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ABSTRACT 

This paper proposes an multilinear discriminant analysis net­

work (MLDANet) for the recognition of multidimensional 

objects, knows as tensor objects. The MLDANet is a variation 

of linear discriminant analysis network (LDANet) and prin­

cipal component analysis network (PCANet), both of which 

are the recently proposed deep learning algorithms. The ML­

DANet consists of three parts: 1) The encoder learned by 

MLDA from tensor data. 2) Features maps obtained from de­

coder. 3) The use of binary hashing and histogram for feature 

pooling. A learning algorithm for MLDANet is described. 

Evaluations on UCFll database indicate that the proposed 

MLDANet outperforms the PCANet, LDANet, MPCA+LDA, 

and MLDA in terms of classification for tensor objects. 

Index Terms- Deep learning, MLDANet, PCANet, L­

DANet, tensor object classification 

1. INTRODUCTION 

One key ingredient for the success of deep learning in visual 

content classification is the utilization of convolution archi­

tectures [1,2,3], which are inspired by the structure of human 

visual system [4]. A convolution neural network (CNN) [2] 
consists of multiple trainable stages stacked on the top of each 

other, following a supervised classifier. Each stage of CNN is 

organized in two layers: convolution layer and pooling layer. 

Recently, Chan et al. [5] proposed a new convolutional ar­

chitecture, namely, principal component analysis network (P­

CANet), which uses the most basic operation (PCA) to learn 
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the dictionary in the convolution layer and the pooling lay­

er is composed of the simplest binary hashing and histogram. 

The PCANet leads to some pleasant and thought-provoking 

surprises: such a basic network has achieved the state-of-the­

art performance in many visual content datasets. Meanwhile, 

Chan et al. [5] proposed linear discriminant analysis network 

(LDANet) as a variation of PCANet. 

However, PCANet and LDANet are deteriorated when 

dealing with visual content, which is naturally represent­

ed as tensor objects. That is because when using PCANet 

or LDANet, the multidimensional patches, taken from visual 

content, are simply converted to vector to learn the dictionary. 

It is well known that vector representation of patches breaks 

the natural structure and correlation in the original visual 

content. Moreover, it may also, suffers from the so-called 

curse of dimensionality [6]. 
Recently, there is growing interest in the tensorial exten­

sion of deep learning algorithms. Yu et al. [7] proposed deep 

tensor neural network, which can be seen as a tensorial ex­

tension of deep neural network (DNN), outperforms DNN in 

large vocabulary speech recognition. Hutchinson et al. [8] p­

resented the tensorial extension of deep stack neural network, 

which has been successfully used in MNIST handwriting im­

age recognition, phone classification, etc. However, the simi­

lar tensorial extension research has not been reported for deep 

learning algorithms with convolutional architecture. 

In this paper, we propose a simple deep learning algorith­

m for tensor object classification, that is, multilinear discrim­

inant analysis network, which is a tensorial extension of P­

CANet and LDANet. The simulation on UCF 11 database [9] 
demonstrates that the MLDANet outperforms PCANet and L­

DANet in terms of classification accuracy for tensor objects. 

2. REVIEW OF MLDA 

In this section, we briefly review MLDA [10], which is a mul­

tilinear extension of LDA. The MLDA obtains discriminative 
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Fig. !. The process of elementary multilinear projection (EM­
P). 

Fig. 2. Tensor-to-vector projection (TVP). 

features through maximizing the Fisher's discrimination cri­
terion, which is described as follows. 

An Nth tensor object is denoted as X E R/l X I2 X ... X IN. 
It is addressed by N indices in, n = 1,2, . . .  ,N, and each in 
addresses the n-mode of X. The n-mode tensor product of X 
by a matrix U E nJ"xI" is defined as: 

(Xx."U )(i" .. ,i"_l,j,,,i,,+l, .. ,iN)= LX(i1, . .  ,iN rU(j,,,i,,)· (1) 

The projection from tensor X E nItxI2x···xIN to a s­
calar Y can be described as follows: 

(2) 

where {u(n)T }t:=1 is a set of unit projection vectors. This ten­
sor to scalar projection is called elementary multilinear pro­
jection (EMP), which consists of one projection vector in each 
mode. An EMP of a tensor X E R/,XI2XI3 is illustrated in 
Fig. 1. 

