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Highlights

• long-term dense motion estimation based on multi-step
optical flows is addressed

• optical flows are combined through multi-step integration
and statistical selection

• an analysis of available single-reference complexity reduc-
tion schemes is provided

• our new multi-reference frames processing reaches longer
accurate displacement fields
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Abstract

This paper addresses the estimation of accurate long-term dense motion fields from videos of complex scenes. With computer

vision applications such as video editing in mind, we exploit optical flows estimated with various inter-frame distances and combine

them through multi-step integration and statistical selection (MISS). In this context, managing numerous combinations of multi-step

optical flows requires a complexity reduction scheme to overcome computational and memory issues. Our contribution are two-

fold. First, we provide an exhaustive analysis of available single-reference complexity reduction strategies. Second, we propose

a simple and efficient alternative related to multi-reference frames multi-step integration and statistical selection (MR-MISS). Our

method automatically inserts intermediate reference frames once matching failures are detected to re-generate the motion estimation

process and re-correlates the resulting dense trajectories. By this way, it reaches longer accurate displacement fields while efficiently

reducing the complexity. Experiments on challenging sequences reveal improved results compared to state-of-the-art methods

including existing MISS schemes both in terms of complexity reduction and accuracy improvement.

Keywords: long-term motion estimation, dense matching, multi-reference frames, combinatorial integration, motion trajectories,

video editing

1. Introduction1

Estimating accurate long-term dense correspondence fields2

is a fundamental task for many computer vision applications.3

A key tool in this context is optical flow whose early formula-4

tions come from the early 80s [1, 2]. Significant progress has5

been made to improve both robustness and spatial consistency6

of the flow by introducing respectively more sophisticated data7

models than the classical brightness constancy assumption and8

robust discontinuity-preserving smoothness constraints.9

However, most of state-of-the-art optical flow estimators10

focus on estimating dense motion between two consecutive11

frames only. They seldom consider that sequences comprise12

series of images that are inter-related. When tackling motion13

estimation over a video sequence, object-based [3] or sparse [4]14

motion estimation is usually sufficient (visual servoing, surveil-15

lance, gestural human-machine interface, video indexing...).16

However, other applications explicitly require a dense and long-17

term description of how the video content evolves in time. Such18

applications include scene segmentation [5, 6], trajectory analy-19

sis [7] or video editing tasks like 2D-to-3D video conversion [8]20

or graphic elements insertion where each pixel of a given area21

needs to be tracked over many frames to be properly replaced22

by the corresponding pixel of the inserted element. Thus, we23

focus on this challenging issue: how to construct dense fields24

of point correspondences over extended time periods?25

Establishing dense long-term correspondences requires to26

compute dense motion fields between distant frames and there-27

fore to simultaneously handle small and large displacements.28

Optical flow is the appropriate tool for this task but classical29

optical flow assumptions which may fail between consecutive30

frames are even less valid between non-consecutive frames.31

When dealing with multiple frames and their associated point32

correspondences, another key aspect is the temporal consis-33

tency of the flow vectors which must depict temporal smooth-34

ness along trajectories. In this context, several recent studies35

have extended optical flow to the purpose of (semi-)dense long-36

term motion estimation. State-of-the-art deals with consecu-37

tive optical flow concatenation [5, 9, 10], trajectorial regulariza-38

tion [11, 12], particle representation [13], subspace constraints39

[14, 15] as well as multi-step strategies [16, 17, 18, 19].40

Optical flows estimated between consecutive frames can41

straightforwardly be concatenated to construct motion trajecto-42

ries along a video sequence through Euler or Runge-Kutta tem-43

poral integration [20]. This strategy has been exploited in many44

works [5, 9, 10] but may lead to large error accumulation result-45

ing in a substantial drift over extended periods of time. Results46

in the literature are generally reported on fairly short sequences47

and reliable tracks usually do not exceed thirty frames.48

To limit motion drift, optical flow estimation has been ex-49

tended from two frames to multiple frames via hard [11] or soft50

[12] spatio-temporal constraints which penalize motion varia-51

tions along trajectories. Despite these contributions, more so-52

phisticated motion models have been investigated to deal with53

complex motion. In [13], Sand and Teller represent video mo-54

tion using a set of particles that move across the sequence. To55

reach variable-length point trajectories, particles are sequen-56

tially propagated using optical flows computed between con-57

secutive frames. Using such representation forsakes rigidity as-58
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sumptions and motion model considerations which may fail in59

