differences in chill-coma, J. Insect Physiol, vol.46, pp.621-627, 2000.

L. R. , A primer on insect cold-tolerance, Low temperature biology of insects, 2010.

H. A. Macmillan and B. J. Sinclair, Mechanisms underlying insect chill-coma, J. Insect Physiol, vol.57, pp.12-20, 2011.

M. Sinensky, Homeoviscous adaptation-a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli, Proc. Natl. Acad. Sci. U. S. A, vol.71, pp.522-525, 1974.

N. M. Tsvetkova and P. J. Quinn, Compatible solutes modulate membrane lipid phase behavior, Temperature Adaptation of Biological Membranes, 1994.

V. Ko?tál, M. Slachta, and P. ?imek, Cryoprotective role of polyols independent of the increase in supercooling capacity in diapausing adults of Pyrrhocoris apterus (Heteroptera: Insecta), vol.130, pp.365-374, 2001.

A. Korsloot, C. A. Van-gestel, and N. M. Van-straalen, Environmental Stress and Cellular Response in Arthropods, 2004.

P. H. Yancey, Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses, J. Exp. Biol, vol.208, pp.2819-2830, 2005.

V. Ko?tál, D. Renault, A. Mehrabianová, and J. Bastl, Insect cold tolerance and repair of chill-injury at fluctuating thermal regimes: role of ion homeostasis, Comp. Biochem. Physiol. A Mol. Integr. Physiol, vol.147, pp.231-238, 2007.

D. Kültz, Molecular and evolutionary basis of the cellular stress response, Annu. Rev. Physiol, vol.67, pp.225-257, 2005.

A. Malmendal, J. Overgaard, J. G. Bundy, J. G. Sørensen, N. C. Nielsen et al., Metabolomic profiling of heat stress: hardening and recovery of homeostasis in Drosophila, Am. J. Phys. Regul. Integr. Comp. Phys, vol.291, pp.205-212, 2006.

H. Colinet, V. Larvor, M. Laparie, and D. Renault, Exploring the plastic response to cold acclimation through metabolomics, Funct. Ecol, vol.26, pp.711-722, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00717742

C. M. Williams, M. Watanabe, M. R. Guarracino, M. B. Ferraro, A. S. Edison et al., Cold adaptation shapes the robustness of metabolic networks in Drosophila melanogaster, Evolution, vol.68, pp.3505-3523, 2014.

H. Colinet and D. Renault, Metabolic effects of CO(2) anaesthesia in Drosophila melanogaster, Biol. Lett, vol.8, pp.1050-1054, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00780202

H. Colinet, T. Chertemps, I. Boulogne, and D. Siaussat, Age-related decline of abiotic stress tolerance in young Drosophila melanogaster adults, J. Gerontol. Ser. A Biol. Sci. Med. Sci, vol.193, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01235793

H. Colinet, V. Larvor, R. Bical, and D. Renault, Dietary sugars affect cold tolerance of Drosophila melanogaster, Metabolomics, vol.9, pp.608-622, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00858093

A. Tomcala, M. Tollarová, J. Overgaard, P. ?imek, and V. Ko?tál, Seasonal acquisition of chill tolerance and restructuring of membrane glycerophospholipids in an overwintering insect: triggering by low temperature, desiccation and diapause progression, J. Exp. Biol, vol.209, pp.4102-4114, 2006.

V. Ko?tál, T. Urban, L. Rimná?ová, P. Berková, and P. ?imek, Seasonal changes in minor membrane phospholipid classes, sterols and tocopherols in overwintering insect, Pyrrhocoris apterus, J. Insect Physiol, vol.59, pp.934-941, 2013.

R. G. Downer, Lipid metabolism, Comprehensive Insect Physiology, vol.10, 1985.

M. Carvalho, J. L. Sampaio, W. Palm, M. Brankatschk, S. Eaton et al., Effects of diet and development on the Drosophila lipidome, Mol. Syst. Biol, vol.8, p.600, 2012.

J. M. Storey and K. B. Storey, Functional Metabolism: Regulation and Adaptation, 2004.

L. Vesala, T. S. Salminen, V. Ko?tál, H. Zahradnickova, and A. Hoikkala, Myo-inositol as a main metabolite in overwintering flies: seasonal metabolomic profiles and cold stress tolerance in a northern drosophilid fly, J. Exp. Biol, vol.215, pp.2891-2897, 2012.