The tensor-to-vector projection (TVP) from a tensor X E 
nItxI2x ... xIN to a vector Y E RP is to find a vector set 

{u�n)1', n = 1, ... , N}:=l' which are able to do P times EM­
P. The process can be described as: 

- X N {(n)1' - N}P 
Y - Xn=l up ,n - 1, ... , p=l, (3) 

whose pth component is obtained from the pth EMP as y (p) = 
(l)T (2)T (N)T . . X X 1 up X 2 Up ... X N Up • Flg. 2 shows the schematlc 

plot for TVP. 
Suppose that we are given M input tensor objects, 

{Xm}�=l E R/IX ... xIN, which contains C classes. The 
pth projected scalar of {Xm}�=l are defined as {ymp}�=l' 
where Ymp = Xm Xt:=l {u�n)T }t:=1' So the between-class s­
catter matrix and the within-class scatter matrix for pth scalar 

Fig. 3. The architecture of two-stage MLDANet. 

tensor objects are defined as follows, respectively: 

C M 

Skp = L Nc(ycp _yp)2, SWp = L (Ymp _Ycmp)2, (4) 
c=l m=l 

where YP = (ljM)LmYmp' YCp = (ljNc)LmEcYmp' C is 
the number of classes, Nc is the number of tensor objects in 
class c, and Cm is the class label for the mth tensor objec­
t. Thus, the Fishers Discriminant criterion for the pth scalar 
tensor objects is FpY = Sk j Sw . The objective of MLDA p p 

is to determine a set of P EMP s {u�n)1', n = 1, ... , N}:=l 
satisfying the following conditions: 

)1' { u�n ,n = 1, ... , N} = arg max F; (5) 

3. THE ARCHITECTURE OF MLDANET 

Fig. 3 shows the architecture of MLDANet for third-order 
tensor objects classification. It contains two convolutional 
layers and one pooling layer. The filter bank in each convolu­
tional layer is learned independently. We use binary hashing 
and histogram as pooling operation for the features extracted 
from the first two convolutional layers. 

3. 1. The first stage of MLDANet 

For the given M third-order tensor objects {Xm}�=l E 
R/l X It X I3, which contains C classes, we take tensor patch­
es around the I-mode and 2-mode by taking all 3-mode 
elements of mth tensor object, i.e., the tensor patch size 
is k1 x k2 X 13, we collect all (overlapping) It x 12 ten­
sor patches from Xm. The tensor patches have the same 
class with Xm. We put these tensor patches into a set 
tm = {tm,q E n k, x k2 X Is } ��� 

I2. By repeating the above 
process for every tensor objects, we can get all tensor patches 

t = {tm}�=l for learning filter bank in the first stage. 
Let L1 be the number of filters in the first stage. We apply 

1 L {(I) (2) (3) }Ll MLDA to t to earn the 1 vector sets up , up , up p=l' 
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Each tensor patch is converted into Ll scalars by using 

{U(l) U(2) U(3)}L, Thus the lth feature map of tensor p , p , P p=l· , 
object Xm in the first stage is defined as: 

Fml = mat(t x3 _ {u(n)T}) E nJ,xI2 m,q n-1 I , 

q = 1, . . .  ,h X 12, 
(6) 

where mat( v ) is a function that maps v E n 1, h on a matrix 
F E nJ,xI2. 

For each tensor object, we can obtain L1 feature map­
s of size h x 12. We denote these feature maps of mth 
tensor object in the first stage with {Fml E nJ,xI2,1 = 
1, ... , L1};;;= 1. The feature maps of each tensor object cap­
ture the main variation of original data. 