complex situations but does not achieve full density.60

Since trajectories of points belonging to an object are cor-61

related even with strong deformations, subspace constraints-62

based methods assume that the set of all flow fields reside in63

a low-dimensional subspace [14]. Therefore, a low-rank space64

is built to constrain optical flow estimation which provides ad-65

ditional information to solve the ambiguity in regions that suffer66

from the aperture problem. In [15], Garg et al. perform dense67

multi-frame optical flow estimation in a variational framework68

using 2D trajectory subspace constraints [15]. This approach69

generates dense trajectories starting from a reference frame in70

a non-rigid context. Trajectories are estimated close to a low-71

dimensional trajectory subspace built through Principal Com-72

ponent Analysis (PCA) or Discrete Cosine Transforms (DCT).73

Nevertheless, this method requires strong a priori assumptions74

on the scene content. Moreover, only trajectories starting from75

a fixed reference frame are considered. The computation of76

motion fields starting from subsequent frames and going back77

to the reference frame is not under consideration.78

The alternative concept of multi-step flow (MSF) [16, 17] fo-79

cuses on how to construct long-term dense fields of correspon-80

dences using multi-step optical flows, i.e. optical flows com-81

puted between consecutive frames or with larger inter-frame82

distances. MSF sequentially merges a set of displacement fields83

at each intermediate frame, up to the target frame. This set is84

obtained via concatenation of multi-step optical flows with dis-85

placement vectors already computed for neighbouring frames.86

Multi-step estimations can handle temporary occlusions since87

they can jump occluding objects. Contrary to [15], MSF con-88

siders both trajectory estimation between a reference frame and89

all the images of the sequence (from-the-reference) and motion90

estimation to match each image to the reference frame (to-the-91

reference). Two set-ups can be then considered: information92

pushing from the reference frame or information propagation93

over each frame by pulling it from the reference frame.94

Despite its ability to handle both scenarios, MSF has two95

main drawbacks. First, it performs the selection of displace-96

ment fields by relying only on classical optical flow assump-97

tions such as the brightness constancy constraint that may fail98

between distant frames. Second, the candidate displacement99

fields are based on previous estimations. It ensures a certain100

temporal consistency but can also propagate estimation errors101

along the subsequent frames of the sequence, until a new avail-102

able step gives a chance to match with a correct location again.103

These limitations can be solved by considering the multi-104

step integration and statistical selection (MISS) introduced in105

[18, 19] for the estimation of from-the-reference and to-the-106

reference long-term dense motion correspondences between a107

reference frame Ire f and all the other frames In of a video se-108

quence. Based on pre-computed multi-step optical flows, sim-109

ilarly to MSF [17], MISS algorithm processes each pair of110

frames {Ire f , In} via both multi-step integration and statistical111

selection. Multi-step integration builds a large set of candidate112

displacement fields via the generation of multiple motion paths113

made of concatenated multi-step optical flows. Then, the sta-114

tistical selection consists in selecting among the resulting set of115

candidate displacement fields the optimal one based on statis-116

tics and spatial regularization.117

The statistical selection performs the displacement field se-118

lection by studying the redundancy on the large candidate set119

resulting from multi-step integration. For distant frames, it120

provides a more robust indication than classical optical flows121

assumptions involved in MSF [17]. Moreover, contrary to122

MSF [17] which sequentially relies on previously established123

correspondences, MISS algorithms independently process each124

pair of frames {Ire f , In} to prevent error propagation. Tempo-125

ral consistency is handled a-posteriori through robust temporal126

smoothness constraints [19].127

Each time the multi-step integration stage processes a given128

pair {Ire f , In}, only a subset of all the possible motion paths be-129

tween Ire f and In can be generated and kept in memory due to130

computational and memory issues. For instance, the number131

of possible motion paths for a distance of 30 frames and with132

steps 1, 2, 5 and 10 is... 5877241! Up to a few hundreds can be133

actually built and kept in memory with current computer capa-134

bilities. To avoid these issues, the multi-step integration stage135

must include a computational complexity reduction strategy to136

prevent a cumbersome exhaustive motion paths generation pro-137

cess. This complexity reduction scheme must cleverly select138

a subset of all possible motion paths to minimize the tracking139

failure probability while increasing the trajectory lifetime.140

In this direction, we aim at covering and extending the spec-141

trum of MISS introduced in [18, 19] in the context of long-term142

dense motion estimation. After a brief overview of the baseline143

method (Sect.2), two main contributions are addressed. First,144

given the computational and memory issues mentioned above,145

we identify and study the available single-reference complexity146

reduction schemes adapted to the multi-step integration stage147

of MISS (Sect.3). Second, we propose a new, simple and ef-148

ficient complexity reduction strategy based on an automatic149

multi-reference frames processing (Sect.4). It reaches longer150

accurate displacement fields while efficiently reducing the com-151

plexity. Its ability to go towards longer long-term dense motion152

estimation is assessed through comparisons with state-of-the-153

art methods on challenging sequences (Sect.5).154

2. Multi-step integration and statistical selection (MISS)155

The baseline multi-step integration and statistical selection156

(MISS) method [18, 19] can be, at first glance, studied without157

any complexity reduction considerations. Let us overview both158

multi-step integration and statistical selection steps in the con-159

text of exhaustive motion path generation. For the sake of clar-160

ity, complexity reduction is addressed only starting from Sect.3.161

2.1. Multi-step integration162

The multi-step integration aims at producing a large set of163

displacement fields between a reference frame Ire f and a given164

subsequent frame In as to form a significative set of samples165

upon which a statistical processing would be meaningful and166

advantageous. As inputs, it takes a set of optical flow fields167

pre-estimated from each frame of the sequence including Ire f .168
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(a) step sequences (b) motion paths

Figure 1: Multi-step integration: (a) Generation of step sequences from I0 to I3 with steps 1, 2, and 3 by creating a tree structure: Γ0,3 = {{1, 1, 1}, {1, 2}, {2, 1}, {3}};
(b) Generation of motion paths following all the step sequences of Γ0,3 which gives for each pixel x0 of I0 a set of candidate positions in I3: T0,3(x0) = {x3

0
, x3

1
, x3

2
,x3

3
}.

These optical flows are computed between consecutive frames169

or with larger steps [16], i.e. larger inter-frame distances. Let170

S n = {s1, s2, . . . , sQn } ⊂ {1, . . . ,N − n} be the set of Qn possible171

steps at instant n. The following set of optical flow fields start-172

ing from In is therefore available: {vn,n+s1
, vn,n+s2

, . . . , vn,n+sQn
}.173

The starting point of multi-step integration consists in ini-174

tially generating all the possible step sequences, i.e. combina-175

tions of steps, in order to join In from Ire f . Each generated step176

sequence defines a motion path which links each grid point xre f177

of Ire f to a non-necessary grid position in In through multiple178

concatenations of un-occluded multi-step optical flow fields.179

Let Γre f ,n = {γ0,γ1, . . . ,γK−1} be the set of K possible180

step sequences γi between Ire f and In. A step sequence γi =181

{si
1
, si

2
, . . . , si

Kγi
} is defined by a set of Kγi

steps si
k which once182

cascaded join In from Ire f . The set of K possible step sequences183

Γre f ,n is computed by building a tree structure (Fig.1a) where184

each node corresponds to an optical flow field assigned to a185

given frame for a given step value, the node value. Going from186

the root node to leaf nodes of this tree structure gives Γre f ,n, the187

set of K possible step sequences from Ire f to In.188

Once all the possible step sequences γi ∀i ∈ [[0, . . . ,K − 1]]189

between Ire f and In are generated, the corresponding motion190

paths are constructed through motion vector concatenation.191

Starting from each pixel xre f ∈ Ire f and for each step sequence192

γi, this integration performs the accumulation of optical flow193

fields following the steps which form the current step sequence,194

i.e. si
1
, si

2
, . . . , si

Kγi
(Fig.1b). Let f i

j = re f +
∑ j

k=1
si

k be the195

current frame number during the construction of motion path i196

from Ire f where j is the step index within the step sequence γi.197

For each γi ∈ Γre f ,n and for each step si
j ∈ γi, the integration198

starts from xre f to iteratively compute the successive positions199

of motion path i along the sequence:200

xi
f i

j
= xi

f i
j−1

+ v f i
j−1
, f i

j
(xi

f i
j−1

) (1)

Once all the steps si
j ∈ γi have been run through, one gets xi

n,201

the corresponding position in In of xre f ∈ Ire f obtained with step202

sequence γi. A large set of candidate positions in In is finally203

reached by considering all the step sequences of Γre f ,n (Fig.1b)204

and this for each pixel xre f ∈ Ire f . Thus, to each pixel xre f of205

Ire f is associated a large set of candidate positions in In defined206

as Tre f ,n(xre f ) = {xi
n} ∀i ∈ [[0, . . . ,Kxre f − 1]] where Kxre f is the207

cardinal of Tre f ,n(xre f ).208

2.2. Statistical selection209

The statistical selection aims at selecting the optimal candi-210

date position x∗n in Tre f ,n(xre f ) = {xi
n}i∈[[0,...,Kxre f −1]], the set of211

candidate positions in In obtained for each pixel xre f of Ire f .212

The selection of the optimal candidate position is performed by213

combining a statistical processing applied for each pixel xre f in-214

dependently as well as a global optimization method introduc-215

ing spatial regularization into the candidate selection process.216

For each xre f ∈ Ire f , the statistical processing is applied to217

Tre f ,n(xre f ) to select the Nopt best candidates of the distribution218

based on spatial density and intrinsic candidate quality. Then,219

the fusion moves algorithm citelempitsky2010fusion fuses the220

resulting Nopt dense candidate displacement fields pair by pair221

up to obtain the optimal displacement field between the distant222

frames Ire f and In. These fusions are performed via global opti-223

mization [18] and involve both matching cost and inconsistency224

quality features described in Appendix B.225

The key aspect of the statistical selection relies on the se-226

lection of the Nopt optimal candidate positions through statisti-227

cal processing. To select these Nopt candidates, it exploits the228

statistical information on the point distribution as well as in-229

formation relative to intrinsic candidate quality. Based on the230

Maximum Likelihood Estimator (MLE) estimator for which the231

mean operator has been replaced by the median operator to be232

more robust to outliers, the choice of the Nopt optimal candidate233

positions in Tre f ,n(xre f ) is recursively performed following:234

x∗n = arg min
xi

n

med j�i

∥∥∥∥x j
n − xi

n

∥∥∥∥
2

2
(2)

