G. Catalan and J. Scott, Physics and Applications of Bismuth Ferrite, Advanced Materials, vol.10, issue.2
DOI : 10.1002/adma.200802849

G. A. Smolenskii, I. E. Chupis, and . Ferroelectromagnets, Ferroelectromagnets, Soviet Physics Uspekhi, vol.25, issue.7, pp.475-493, 1982.
DOI : 10.1070/PU1982v025n07ABEH004570

S. V. Kiselev, R. P. Ozerov, and G. S. Zhdanov, Detection of Magnetic Order in Ferroelectric BiFeO 3 by Neutron Diffraction, Sov. Phys. Dokl, vol.7, pp.742-744, 1963.

I. Sosnowska, T. Peterlin-neumaier, and E. Steichele, Spiral magnetic ordering in bismuth ferrite, Journal of Physics C: Solid State Physics, vol.15, issue.23, pp.4835-4846, 1982.
DOI : 10.1088/0022-3719/15/23/020

R. T. Smith, G. D. Achenbach, R. Gerson, and W. J. James, at High Temperature and High Frequency, Journal of Applied Physics, vol.39, issue.1, pp.70-74, 1968.
DOI : 10.1063/1.1655783

J. R. Teague, R. Gerson, and W. J. James, Dielectric Hysteresis in Single Crystal BiFeO 3 . Solid State Commun, pp.1073-1074, 1970.
DOI : 10.1016/0038-1098(70)90262-0

V. R. Palkar, D. C. Kundaliya, S. K. Malik, and S. Bhattacharya, Magnetoelectricity at Room Temperature in the Bi 0

M. Kubota, K. Oka, H. Yabuta, K. Miura, and M. Azuma, Structure and Magnetic Properties of BiFe 1?x Co x O 3 and Bi 0

C. Toulouse, I. C. Infante1, A. P. Pyatakov, S. Fusil, E. Jacquet et al., Crafting the Magnonic and Spintronic Response of BiFeO 3 Films by Epitaxial Strain Destruction of Spin Cycloid in (111) c -oriented BiFeO 3 Thin Films by Epitiaxial Constraint: Enhanced Polarization and Release of Latent Magnetization Why Are There So Few Perovskite Ferroelectrics? Magnetic Control of Ferroelectric Polarization Electric-Field-Induced Generation and Reversal of Ferromagnetic Moment in Ferrites (15) Van Den Brink, J.; Khomskii, D. I. Multiferroicity due to Charge Ordering The Origin of Ferroelectricity in Magnetoelectric YMnO 3 A New High Pressure Phase of MnTiO 3 and Its Magnetic Property High-Pressure Transformation in Silicates, Germanates, and Titanates with ABO 3 Stoichiometry-Pressure Phase Transition in MnTiO 3 from the Ilmenite to the LiNbO 3 Structure A New Phase Transition in MnTiO 3 : LiNbO 3 -Perovskite Structure Unquenchable High-Pressure Polymorphs of MnSnO 3 and FeTiO 3, 19) Syono, Y.; Sawamoto, H.; Akimoto, S. Disordered Ilmenite MnSnO 3 and Its Magnetic Property. Solid State Commun Calorimetric Study of High Pressure Polymorphism in FeTiO 3 : Stability of the Perovskite Phase Parise, J. B. High-Pressure Perovskites on the Join CaTiO 3 -FeTiO 3 Navrotsky, A. Complete Fe-Mg Solid Solution in Lithium Niobate and Perovskite Structures in Titanates at High Pressures and Temperatures27) Navrotsky, A. Energetics and Crystal Chemical Systematics among Ilmenite, Lithium Niobate, and Perovskite Structures28) Inaguma, Y.; Yoshida, M.; Katsumata, T. A Polar Oxide ZnSnO 3 with a LiNbO 3 -Type Structure, pp.641-646, 1969.

T. Sanehira, Y. Wang, C. J. Fennie, S. K. Streiffer, X. Ke et al., Coexistence of Weak Ferromagnetism and Ferroelectricity in the High Pressure LiNbO 3 -Type Phase of FeTiO 3 Indium-Based Perovskites: A New Class of Near-Room-Temperature Multiferroics Synthesis, Structural Transformation, Thermal Stability, Valence State, and Magnetic and Electronic Properties of PbNiO 3 with Perovskite-and LiNbO 3 -Type Structures, Phys. Rev. Lett. Angew. Chem. Int. Ed. J. Am. Chem. Soc, vol.103, issue.13332, pp.47601-47631, 2009.

K. Hiraki, T. Takahashi, and Y. Inaguma, High-Pressure Synthesis and Correlation between Structure, Magnetic, and Dielectric Properties in LiNbO 3 -Type MnMO 3 (M = Ti, Sn), Inorg. Chem, vol.50, pp.6392-6398, 2011.

. Perovskite, LiNbO 3 , Corundum, and Hexagonal Polymorphs of (In 1?x M x )MO 3, J. Am. Chem. Soc, vol.133, pp.9405-9412, 2011.

R. Arielly, W. M. Xu, E. Greenberg, G. K. Rozenberg, M. P. Pasternak et al., structures and electronic states to 70 GPa, Jeanloz, R. Intriguing Sequence of GaFeO 3 Structures and Electronic States to 70 GPa, p.94109, 2011.
DOI : 10.1103/PhysRevB.84.094109

I. Nowik, P. S. Halasyamani, T. T. Tran, S. Mukherjee, T. S. Dasgupta et al., Polar and Magnetic Mn 2 FeMO 6 (M = Nb, Ta) with LiNbO 3 -type Structure: High-Pressure Synthesis, Angew. Chem. Int. Ed, vol.52, pp.8406-8410, 2013.