3.2. The second stage of MLDANet 

Through the first stage, the tensor object is already mapped 
into low-dimensional tensor feature, the dimension of the 3-
mode is much lower than that of the I-mode and 2-mode. That 
is to say, the redundancy of 3-mode has been greatly reduced. 
Therefore, for the simplicity of computation and the conve­
nience of building network, we use the conventional LDA in 
the second stage to learn the filter bank. The number of filters 
in the second stage is L2. 

Around each pixel, we take a k1 x k2 patch, and col­
lect all (overlapping) patches of all the feature maps Fml, 
. { }J,Xh nk,xk2 h h d t th I.e., rml,q q=l E l'v w ere eac rml,q eno es e 
qth vectorized patch in the lth feature map of mth tensor ob­
ject. We then subtract the patch mean from each patch, and 
construct the matrix Rml = [rml,l, rml,2,· .. , rml,I, XI2] for 
them, where Rml belongs to the same class with the mth ten­
sor object. Let Se is the set of matrix Rml in class c. We 
then compute the class mean f e and the mean of class f as 
follows: 

So, the within-class scatter matrix and the between-class 
scatter matrix are defined respectively as follows: 

c 

Sw 2:) L (Rml - fe)(Rml - fe)T I ISel), (8) 
e=l mlESc 

C 

L(fe - r)(fe - ff IC. 
e=l 

(9) 

We then get w* E nk,k2XL2 by maximizing the Fisher's 
discriminant criterion as follows: 

* 
Tr(wTS B w) 

w = arg max (T S ) ' s.t. wT w = h2• (10) 
w Tr w WW 

By using mat function, each column of w* is converted into 
matrix {v h E n k, x k2 } t� 1. These matrices are treated as the 

filter bank in the second stage. Let the hth output of the lth 
feature map for the mth tensor object in the second stage be 

Cm1h = Rml * vh,h = 1, ... ,L2,1 = 1, ... ,L1, (11) 

where * denotes 2D convolution [2], and the boundary of Rml 
is zero-padded before convolving with Vh so as to make Cm1h 
have the same size as Rml. The number of output feature 
maps of the second stage is L1L2. One or more additional 
stages can be built if a deep architecture is found to be bene­
ficial. 

3.3. The pooling layer in MLDANet 

First, we binarize each feature map by using Heaviside step 
function H (.), whose value is one for positive entries and 
zero otherwise. The binarized feature maps are denoted by 
Cm1h E {O, 1 }J, X 12. Owing to every feature map capture d­
ifferent variations by Vh. Cmlh should be weighted to convert 
into a single integer-valued feature map: 

L2 
Wml = L 2

h-1cmlh. (12) 
h=l 

note that each entry of feature map wml are integers in the 
range [0,2L2-1]. 

Next, we partition wml into B blocks, and then compute 
the histogram (with 2L2 bins) of the decimal values in each 
block. All the B histograms are concatenated into one vector 
as the lth feature vector Bhist(wml) of tensor object Xm. 
The final feature of input tensor object Xm is then defined as 
the set of feature vector, i.e., 

fm=[Bhist(wm1), Bhist(Wm2), ... , Bhist(WmL, )]. (13) 

Note that the local block can be either overlapping or non­
overlapping depending on applications [5]. 

4. EXPERIMENTAL RESULTS 

We evaluate the performance ofMLDANet on UeFll dataset 
for tensor object classification. UeFll is a sport action video 
dataset which contains 11 action categories: basketball shoot­
ing, biking, diving, golf swinging, horseback riding, soccer 
juggling, swinging, tennis swing, trampoline jumping, vol­
leyball spiking, and walking with a dog. All videos in UeFll 
are manually collected from YouTube and their sizes are all 
240 x 320 pixels. For each category, the videos are grouped 
into 25 groups with more than 4 action clips in it. The video 
clips in the same group have COlmnon scenario. This video 
dataset is very challenging in classification due to large vari­
ations in camera motion, object appearance and pose, object 
scale, viewpoint, cluttered background, illumination, etc. 