Once an optimal candidate position has been chosen, the pro-235

cess removes it from the distribution and applies again the me-236

dian minimization criterion of Eq.2 to select another candidate237

and so on, up to Nopt.238

3. Single-reference complexity reduction239

Up to now, multi-step integration (Sect.2.1) has been pre-240

sented as an exhaustive motion candidate generation process241

and previously mentioned computational and memory issues242

have not been taken into account. In practice, in order to be243

able to build and to keep in memory the multi-step integration244

stage outputs, it is necessary to select only a subset of all step245

3
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sequences and therefore associated motion paths starting from246

each pixel xre f of Ire f . In what follows, we review the existing247

algorithmic single-reference strategies which can be considered248

to perform such computational complexity reduction.249

For a given pair of frames {Ire f , In}, let Nmax be the maxi-250

mum number of motion paths which can be built for each pixel251

xre f ∈ Ire f according to storage capacity. Limited storage ca-252

pacity requires the selection of only Nmax step sequences among253

the K possible step sequences Γre f ,n = {γ0,γ1, . . . ,γK−1}. It254

leads to Γ∗re f ,n, a set made of Nmax step sequences selected255

among Γre f ,n with Nmax << K.256

3.1. Random selection257

The straightforward approach consists in a simple random258

selection of Nmax step sequences among Γre f ,n. However, it in-259

duces a systematic bias towards the more populated branches of260

the tree since the steps assigned to a given intermediate frames261

between Ire f and In do not appear with the same frequency.262

Smallest steps appear more frequently than larger ones among263

the K possible step sequences and therefore lead to more popu-264

lated tree branches. In Fig.1a, step 1 assigned to frame I0 is used265

in two step sequences ({1, 1, 1},{1, 2}) contrary to steps 2 and 3266

which leads to only one step sequence (respectively {2, 1} and267

{3}). After purely random selection, smallest steps may conse-268

quently play a more important role than largest steps among the269

chosen Nmax step sequences and it finally may lead to highly270

correlated resulting candidate displacement vectors.271

3.2. Largest step sequences removal272

To make the selection more clever, one can remove the273

largest step sequences in terms of number of constituting steps274

[18, 19]. In practice, a threshold of Kmax number of steps can275

be set and only step sequences γi = {si
1
, si

2
, . . . , si

Kγi
} for which276

Kγi
≤ Kmax are kept. Indeed, too many steps means too many277

multi-step optical flow concatenations which may lead to an278

important motion drift. The goal of removing largest step se-279

quences is more precisely to reduce the effects of the three dif-280

ferent error types [21]. First, intrinsic error propagation which281

deals with accumulation of displacement error along the video282

sequence. Second, interpolation error which is inherent to the283

interpolation process since successive motion path positions are284

non-necessary grid points. Third, motion bias which is bias in285

motion computation since successive estimated motion path po-286

sitions are different from the true ones. However, it does not287

solve the imbalance tree issue due to random selection.288

3.3. Step occurrence-based guided random selection289

To avoid this issue, uniformizing for all intermediate frames290

Ic with re f ≤ c ≤ n the contributions of all steps assigned to Ic291

is required. In this context, one can constrain the selection using292

a step occurrence criterion. The idea is to assign a occurrence293

number to each step of the tree and to update it each time the294

current step is used in a selected step sequence. The constraint295

is to tend to make this occurrence of appearance as uniform as296

possible between all the steps arising from a given frame.297

Let f (scur, Ic) be the occurrence number of step scur starting298

from Ic. As described by the pseudo-code in Appendix A, the299

step occurrence-based guided random selection starts by ran-300

domly selecting a first step sequence among Γre f ,n. The occur-301

rence number of each step of this first step sequence is incre-302

mented by 1. Then, each time the algorithm aims at choosing a303

new step sequence γcur, it starts from Ire f and iteratively selects304

among the possible steps {s1, s2, . . . , sQc } available from the cur-305

rent frame Ic (excepting those for which c + si > n) the step306

scur having the smallest occurrence number, i.e. f (scur, Ic) ≤307

f (si, Ic) ∀i ∈ [[1, 2, . . . , sQc ]] with si � scur and c + si ≤ n308

and then moves to the subsequent frame Ic+scur . If several steps309

have same occurrence number, a random selection is performed310

among them. This iterative scheme building γcur is performed311

until In is reached. Before selecting a new step sequence and as312

done with the first selected one, the occurrence number of each313

step of γcur is incremented by 1. The whole process is repeated314

until Nmax step sequences are chosen.315

The limitation wich such guided random selection is that it is316

too computationally complex to select a different subset of step317

sequences for each grid point xre f of Ire f (i.e. one step sequence318

tree per pixel xre f ). Indeed, during motion path construction, it319

would require to successively load in memory a different set320

of multi-step optical flow fields once a long-term displacement321

vector starting from a new xre f is under computation. Thus, the322

Nmax selected step sequences of Γ∗re f ,n are the same for all grid323

points xre f to allow to build densely and in only one pass all the324

motion paths starting from all grid points xre f .325

In practice, each node of the tree obtained through the326

occurrence-based guided random selection stores an associ-327

ated dense multi-step optical flow field. Thus, a given node328

of node value si defined from frame Ic stores the field vc,c+si .329

Motion paths are built densely by concatenating for each se-330

lected step sequences the corresponding multi-step optical flow331

fields along the tree. For step sequence γi ∈ Γ∗re f ,n for in-332

stance, vre f ,re f+si
1

stored into the node of node value si
1

and de-333

fined at Ire f is concatenated with vre f+si
1
,re f+

∑2
m=1 si

m
and stored334

in the node corresponding to step si
2

starting from Ire f+si
1
. The335

resulting concatenated motion field is then concatenated with336

vre f+
∑2

m=1 si
m,re f+

∑3
m=1 si

m
and stored in the node corresponding to si

3
337

starting from Ire f+
∑2

m=1 si
m

and so on. By following this dense mo-338

tion path construction, the leaf nodes of the tree corresponding339

to step si
Kγi
∈γi finally store a candidate motion fields dre f ,n ob-340

tained with the motion path whose corresponding step sequence341

is γi ∈ Γ∗re f ,n. dre f ,n will contribute to establish Tre f ,n(xre f ) =342

{xi
n}i∈[[0,...,Kxre f −1]], the set of candidate positions in In obtained343

for each xre f of Ire f . By browsing the tree as described above,344

an optical flow field assigned to a given step used in more than345

one step sequence of Γ∗re f ,n is stored and read only one time.346

Another limitation is that the intrinsic quality of either optical347

flows or combinations of optical flows is not taken into account348

to guide random step sequence selection. A given subset of step349

sequence may better suit to a given grid point than its neighbor.350

To overcome both limitations, we propose to explore an al-351

ternative to the step occurrence-based guided random selection352

which relies on a multi-reference frames processing.353
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4. MR-MISS: multi-reference frames MISS354

