Skip to Main content Skip to Navigation
Journal articles

Feature Selection for Activity Classification and Dyskinesia Detection in Parkinson's Disease Patients

Abstract : Recent advances in wearable sensing technologies have favored the search for reliable and objective methods of estimating motor symptoms and complications of Parkinson's disease (PD). In this paper, we present a complete system of motor assessment composed of Shimmer3 inertial measurement modules aimed to classify a series of daily life activities performed by PD patients and detect the occurrence of Levodopa Induced Dyskinesia (LID). Feature selection methods are implemented on datasets collected from nine healthy individuals and 2 PD patients in order to determine the most relevant module positions with respect to activity classification and detection of LID. Classifying activities resulted in an overall accuracy of 88.05% in healthy individuals and 85.87% in PD patients, while detection of dyskinesia yielded 83.89%. The lowered performance is likely to be caused by the difficulty of classifying PD patients' activities due to presence of motor dysfunction.
Document type :
Journal articles
Complete list of metadatas

https://hal-univ-rennes1.archives-ouvertes.fr/hal-01380119
Contributor : Laurent Jonchère <>
Submitted on : Wednesday, October 12, 2016 - 2:58:16 PM
Last modification on : Wednesday, May 16, 2018 - 11:23:41 AM

Identifiers

  • HAL Id : hal-01380119, version 1

Collections

Citation

Nahed Jalloul, Fabienne Porée, Geoffrey Viardot, Philippe l'Hostis, Guy Carrault. Feature Selection for Activity Classification and Dyskinesia Detection in Parkinson's Disease Patients. 2015 International Conference On Advances In Biomedical Engineering (icabme), 2015, pp.146--149. ⟨hal-01380119⟩

Share

Metrics

Record views

94