In this experiment, we only choose the first ten groups in 
each category. The total number of experimental videos is 
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Fig. 4. (a)-( c): Recognition rate of networks in different patch 

size. (d) are the performance of MPCA+LDA and MLDA 

642. For each group, half videos are randomly selected for 

training and others for testing. Every video is resized to 48 x 

64 in order to reduce the computational complexity. Almost 

every videos have variation in frames. For those frame larger 

than 20, we only choose the first twenty frames. For a few 

videos, whose frames are less than 20, we just copy the last 

frame to fill them. 

We then compare the proposed MLDANet with PCANet 

[5], LDANet [5], MPCA+LDA [11], and MLDA [10]. The 

model parameters of MLDANet, PCANet, and LDANet all 

include the patch size k1 x k2, the number of filters in each 

stage L1, L2, the number of stages, overlapping ratio of block, 

and the block size. Chan et al. [5] have shown that the ap­

propriate number of filters L1, L2 in PCANet and LDANet 

is L1 = L2 = 8. By considering that MLDA is the ten­

sorial extension of conventional LDA. Thus, we always set 

L1 = L2 = 8 for all networks. The patch size k1 x k2 are 

changed from 3 x 3 to 7 x 7 and three block sizes 6 x 8, 

12 x 16, 24 x 32 are considered here. The overlapping ratio 

is set to 50%. Unless stated otherwise, we use linear SVM 

classifier. The recognition rates of above networks averaged 

over 5 different random splits are shown in Fig. 4 (a)-(c). 

For conventional tensor object classification by using MP­

CA+LDA, we change the dimensions of input feature of LDA 

from 10 to 100. The dimensions of feature vector extract-

Methods Accuracy 

MLDANet-l 64.55 

MLDANet-2 78.93 

LDANet-l 73.58 

LDANet-2 76.59 

PCANet-l 58.68 

PCANet-2 76.92 

MPCA+LDA 45.15 

MLDA 38.46 

Table 1. The best performance of MLDANet, LDANet, P­

CANet, MPCA+LDA and MLDA. 

ed from MLDA vary from 10 to 100. We draw the recog­

nition accuracy of MPCA+LDA and MLDA in Fig. 4(d). 

The best performance of MLDANet, PCANet, LDANet, MP­

CA+LDA, and MLDA are listed in Table 1. 

We see that all one-stage networks outperform two con­

ventional tensor object classification algorithms, that is, M­

PCA+LDA and MLDA. The reason is that the convolution­

al architecture imitate the brain networks, which can provide 

more robust feature than other methods for visual content [4]. 

LDANet-l achieves the best performance in the one-stage 

networks, but the improvement from LDANet-l to LDANet-2 

is not larger as that ofMLDANet. PCANet-l performs worse 

than those based on LDA algorithm networks like LDANet 

and MLDANet. It is because that LDA type algorithm pro­

vides the features which have the best classification perfor­

mance, however, PCA maximize the directional variation in 

the features. MLDANet-l is not as good as LDANet-l be­

cause the feature extracted from MLDANet-l is not appropri­

ate as the direct input of linear SVM. For two-stage network­

s, MLDANet-2 achieves the best performance. Surprisingly, 

the performance of PCANet-2 increase not more than 18.24% 

compared to that of PCANet-l, but it is better than that of 

LDANet-2. 

5. CONCLUSION 

In this paper, we have proposed and implemented a novel 

deep learning architecture, that is, MLDANet, which takes 

full advantage of the structure information in tensor objects 

by convolutional architecture. MLDANet is composed of t­

wo convolutional layers, which use MLDA and LDA to learn 

filter banks respectively and one pooling layer. We have e­

valuated the performance of the MLDANet on UCFll and 

show that our model performs well in tensor object classifica­

tion. This work provides the inspiration for other convolution­

al deep architectures in tensor object classification. As future 

works, we will focus on the tensorial extension of CNN. 
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