We propose a new complexity reduction scheme based on355

multi-reference frames processing which is relevant for two356

main reasons. First, it efficiently reduces the complexity dur-357

ing multi-step integration by guiding the step sequence selec-358

tion using quality criteria which are used to introduce manda-359

tory passage points within the tree of step sequences. Second,360

it allows to update the appearance of the points under tracking361

and therefore to make quality criteria more robust to assess the362

quality of displacement vectors during statistical selection.363

As the quality of motion/trajectory fields starting from two364

given separate areas of Ire f temporally decreases differently365

along the sequence, we cannot anymore compute the same sub-366

set of step sequences Γ∗re f ,n for all grid points of Ire f . For this367

reason, we target the issue of performing a long-term dense mo-368

tion estimation with respect to a free-form region of interest369

(ROI) defined in the reference frame Ire f and belonging to the370

same object. Tackling this context is relevant since applications371

such as video editing tasks often focus on distinct spatial areas.372

Logo insertion and propagation is a characteristic example.373

The proposed algorithm is called multi-reference frames374

multi-step integration and statistical selection (MR-MISS). It375

mainly relies on the insertion of new reference frames each376

time the set of trajectory/motion vectors to be computed start377

to fail. To reach long-term motion estimation requirements, a378

MISS strategy (referred to single-reference MISS or SR-MISS379

in what follows in opposition to MR-MISS) is performed from380

each inserted reference frames and the resulting multi-reference381

frames displacement vectors are finally concatenated.382

Our approach follows the same spirit of [22] whose aim is383

to re-correlate short-range sparse pieces of trajectories, called384

tracklets, estimated with respect to different starting frames in385

order to go towards longer long-range trajectories. We propose386

to exploit this concept of tracklets combinations in the context387

of dense motion estimation.388

4.1. MR-MISS overview389

We consider a long video shot {In}n∈[[0,...,N]] of N + 1 RGB390

images including the first frame I0 considered as the main ref-391

erence frame and denoted as Ire f0 . Our goal is to perform long-392

term dense motion estimation both starting from and with re-393

spect to a free-form ROIΩre f0 ∈ �2 provided by the user in Ire f0 .394

In this context, we aim at determining with high accuracy and395

for each pair of frames {Ire f0 , In} with n ∈ [[0, . . . ,N]] � re f0:396

- from-the-reference displacement vectors dre f0,n between397

pixels xre f0 ∈ Ωre f0 in Ire f0 and non-necessary grid posi-398

tions in In,399

- to-the-reference displacement vectors dn,re f0 from In to400

Ire f0 , starting from pixels xn ∈ In and for which xn +401

dn,re f0 (xn) belongs to Ωre f0 .402

These displacement vectors must be accurately computed even403

if In is very distant temporally and if strong content modifica-404

tions occur between Ire f0 and In. Instead of relying on a SR-405

MISS strategy (Sect.3) only referring to the reference frame406

Ire f0 , we suggest to both:407

- perform SR-MISS from Ire f0 as well as from M intermedi-408

ate reference frames cleverly inserted within the sequence409

and referred to Ire fk with k ∈ [[1, 2, . . . ,M]],410

- concatenate the resulting multi-reference frames displace-411

ment vectors.412

With MR-MISS, we give a key role to the quality assessment413

of trajectory fields. The insertion of the M intermediate refer-414

ence frames {Ire fk }k∈[[1,2,...,M]] is performed automatically by rely-415

ing on a robust quality assessment of trajectories starting from416

pixels xre f0 of Ωre f0 . By this way, we add a new intermediate417

reference frame each time the trajectories under computation418

diverge. Thus, we continue motion estimation from intermedi-419

ate sound frames in order to temporally extend the trajectory420

estimation process with respect to Ire f0 as far as possible. Ob-421

viously, the intermediate reference frame insertion task can be422

also performed manually under the operator control, as for spe-423

cific post-production applications requiring the most realistic424

viewing experience.425

In the following, we describe the MR-MISS strategy by fo-426

cusing on three aspects: the concatenation of multi-reference427

frames displacement vectors (Sect.4.2), the reference frames428

insertion task (Sect.4.3) and the processing of to-the-reference429

displacement vectors (Sect.4.4). Then, we explain in Sect.4.5430

how MR-MISS can be also seen as a robust complexity reduc-431

tion method in the context of MISS and how it improves long-432

term dense motion estimation compared to SR-MISS.433

4.2. Combination of multi-reference frames vectors434

Let us focus on the estimation of the trajectory T(xre f0 )435

starting from the grid point xre f0 ∈ Ωre f0 of Ire f0 . T(xre f0 ) is436

defined by a set of from-the-reference displacement vectors437

{dre f0,n(xre f0 )}n∈[[1,...,N]] which must be accurately estimated for438

the whole long video shot. Toward this task, we start by apply-439

ing the SR-MISS algorithm with respect to Ire f0 . Let us assume440

that it fails at I f ail0 with f ail0 < N (Fig.2). We propose to intro-441

duce a new reference frame at I f ail0−1, i.e. at the instant which442

precedes the tracking failure and for which dre f0, f ail0−1(xre f0 ) has443

been well estimated.444

Once this new reference frame, referred to Ire f1 , has been in-445

serted, we run again the SR-MISS algorithm starting from the446

position xre f0 + dre f0,re f1 (xre f0 ) of Ire f1 between Ire f1 and each447

subsequent frames In with n ∈ [[re f1 + 1, . . . ,N]] (Fig.2). Thus,448

we obtain the set of displacement vectors {d̃re f1,n}n∈[[re f1+1,...,N]]449

defined with respect to xre f0 + dre f0,re f1 (xre f0 ) in Ire f1 where .̃450

denotes a displacement interpolated at a non-necessary grid po-451

sition. We can now obtain a new version of the displacement452

vectors {dre f0,n(xre f0 )} with n ∈ [[re f1 + 1, . . . ,N]] by concate-453

nating dre f0,re f1 estimated with respect to Ire f0 and d̃re f1,n we just454

computed with respect to Ire f1 :455

dre f0,n(xre f0 ) = dre f0,re f1 (xre f0 )+d̃re f1,n(xre f0+dre f0,re f1 (xre f0 )) (3)

If this resulting new version of T(xre f0 ) fails again, at I f ail1 for456

instance, we insert a new reference frame referred to Ire f2 at457

I f ail1−1 and we perform SR-MISS with respect to Ire f2 (Fig.2).458
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Figure 2: The proposed multi-reference frames MISS strategy (MR-MISS) through insertion of reference frames once trajectories diverge. A robust long-term dense

motion estimation is reached by concatenating accurate multi-reference frames displacement vectors (solid vectors) while rejecting motion outliers (dashed vectors).

We finally obtain new estimates of the displacement vectors459

{dre f0,n(xre f0 )} for n ∈ [[re f2 + 1, . . . ,N]]:460

dre f0,n(xre f0 ) = dre f0,re f1 (xre f0 ) + d̃re f1,re f2 (xre f0 + dre f0,re f1 )

+ d̃re f2,n(xre f0 + dre f0,re f1 + d̃re f1,re f2 ) (4)

We apply an exactly similar processing each time T(xre f0 )461

fails again, up to the end of the sequence. More generally,462

by defining Ire fq as the last intermediate reference frame in-463

serted before a given frame In, the refined from-the-reference464

displacement vector between xre f0 of Ire f0 and In becomes:465

dre f0,n(xre f0 ) = dre f0,re f1 (xre f0 )+

q−1∑

l=1

d̃re fl,re fl+1
(xre fl )+ d̃re fq,n(xre fq )

(5)

where xre fk defines the successive positions of T(xre f0 ) in the466

intermediate reference frames {Ire fk }k∈[[1,2,...,q]]:467

xre fk = xre f0 +

k−1∑

l=0

d̃re fl,re fl+1
(xre fl ) (6)

4.3. Selection of intermediate reference frames468

We suggest to insert new reference frames based on the de-469

tection of tracking failures during the computation of T(xre f0 ).470

It can be performed either automatically or interactively471

through the study of the temporal evolution of matching cost472

C(xre f0 , dre f0,n(xre f0 )) and inconsistency Inc(xre f0 , dre f0,n(xre f0 ))473