M. R. Michaud and D. L. Denlinger, Shifts in the carbohydrate, polyol, and amino acid pools during rapid cold-hardening and diapause-associated cold-hardening in flesh flies (Sarcophaga crassipalpis): a metabolomic comparison, J. Comp. Physiol. B, vol.177, pp.753-763, 2007.

L. Lalouette, V. Ko?tál, H. Colinet, D. Gagneul, and D. Renault, Cold exposure and associated metabolic changes in adult tropical beetles exposed to fluctuating thermal regimes, FEBS J, vol.274, pp.1759-1767, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00141865

V. Ko?tál, H. Zahradní?ková, and P. ?imek, Hyperprolinemic larvae of the drosophilid fly, Chymomyza costata, survive cryopreservation in liquid nitrogen, Proc. Natl. Acad. Sci. U. S. A, vol.108, pp.13041-13046, 2011.

V. Ko?tál, P. ?imek, H. Zahradní?ková, J. Cimlová, and T. ?t?tina, Conversion of the chill susceptible fruit fly larva (Drosophila melanogaster) to a freeze tolerant organism, Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.3270-3274, 2012.

J. Overgaard, A. Malmendal, J. G. Sørensen, J. G. Bundy, V. Loeschcke et al., Metabolomic profiling of rapid cold hardening and cold shock in Drosophila melanogaster, J. Insect Physiol, vol.53, pp.1218-1232, 2007.

N. M. Teets, J. T. Peyton, G. J. Ragland, H. Colinet, D. Renault et al., Combined transcriptomic and metabolomic approach uncovers molecular mechanisms of cold tolerance in a temperate flesh fly, Physiol. Genomics, vol.44, pp.764-777, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00738640

J. Overgaard, J. G. Sørensen, S. O. Petersen, V. Loeschcke, and M. Holmstrup, Changes in membrane lipid composition following rapid cold hardening in Drosophila melanogaster, J. Insect Physiol, vol.51, pp.1173-1182, 2005.

J. Overgaard, J. G. Sørensen, S. O. Petersen, V. Loeschcke, and M. Holmstrup, Reorganization of membrane lipids during fast and slow cold hardening in Drosophila melanogaster, Physiol. Entomol, vol.31, pp.328-335, 2006.

V. Ko?tál, J. Korbelová, J. Rozsypal, H. Zahradní?ková, J. Cimlova et al., Long-term cold acclimation extends survival time at 0°C and modifies the metabolomic profiles of the larvae of the fruit fly Drosophila melanogaster, PLoS One, vol.6, pp.20-25, 2011.

T. Ohtsu, M. T. Kimura, and C. Katagiri, How Drosophila species acquire cold tolerancequalitative changes of phospholipids, Eur. J. Biochem, vol.252, pp.608-611, 1998.

H. A. Macmillan, C. G. Guglielmo, and B. J. Sinclair, Membrane remodeling and glucose in Drosophila melanogaster: a test of rapid cold-hardening and chilling tolerance hypotheses, J. Insect Physiol, vol.55, pp.243-249, 2009.

S. G. Goto, H. Udaka, C. Ueda, and C. Katagiri, Fatty acids of membrane phospholipids in Drosophila melanogaster lines showing rapid and slow recovery from chill coma, Biochem. Biophys. Res. Commun, vol.391, pp.1251-1254, 2010.

B. S. Cooper, L. A. Hammad, N. P. Fisher, J. A. Karty, and K. L. Montooth, In a variable thermal environment selection favors greater plasticity of cell membranes in Drosophila melanogaster, Evolution, vol.66, pp.1976-1984, 2012.

G. B. Ansell, S. Spanner, and . Phosphatidylserine, Phospholipids, 1982.

J. R. Hazel, Cold adaptation in ectotherms: Regulation of membrane function and cellular metabolism, Advances in Comparative and Environmental Physiology, vol.4, 19891.

J. Overgaard, A. Tomcala, J. G. Sørensen, M. Holmstrup, P. H. Krogh et al., Effect of acclimation temperature on thermal tolerance and membrane phospholipid composition in the fruit fly Drosophila melanogaster, J. Insect Physiol, vol.54, pp.619-629, 2008.