quality features (Appendix B) associated to displacement vec-474

tors {dre f0,n(xre f0 )} with n ∈ [[1, . . . ,N]].475

In practice, binary matching costs and inconsistency476

values obtained by thresholding C(xre f0 , dre f0,n(xre f0 )) and477

Inc(xre f0 , dre f0,n(xre f0 )) respectively by εC and εInc can inform478

about the quality of T(xre f0 ). Once at least one of these thresh-479

olds is reached, the current from-the-reference displacement480

vector is considered as erroneous and the process automatically481

adds a new reference frame at the previous frame.482

To extend the tracking failure detection to the whole set of483

trajectories starting from pixels xre f0 ∈ Ωre f0 in Ire f0 , we can484

focus on the percentage of pixels xre f0 whose corresponding485

displacement vector is either inaccurate according to binary486

matching cost or inconsistent according to binary inconsistency487

value (or both). Thus, we define a threshold ε% on this percent-488

age to determine from which instants new intermediate refer-489

ence frames are needed.490

Note that with MR-MISS, the ROI must be un-occluded in491

each intermediate reference frames. Nevertheless, handling492

temporally occlusions within any temporal section [Ire fk , Ire fk+1
]493

is still possible since multi-step optical flows are able to jump494

between distant frames and therefore to continue the matching495

process when the entity to be tracked re-appears.496

4.4. To-the-reference estimation497

If the application under consideration requires the estima-498

tion of to-the-reference displacement vectors dn,re f0 (xn) ∀n ∈499

[[1, ...,N]] and with xn + dn,re f0 (xn) ∈ Ωre f0 , as for texture in-500

sertion and propagation for instance, we cannot apply the MR-501

MISS strategy starting from each frame In and running back502

to Ire f0 for computational issues. We propose to keep the pro-503

cessing in the from-the-reference direction from Ire f0 and there-504

fore to decide the introduction of intermdiate reference frames505

with respect to the quality of from-the-reference displacement506

vectors only. A certain correlation between the quality assess-507

ment of from-the-reference displacement vectors and the effec-508

tive quality of to-the-reference displacement vectors is ensured509

by using inconsistency quality features (Sect.4.3). Inconsis-510

tency deals with from/to-the-reference consistency and simul-511

taneously addresses the quality of both vector types. Thus,512

to-the-reference displacement vectors can benefit from the in-513

troduction of these intermediate reference frames anyway. In-514

deed, unaccurate displacement vectors dn,re f0 (xn) starting from515

the grid point xn of In can be refined as follows:516

dn,re f0 (xn) = dn,re fq (xn) +

q∑

l=1

d̃re fq−l+1,re fq−l (xre fl ) (7)

where xre fk defines the successive positions in the intermediate517

reference frames {Ire fk }k∈[[q,q−1,...,1]]:518

xre fk = xn + dn,re fq (xn) +

q∑

l=k+1

d̃re fq−l+1,re fq−l (xre fl ) (8)

4.5. Comparison of MR-MISS with SR-MISS519

We aim at comparing SR-MISS and MR-MISS strategies by520

showing both how MR-MISS belongs to the MISS framework521
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Figure 3: Comparison between SR-MISS and MR-MISS through long-term motion estimation with respect to x0 ∈ Ire f0 = Ire f for the pairs of frames {Ire f , In} with

n = {3, 4, 5}. We assume that only steps 1, 2 and 3 are available from each frame. Moreover, due to computational and memory issues, the maximum number of

step sequences to be selected is set to Nmax = 3 and the maximum number of steps within each step sequence is Kmax = 3. Both trees of step sequences and motion

paths are presented. Black and grey colors correspond respectively to SR-MISS and MR-MISS. Bold step sequences deal with the Nmax = 3 selected ones. Stars (*)

and exclamation marks (!) respectively indicate accurate and unaccurate selected match with respect to ground-truth. Double lines (//) highlight the step sequences

which cannot be considered by SR-MISS due to the the maximum concatenation number constraint (Kmax = 3).
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and how it reaches better long-term dense motion estimation522

while efficiently reducing the complexity. In particular, MR-523

MISS has two main advantages compared to purely random or524

step occurrence-based random selections (Sect.3).525

First, MR-MISS significantly reduces computational com-526

plexity since both inserting a reference frame Ire fk with k ∈527

[[1, 2, . . . ,M]] and re-generating motion estimation from Ire fk528

translates in fixing a mandatory passage point within the tree529

of step sequences. In terms of motion path generation, it de-530

fines non-necessary grid point positions in Ire fk which must nec-531

essary belong to the trajectories under estimation and whose532

accuracy has been checked manually or (semi-)automatically533

through both cost matching and inconsistency quality features.534

Guiding the step selection using quality criteria induces an-535

other interesting aspect. Since SR-MISS generates step se-536

quences with a maximum number of steps Kmax due to com-537

putational and memory issues, it does not take in consider-538

ation large step sequences whose corresponding motion path539

would have potentially been accurate. In the context of MR-540

MISS, applying a SR-MISS strategy from each inserted refer-541

ence frame Ire fk with k ∈ [[0, 1, . . . ,M]] allows to consider larger542

step sequences, i.e. up to (M + 1).Kmax steps (Kmax concatena-543

tions maximum from each reference frame), regardless com-544

putational and memory issues. Indeed, each time a SR-MISS545

strategy is performed from a new reference frame Ire fk , the mo-546

tion path generation process has already been done for the tem-547

poral segment [Ire f0 , Ire fk ] and only the subsequent frames un-548

dergo the previously mentioned issues.549

Second, relying on new reference frames allow to update550

both the appearance and intermediate positions of grid points551

xre f0 ∈ Ωre f0 in Ire f0 under tracking. By this way, both match-552

ing cost and inconsistency quality features involved in statisti-553

cal selection are computed with respect to temporally nearest554

and accurate intermediate locations. The resulting quality cri-555

teria are more valid when we rely on a reference frame which556

is closer from the current frame than the initial reference frame557

Ire f0 . In particular, our technique apprehends more efficiently558

smooth changes of appearance of Ωre f0 .559

These advantages of MR-MISS compared to SR-MISS are560

illustrated in Fig.3. In this example, we focus on long-term mo-561

tion estimation with respect to x0 ∈ Ire f0 = Ire f and we illustrate562

how SR/MR-MISS work for the pairs of frames {Ire f , In} with563

n = {3, 4, 5}. We assume that only steps 1, 2 and 3 are available564

from each frame. Moreover, due to computational and memory565

issues, the maximum number of step sequences to be selected566

and the maximum number of steps within each step sequence567

are respectively set to Nmax = 3 and Kmax = 3.568

Among the 4 step sequences available between Ire f and I3,569

Nmax of them are selected ({{1, 2}, {2, 1}, {3}}) according to the570

step occurrence-based guided random selection. Finally, the571

motion path corresponding to {2, 1} leads to the best match in572

I3 and this matching appears as accurate.573

For SR-MISS, the processing for {Ire f , I4} is performed inde-574

pendently from the one of {Ire f , I3} and leads to the selection575

of {{1, 2, 1}, {2, 2}, {3, 1}}. Among the 3 resulting motion paths,576

the one built via the step sequence {2, 2} is selected but leads to577

an unaccurate matching both according to quality criteria and578

ground-truth (true detection of motion outlier) without being579

able to propose a more efficient alternative. This tracking fail-580

ure in I4 forces MR-MISS to select I3 as a new intermediate581

reference frame referred to Ire f1 . Thus, MR-MISS matches x0582

to an accurate position in I4 by concatenating the inter-reference583

displacement vector dre f0,re f1 and the optical flow of step 1 be-584

tween Ire f1 and I4 as in Eq.3. By starting from a much closer585

sound reference frame and therefore by forcing the selected586

step sequence to start by the sub-sequence {2,1}, MR-MISS587

succeeds in finding the optimal step sequence ({2,1, 1}) while588

limiting the computational complexity. In this simple example,589

only one step sequence is considered by MR-MISS between590

Ire f and I4 whereas SR-MISS has to make a selection among591

{{1, 1, 2}, {1, 2, 1}, {2, 1, 1}, {2, 2}, {3, 1}}.592

Let us go further by studying how SR/MR-MISS process593

{Ire f , I5}. Contrary to SR-MISS which reaches another bad594

match by selecting the motion path corresponding to {3, 1, 1},595

MR-MISS remains less computationally complex by allow-596

ing the selection only between motion paths of step sequences597

{2,1, 1, 1} and {2,1, 2}. {2, 1, 1, 1} is supposed to give the opti-598

mal match in our example. Another interesting aspect is that599

many step sequences, such as the optimal one {2, 1, 1, 1}, can-600

not be considered by SR-MISS due to the limitation in terms of601

number of concatenations (Kmax = 3) since {2, 1, 1, 1} is made602

of 4 steps. We illustrate by this way how MR-MISS reduces the603

computational complexity while tending to keep in the reduced604

step sequence set the more optimal ones.605

5. Experimental results606

5.1. Complexity reduction and accuracy improvement607

Complexity reduction and accuracy improvements are the608

two expected points when comparing MR-MISS to SR-609

MISS. Additionally to the analytical comparison performed in610

Sect.4.5, we provide here the results of a comparative experi-611

mental assessment performed on the pair {Ire f = I0, I25} of the612

Walking Couple sequence. Its goal translates in evaluating via613

Peak Signal to Noise Ratio (PSNR) the quality of the warping614

from I0 to I25 of a free-form ROI of size 70 × 160 pixels corre-615

sponding to the yellow shape inserted in Fig.5.616

ROI warping from I0 to I25 is performed using from-the-617

reference displacement vectors estimated either with SR-MISS618

or MR-MISS and this for a maximum number of possible mo-619

tion paths Nmax varying from 6 to 60 in order to simulate dif-620

ferent limited computational and storage capacity characteris-621

tics. The range used for Nmax is of the same order of magnitude622

as one can encounter with standard computers (< 100). The623

maximum number of concatenations and the number of candi-624

date positions selected by statistical processing are respectively625

Kmax = 7 and Nopt = 3. In this experiment, we use Large Dis-626

placement Optical Flow (LDOF) optical flows [23] previously627

estimated with the following set of empirically selected steps:628

{1, 2, 3, 4, 5, 10, 15}.629

SR-MISS processes the sequence from {Ire f , I1}, {Ire f , I2} . . .630

to {Ire f , I25} with the different selected Nmax values. For each631

one, SR-MISS is run 7 times. These multiple realizations aim632

8
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Figure 4: Assessment of the warping quality induces by from-the-reference displacement vectors estimated either via SR-MISS or MR-MISS for a free-form ROI

(yellow shape inserted in Fig.5) between I0 and I25 of the Walking Couple sequence. The warping quality is studied via PSNR for a varying number of motion paths

simulating limited computational and storage capacity. Black and grey colors correspond to SR-MISS and MR-MISS respectively. Crosses indicate PSNR for each

realization whereas curves focus on mean PSNR over the 7 realizations performed for each motion paths number. Bars are drawn from worse to best PSNR values

in order to highlight the warping quality variability.

at obtaining an average warping quality since one single pro-633

cessing gives variable results due to MISS random aspects. An634

intermediate reference frame is then manually set at I18 in or-635

der to make MR-MISS runs with I0 and I18 as reference frames.636

The temporal section [I19, I25] is processed with the same com-637

putational and storage capacity as [I0, I18] (i.e. same Nmax from638

each reference frame {I0, I18}). Moreover, for a given Nmax639

value, MR-MISS relies on the SR-MISS realization of worse640

PSNR among the 7 realizations performed with same Nmax for641

the temporal section [I0, I18]. By this way, we do not favor MR-642

MISS with respect to SR-MISS.643

Fig.4 displays all the PSNR obtained with respect to the num-644

ber of motion paths involved between I0 and I25: Nmax for SR-645

MISS, 2×Nmax for MR-MISS since MR-MISS involves 2 refer-646

ence frames. Thus, we assess the performance of both methods647

while setting similar complexity characteristics.648

Two findings arise when analysing Fig.4. First, whatever the649

method, higher the number of motion paths used, the higher the650

PSNR. Increasing the complexity also results in a decrease of651

the PSNR standard deviation since the probability of selecting652

an optimal motion path is obviously correlated to the size of653

the motion path set. Second, at equal number of motion paths,654

motion estimation is more accurate with MR-MISS than SR-655

MISS according to mean PSNR values. With 30 involved mo-656

tion paths, the gain in terms of PSNR is about 0.3 (17.76 against657

17.46). Moreover, the warping quality variability is less impor-658

tant with MR-MISS since it tends to keep more accurate motion659

paths than SR-MISS and therefore to decrease the probability660

of tracking failures.661

5.2. Benefits of updating ROI appearance662

Updating the appearance of the area under tracking at each663

new intermediate reference frame is a key aspect which explains664

the good performance of MR-MISS. To quantitatively assess665

the gain reached by this appearance update, MR-MISS has been666

applied on the Walking Couple sequence (Fig.5) with 2 differ-667

ent presets: the original algorithm described in Sect.4 and MR-668

MISS without appearance update which means that during sta-669

tistical selection, matching cost assigned to each candidate dis-670

placement vector refers to the color appearance in Ire f0 instead671

of Ire fq , the lastly inserted intermediate reference frame. This672

latter aspect is directly linked to the SR-MISS strategy which673

always relies on the initial reference frame Ire f0 to compute the674

displacement vector quality.675

The experiment focuses on the smooth changes of color ap-676

pearance of the free-form ROI involved in the assessment of677

Sect.5.1. As previously, the reference frames are {I0, I18}, what-678

ever the MR-MISS preset. The processing for the temporal sec-679

tion [I0, I18] is done to provide similar results. In the preset680

without appearance update, the reference frame I18 is replaced681

by a warped version of I0 built using the displacement vectors682

computed for the pair {I0, I18}. The MISS procedure with re-683

spect to I18 is then performed as if the ROI appearance had not684
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MR-MISS {I0, I19} {I0, I30} {I0, I35} {I0, I40} {I0, I41} {I0, I42}
without AD 17.78 15.37 15.24 16.25 16.12 15.47

with AD 17.82 15.47 15.51 16.40 16.45 15.72

Table 1: Assessment of the gain reached by the MR-MISS appearance update

(AD) via mean PSNR scores averaged over 7 realizations for several pairs from

{I0, I19} to {I0, I42} of the Walking Couple sequence (ROI corresponding to the

yellow shape inserted in Fig.5). Best results are in bold.