S. G. Goto and C. Katagiri, Effects of acclimation temperature on membrane phospholipids in the flesh fly Sarcophaga similis, Entomol. Sci, vol.14, pp.224-229, 2011.

M. R. Michaud and D. L. Denlinger, Oleic acid is elevated in cell membranes during rapid cold-hardening and pupal diapause in the flesh fly, Sarcophaga crassipalpis, J. Insect Physiol, vol.52, pp.1073-1082, 2006.

L. A. Luévano-martínez and A. J. Kowaltowski, Phosphatidylglycerol-derived phospholipids have a universal, domain-crossing role in stress responses, Arch. Biochem. Biophys, vol.585, pp.90-97, 2015.

M. E. Gardocki, N. Jani, and J. M. Lopes, Phosphatidylinositol biosynthesis: biochemistry and regulation, vol.1735, pp.89-100, 2005.

S. A. Henry, M. L. Gaspar, and S. A. Jesch, The response to inositol: Regulation of glycerolipid metabolism and stress response signaling in yeast, Chem. Phys. Lipids, vol.180, pp.23-43, 2014.

R. Käkelä, M. Mattila, M. Hermansson, P. Haimi, A. Uphoff et al., Seasonal acclimatization of brain lipidome in a eurythermal fish (Carassius carassius) is mainly determined by temperature, Am. J. Phys. Regul. Integr. Comp. Phys, vol.294, pp.1716-1728, 2008.

H. W. Xue, X. Chen, and Y. Mei, Function and regulation of phospholipid signalling in plants, Biochem. J, vol.421, pp.145-156, 2009.

C. Huang, H. Lin, S. Li, and G. Wang, Influence of the positions of cis double bonds in the sn-2-acyl chain of phosphatidylethanolamine on the bilayer's melting behavior, J. Biol. Chem, vol.272, pp.21917-21926, 1997.

T. Ohtsu, C. Katagiri, and M. T. Kimura, Biochemical Aspects of Climatic Adaptations in Drosophila curviceps, D. immigrans, and D. albomicans (Diptera: Drosophilidae), Environ, Entomol, vol.28, pp.968-972, 1999.

M. Bashan, H. Akbas, and K. Yurdakoc, Phospholipid and triacylglycerol fatty acid composition of major life stages of sunn pest, Eurygaster integriceps (Heteroptera: Scutelleridae), vol.132, pp.375-380, 2002.

E. Williams and G. Somero, Seasonal-, tidal-cycle-and microhabitat-related variation in membrane order of phospholipid vesicles from gills of the intertidal mussel Mytilus californianus, J. Exp. Biol, vol.199, pp.1587-1596, 1996.

F. Pernet, S. Gauthier-clerc, and É. Mayrand, Change in lipid composition in eastern oyster (Crassostrea virginica Gmelin) exposed to constant or fluctuating temperature regimes, Comp. Biochem. Physiol. B Biochem. Mol. Biol, vol.147, pp.557-565, 2007.

J. R. Hazel and S. R. Landrey, Time course of thermal adaptation in plasma membranes of trout kidney. I. Headgroup composition, Am. J. Phys, vol.255, pp.622-627, 1988.

B. Y. Carey and J. R. Hazel, Diurnal Variation in Membrane Lipid Composition of Sonoran Desert Teleosts, J. Exp. Biol, vol.147, pp.375-391, 1989.

A. Martinière, M. Shvedunova, A. J. Thomson, N. H. Evans, S. Penfield et al., Homeostasis of plasma membrane viscosity in fluctuating temperatures, New Phytol, vol.192, pp.328-337, 2011.

I. Guschina and J. L. Harwood, Mechanisms of temperature adaptation in poikilotherms, FEBS Lett, vol.580, pp.5477-5483, 2006.

R. E. Lee, K. Damodaran, S. X. Yi, and G. A. Lorigan, Rapid cold-hardening increases membrane fluidity and cold tolerance of insect cells, Cryobiology, vol.52, pp.459-463, 2006.

G. Balogh, M. Péter, G. Liebisch, I. Horváth, Z. Török et al., Lipidomics reveals membrane lipid remodelling and release of potential lipid mediators during early stress responses in a murine melanoma cell line, Biochim. Biophys. Acta, vol.1801, pp.1036-1047, 2010.