undergone any changes contrary to the original preset which685

updates the content appearance in I18.686

To compare from-the-reference displacement vectors coming687

from both presets, Tab.1 shows mean PSNR scores averaged688

over 7 realizations for several pairs from {I0, I19} to {I0, I42}. The689

PSNR is better for all pairs with appearance update in I18. In690

addition, the trend is that the PSNR gain rises up with the tem-691

poral distance to I0 which indicates that motion drift is delayed692

temporally thank to the ROI appearance update. This main MR-693

MISS aspect tends to achieve long-term requirements even with694

smooth color or illumination variations along the sequence.695

5.3. Video editing696

Three video editing examples are provided to qualitatively697

assess the good performance of MR-MISS in comparison to698

SR-MISS for different types of complex scenes. The exper-699

iment consists in propagating a logo/texture inserted in Ire f700

across the sequence using SR/MR-MISS to-the-reference dis-701

placement vectors to bring back inserted data into each current702

frame. Three sequences are considered: Walking Couple be-703

tween I0 and I60 (Fig.5), MPI-S1 between I115 and I165 (Fig.6)704

and Hope between I5036 and I5111 (Fig.7).705

The thresholds related to tracking failure detection are set to706

εC = 3, εInc = 1 and ε% = 0.5. In addition, Nmax = 90, Kmax = 7707

and Nopt = 3. The input optical flow estimators and the set708

of steps are specified for each experiment. Small steps from 1709

to 5 are used in any case, as one expects. For larger steps, it710

depends on possible temporary occlusions which may occur in711

the sequence. At least one step bigger than the duration of the712

temporary occlusion is required to be able to jump it.713

In terms of computation time, performing MR-MISS on a714

sequence of 700x700 frames (as for Walking Couple) takes715

approximately about 6 minutes per frame on a laptop PC716

equipped with a 2,5GHz Intel Core i5 processor.717

718

Walking Couple. SR/MR-MISS to-the-reference displacement719

vectors dn,0 ∀n ∈ [[1, . . . , 60]] are used to propagate the yellow720

texture across the sequence, from I0 to I60 (Fig.5). The tex-721

ture is inserted within the shirt of the woman exhibiting peri-722

odic structures, highly non-rigid motion as well as illumination723

changes. Both methods use LDOF [23] optical flows with steps724

{1, 2, 3, 4, 5, 10, 15}.725

The two first rows and the fourth one show how the SR-MISS726

motion estimation from I0 performs the propagation. We notice727

that a hole appears in I31 (upper right part of the texture) and728

grows gradually due to bad motion estimation of the periodic729

structures. It also appears that the compacity of the initial tex-730

ture is lost from in I48. The texture diverges abnormally above731

and to the right of the correct texture position.732

The third and the fifth rows illustrate how MR-MISS per-733

formed with respect to reference frames {I0, I27, I42} propagates734

the texture up to I60. Despite small holes, the results appear735

to be much better than the ones obtained with SR-MISS.736

The propagation is clearly performed without any disturbing737

artefacts. We can also notice that the occlusion due to the arm738

of the woman is well handled by our method. Occluded parts739

of the texture are not propagated, as one expects.740

741

MPI-S1. A logo is inserted in an un-textured area which742

undergoes strong illumination variations as well as a non-743

rigid transformation due to the rotation of the woman (Fig.6).744

Additionally to I115, three intermediate reference frames745

({I135, I155, I160}) are inserted for MR-MISS. 2D-DE [24] optical746

flows as used as inputs with steps {1, 2, 3, 4, 5, 8, 10, 15, 20}.747

The first row shows good results for the 16 first frames.748

Then, by comparing the second and the third row, we notice749

that SR-MISS makes the logo progressively distorted from750

I139 and finally not at all recognizable (I151). On the contrary,751

MR-MISS keeps the logo in a compact form and accurately752

follows the non-rigid motion of the woman. Finally, the fourth753

row indicates that it is possible with MR-MISS to rely on good754

motion estimates for a temporal distance of 50 frames.755

756

Hope. Fig.7 shows logo insertion in a uniform area of I5036 and757

propagation along the Hope sequence up to I5111. SR-MISS758

from I5036 and MR-MISS with {I5036, I5063, I5073} as reference759

frames are performed using 2D-DE optical flows with steps760

{1, 2, 3, 4, 5, 8, 10, 15, 20}. We notice that SR-MISS makes761

holes appear and highly distorts the initial logo shape from762

I5103. On the contrary, visual results with MR-MISS reveal a763

better consistency over time, up to I5111.764

765

The two last video editing experiments reveal good accuracy766

with the 2D-DE [24] optical flow which has not been designed767

especially to be more robust to large movements than common768

optical flow algorithms, contrary to LDOF [23]. The perfor-769

mance reached by MR-MISS is obviously related to the input770

optical flow estimator. However, results suggest that MR-MISS771

is robust enough to extend the ability of its input estimator to772

go towards longer long-term dense motion estimation.773

5.4. Comparison with ground-truth774

Quantitative results have been obtained using dense ground-775

truth trajectory data provided by the Flag benchmark dataset776

[15]. This dataset is based on sparse motion capture data es-777

timated on a flag waving in the wind. Sparse estimates have778

been interpolated to create a dense 3D surface which has been779

then projected into the image plane to provide dense ground-780

truth data. The original version of the resulting Flag se-781

quence, displayed in Fig.8, has been used to test MR-MISS,782

SR-MISS as well as state-of-the-art methods. Experiments fo-783

cus on direct motion estimation between each pair {Ire f , In} us-784

ing LDOF [23] (LDOF direct), ITV-L1 [26] (ITV-L1 direct) and785
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Figure 5: Texture insertion in I0 and propagation along the Walking Couple sequence up to I60. We compare SR-MISS [19] and the proposed MR-MISS strategy

using {I0, I27, I42} as reference frames. Both methods use LDOF input optical flows from [23].
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Figure 6: Texture insertion in I115 and propagation along the MPI-S1 sequence up to I165. We compare SR-MISS [19] and the proposed MR-MISS strategy using

{I115, I135, I155, I160} as reference frames. Both methods use 2D-DE input optical flows from [24].
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Figure 7: Texture insertion in I5036 and propagation along the Hope sequence up to I5111. We compare SR-MISS [19] and the proposed MR-MISS strategy using

{I5036, I5063, I5073} as reference frames. Both methods use 2D-DE input optical flows from [24].

I1 I10 I20 I30 I40 I50 I60

Figure 8: Source frames of the Flag sequence [25].

the keypoint-based non-rigid registration algorithm described786

in [27] ([27] direct), classical Euler integration via concate-787

nation of LDOF optical flows computed between consecutive788

frames (LDOF acc), multi-frame subspace flow (MFSF) pro-789

posed in [25] and its extended version detailed in [15] using790

PCA or DCT trajectory basis (MFSF-PCA, MFSF-DCT) as791

well as MSF [17], SR-MISS and MR-MISS with LDOF opti-792

cal flows of steps {1, 2, 3, 4, 5, 8, 10, 15, 20, 25, 30, 40, 50}. MR-793

MISS uses {I0, I20} as reference frames.794

All these methods are compared through Root Mean Square795

(RMS) endpoint errors between the respective obtained from-796

the-reference displacement fields and the ground-truth data797

(Tab.2). The RMS errors are estimated for all the foreground798

pixels and for all the pairs of frames {Ire f , In} together. RMS799

endpoint errors computed for each pair of frames are also800

shown in Fig.9 for all the methods based on LDOF: LDOF di-801

rect, LDOF acc, MSF, SR-MISS and MR-MISS.802

In Tab.2, we notice that MR-MISS outperforms SR-MISS803

with a global RMS error of 0.58 pixels against 0.69. A for-804

Method RMS error

MR-MISS 0.58

SR-MISS [19] 0.69

MSF [16, 17] 1.41

LDOF direct [23] 1.74

LDOF acc [23] 4

MFSF-PCA [15] 0.69

MFSF-DCT [15] 0.80

MFSF-PCA [25] 0.98

MFSF-DCT [25] 1.06

Pizarro et al. [27] direct 1.24

ITV-L1 direct [26] 1.43

Table 2: RMS endpoint errors (in pixel) for different methods on the Flag
benchmark dataset [25]. The best result is in bold.
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Figure 9: RMS endpoint errors for each pair {Ire f , In} along Flag sequence [25] with LDOF direct, LDOF acc, MSF [16, 17], SR-MISS [19] and our multi-reference

frames strategy MR-MISS with {I1, I20} as reference frames.

tiori, it gives more accurate displacement fields than all the sin-805

gle reference frame methods including the challenging MFSF-806

PCA [15]. When studying the RMS endpoint errors computed807

for each pair of frames with LDOF direct, LDOF acc, MSF,808

SR-MISS and MR-MISS (Fig.9), we observe that MR-MISS809

shows a clear improvement compared to LDOF direct, LDOF810

acc and MSF. In addition, compared to SR-MISS, MR-MISS811

strongly reduces the matching issues around I30 which coin-812

cides with the maximum deformation of the flag (Fig.8). In-813

deed, SR-MISS gives a RMS error of 2.22 pixels for the pair814

{I0, I29} whereas MR-MISS leads to a RMS error of 1.37 pixels.815

However, MR-MISS gives slightly worse results from I35 to816

I60 due to the fact that the flag comes back approximately to its817

initial position at the end of the sequence (Fig.8). In this very818

particular context of an almost symmetric sequence, it appears819

that the matching criteria are more valid with respect to I0 than820

with respect to I20. More generally, starting from the same op-821

tical flow estimator, Fig.9 proves that MR-MISS is competitive822

compared to challenging state-of-the-art methods.823

The same findings arise when comparing LDOF direct,824

LDOF acc, MSF, SR-MISS and MR-MISS applied on the825

Head sequence, one of the longest sequences taking part of the826

Hopkins-155 dataset [28]. Made of 60 frames, Head (Fig.11)827

is provided with ground-truth trajectories starting from a sparse828

set of 99 pixels of I1. All those pixels are visible along the829

whole sequence. MSF, SR-MISS and MR-MISS are performed830

using LDOF optical flow with steps {1, 2, 3, 4, 5, 10, 20}. MSF831

and SR-MISS use I1 as reference frame whereas MR-MISS fo-832

cuses on {I1, I35}. The comparisons between the ground-truth833

and the estimated trajectories displayed in Fig.10 involve two834

error measures: the position median absolute error (MAE) as835

well as the percentage of points of I1 whose location in In with836

n ∈ [[2, . . . , 60]] is distant of maximum 1 pixel with respect to837

the ground-truth locations. The comparative study reveals glob-838

ally better results for MISS algorithms, especially compared to839

LDOF acc and MSF. In particular, we notice the ability of both840

SR-MISS and MR-MISS to reach a longer long-term estimation841

with MAEs under 1 pixel after 60 frames (0.76 for MR-MISS842

against 1.60 for MSF). Fig.10 also highlights a slightly bet-843

ter accuracy using MR-MISS with respect to SR-MISS. Thus,844

MAE decreases from 0.76 to 0.61 pixel in I59 (Fig.10a). The845

gain in terms of percentage of erroneous positions is 8.9% in846

I54 (Fig.10b).847

Finally, to illustrate the latter results, a video editing example848

on the Head sequence is provided in Fig.11. A red circular tex-849

ture is inserted into a uniform area of I1 and propagated up to I60850

using LDOF direct, LDOF acc, MSF, SR-MISS and MR-MISS.851

The texture propagated with LDOF direct and MSF knows sig-852

nificant distortions, as denoted in I45 and I60. The circular shape853

is not maintained due to strong rotation of the head and we ob-854

serve in both cases a large drift from the cheek to the eye of855

the character. Reduced drift and distortions remain for LDOF856

acc. Conversely, both texture compactness and positions are857

respected through SR-MISS and MR-MISS whose results are858

clearly better. Compared to SR-MISS, slight improvements can859

be perceived with MR-MISS, especially in I45.860

6. Conclusion861

In this work, we addressed long-term dense motion estima-862

tion via multi-step integration and statistical selection (MISS).863

In a combinatorial fashion, MISS-based methods combine opti-864

cal flows estimated with various inter-frame distances to reach a865

good compromise between consecutive optical flow concatena-866
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Figure 10: Position median absolute errors (a) and percentage of points of I1 whose location in In is distant of maximum 1 pixel with respect to the ground-truth

locations (b) along the Head sequence [28] with LDOF direct, LDOF acc, MSF [16, 17], SR-MISS [19] and our multi-reference frames strategy MR-MISS with

{I1, I35} as reference frames.

tions which is prone to motion drift and direct matching which867

is sensitive to ambiguous correspondences.868

Managing numerous combinations of multi-step optical869

flows towards robust statistical selection requires a complexity870

reduction scheme to overcome computational and memory is-871

sues. The main contribution of this work deals with a new strat-872

egy, called MR-MISS, which reaches long-term requirements873

more accurately than existing methods while efficiently reduc-874

ing the complexity. Based on the re-correlation of dense multi-875

reference frames trajectories following robust quality criteria876

such as matching cost and inconsistency, the proposed approach877

is perfectly suited for challenging applications like video edit-878

ing tasks. In practice, MR-MISS inserts intermediate reference879

frames each time motion estimation fails and performs again880

multi-step integration and statistical selection from these inter-881

mediate sound frames.882

By this way, MR-MISS guides the step selection by fixing883

mandatory passage within the tree of step sequences. It reduces884

the complexity while keeping in the reduced set of resulting885

motion paths the more accurate ones. With same computational886

and memory constraints, it allows to consider larger step se-887

quences than existing MISS schemes. Another key aspect is the888

appearance update which occurs from each inserted intermedi-889

ate reference frame. It delays motion drift while making quality890

criteria more valid in case of smooth appearance variations.891

Compared to state-of-the-art, MR-MISS significantly im-892

proves dense from-the-reference and to-the-reference displace-893

ment vectors quality over extended periods of time. It is espe-894

cially true for complex sequences featuring periodic structures,895

poorly textured areas and highly non-rigid motion. In this con-896

text, significant improvements and good intrinsic performance897

have been shown quantitatively through warping quality scores898

and comparisons to dense ground-truth data as well as qualita-899

tively using texture and logo propagation.900

Other aspects must deserve more attention for further re-901

search. First, MR-MISS has been presented in the context902

of long-term dense motion estimation with respect to a free-903

form region of interest towards robust video editing. Its exten-904

sion to the whole image could be easily reached by performing905

such strategy to a set of super-pixels covering the whole scene.906

Moreover, it could be judicious to inject into the set of candi-907

date correspondences the outputs of rigid and deformable mo-908

tion models as well as sparse KLT of SIFT correspondences.909

Color variations could also be more explicitly modeled by ei-910

ther introducing color or luminance gain factors while com-911

puting displacement vector quality or regularizing in terms of912

gain similarities. Finally, estimating displacements by relying913

on multiple reference frames is a first step towards a complete914

coverage of all the visible points in all the frames. How to com-915

pactly represent the totality of the video content with associated916

long-term motion behavior while taking into account local and917

global variations of illuminations is however an open challenge.918

Appendixes919

A. We present the pseudo-code for the step occurrence-based920

guided random selection described in Section 3.3 for the pair of921

frames {Ire f , In}. As inputs, it takes Γre f ,n = {γ0,γ1, . . . ,γK−1}922

to obtain as outputs Γ∗re f ,n, the set made of Nmax motion paths923

selected among Γre f ,n.924
925

begin926

Γ∗re f ,n ← {}927

for c = re f to n − 1 do928

for l = 1 to Qc do929

if c + sl ≤ n then930

f (sl, Ic) ← 0 {step frequency initialization}931

end if932

end for933

end for934

γcur ← {} {current motion path initialization}935

for k = 1 to Nmax do936

if k = 1 then937

γcur ← random selection among Γre f ,n938

else939

c = re f {current frame number initialization}940

while Ic < In do941
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Figure 11: Texture insertion in I1 and propagation along the Head sequence [28] up to I60. We compare LDOF direct, LDOF acc, MSF [16, 17], SR-MISS [19] and

the proposed MR-MISS strategy using {I1, I35} as reference frames. All these methods use LDOF input optical flows from [23].
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scur ← arg min
sl∈{s1,s2,...,sQc }|c+sl≤n

f (sl, Ic)942

c ← c + scur943

γcur ← {γcur, scur}944

end while945

end if946

Γ∗re f ,n ← {Γ∗re f ,n,γcur}947

c = re f {current frame number initialization}948

for l = 0 to Kγcur
− 1 do949

f (sl, Ic) ← f (sl, Ic) + 1950

c ← c + sl951

end for952

end for953

end954

955

B. We provide a brief description of both matching cost and956

inconsistency quality features, involved for statistical selection957

(Sect.2.2) and tracking failure detection (Sect.4.3).958

959

Matching cost. To indicate how accurately a pixel of Ire f0 can960

be reconstructed by its matched point in In, the matching cost961

C(xre f0 , dre f0,n(xre f0 )) computes the absolute difference between962

the RGB color values of xre f0 with those of xre f0 + dre f0,n(xre f0 )963

in In, as written below:964

C(xa, da,b(xa)) =
∑

c∈{r,g,b}
Ic
a(xa) − Ĩc

b(xa + da,b(xa))

Inconsistency. The inconsistency quality feature relies on both965

from/to-the-reference displacement vectors estimated between966

Ire f0 and In. The inconsistency value Inc(xre f0 , dre f0,n(xre f0 )) as-967

sociates an intrinsic continuous quality value to dre f0,n(xre f0 ) by968

assessing the consistency between the from-the-reference dis-969

placement vector dre f0,n(xre f0 ) starting from xre f0 ∈ Ire f0 and970

its corresponding to-the-reference displacement vector running971

from In to Ire f0 and starting from xre f0 + dre f0,n(xre f0 ):972

Inc(xa, da,b(xa)) = || da,b(xa) + d̃b,a(xa + da,b(xa)) ||2
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