Y. Shi, Y. Guo, X. Wang, A. J. Princep, D. Khalyavin et al., A ferroelectric-like structural transition in a metal, Nature Materials, vol.87, issue.11, pp.1024-1027, 2013.
DOI : 10.1038/nmat3754

Y. Inaguma, A. Aimi, Y. Shirako, D. Sakurai, D. Mori et al., High-Pressure Synthesis, Crystal Structure, and Phase Stability Relations of a LiNbO 3 -Type Polar Titanate ZnTiO 3 and Its Reinforced Polarity by the Second-Order Jahn?Teller Effect, J. Am

J. Hemberger, M. C. Croft, D. Walker, and M. Greenblatt, Designing Polar and Magnetic Oxides: Zn 2 FeTaO 6 -in Search of Multiferroics, J. Am

T. Kawamoto, K. Fujita, I. Yamada, T. Matoba, S. J. Kim et al., Transformed from a High-Pressure Orthorhombic Perovskite Phase, MnTaO 2 N: Polar LiNbO 3 -type Oxynitride with a Helical Spin Order, pp.15291-15299, 2014.
DOI : 10.1021/ja507958z

R. Yu, H. Hojo, T. Mizoguchi, and M. Azuma, A New LiNbO 3 -Type Polar Oxide with Closed-Shell Cations: ZnPbO 3, Synthesis, Direct Formation under High Pressure, Structure, and Electronic Properties of LiNbO 3 -type Oxide PbZnO 3, pp.94103-94145, 2015.

A. M. Glazer, The classification of tilted octahedra in perovskites, Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, vol.28, issue.11
DOI : 10.1107/S0567740872007976

P. M. Woodward, Octahedral Tilting in Perovskites. I. Geometrical Considerations, Acta Crystallographica Section B Structural Science, vol.53, issue.1, pp.32-43, 1997.
DOI : 10.1107/S0108768196010713

H. D. Megaw, A Note on the Structure of Lithium Niobate

F. Kubel and H. Schmid, Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3, Acta Crystallographica Section B Structural Science, vol.46, issue.6, pp.698-702, 1990.
DOI : 10.1107/S0108768190006887

R. H. Mitchell, Perovskites: Modern and Ancient, 2002.

M. Greenblatt, Magnetic-Structure-Stabilized Polarization in an Above-Room-Temperature Ferrimagnet, Angew. Chem. Int. Ed, vol.53, pp.10774-10778, 2014.

M. Retuerto, Z. Deng, C. P. Grams, J. Hemberger, J. Hadermann et al., Mn 2 FeWO 6 : A New Ni 3 TeO 6 -Type Polar and Magnetic Oxide (50) Dzyaloshinsky, I. A Thermodynamic Theory of " weak " Ferromagnetism of Antiferromagnetics, 51) Moriya, T. Anisotropic Superexchange Interaction and Weak Ferromagnetism. Phys. Rev, pp.2177-2181, 1958.

C. J. Fennie, S. Ferroelectrically-geller, E. A. Wood, J. P. Remeika, P. D. Dernier et al., Crystallographic Studies of Perovskite-Like Compounds. I. Rare Earth Orthoferrites and YFeO 3 , YCrO 3 , YAlO 3 The Crystal Chemistry of the Rare Earth Orthoferrites Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides Structure of Indium Iron Oxide (59) Rietveld, H. M. A Profile Refinement Method for Nuclear and Magnetic Structures (60) Rodríguez-Carvajal, J. Recent Advances in Magnetic Structure Determination by Neutron Powder Diffraction Efficiency in the Calculation of Absorption Corrections for Cylinders High-Pressure Science with a Multi-Anvil Apparatus at SPring-8, 58) Shannon, R. D. New High Pressure Phases Having the Corundum Structure. Solid State Commun63) Akimoto, S.; Manghnani, M. H. High-Pressure Research in Geophysics; Center for Academic Publications Japan, pp.167203-53, 1956.

S. Ansell, N. J. Rhodes, D. Raspino, D. Duxbury, E. Spill et al., VESTA 3 for Three-Dimensional Visualization of Crystal Volumetric and Morphology Data Projector Augmented-Wave Method From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces Ab Initio Molecular Dynamics for Open-Shell Transition Metals Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set Towards a Quantum Theory of Polarization in Ferroelectrics: The Case of KNbO 3) Veithen, M.; Ghosez, Ph. First-Principles Study of the Dielectric and Dynamical Properties of Lithium Niobate (73) Brown I. D.; Altermatt, D. Bond-Valence Parameters Obtained from a Systematic Analysis of the Inorganic Crystal Structure Database Synchrotron X-ray Studies of LiNbO 3 and LiTaO 3 Dynamical Atomic Charges: The Case of ABO 3 Compounds, The New Powder and Single Crystal Magnetic Diffractometer on the Second Target Station this work, BVS was calculated using the following parameters Theoretical Investigation of Magnetoelectric Behavior in BiFeO 3 . Phys. Rev. Crystal Structures and Properties of Perovskites ScCrO 3 and InCrO 3 with Small Ions at the A Site, pp.22-25, 1010.

C. Atanasov, M. Reinen, and D. , Molecules (A=N to Bi; X=H, and F to I), The Journal of Physical Chemistry A, vol.105, issue.22, pp.14108-14115, 2001.
DOI : 10.1021/jp004511j

I. Perovskites, (89) Spaldin, N. A. A Beginner's Guide to the Modern Theory of Polarization (90) Xiang, H. J. Origin of Polar Distortion in LiNbO 3 -type " Ferroelectric " Metals: Role of A-site Instability and Short-Range Interactions, Inorg. Chem. J. Solid State Chem. Phys. Rev. B, vol.52, issue.195, pp.12005-12011, 2013.

V. Petricek, M. Dusek, L. Palatinus, and L. Ye, Crystallographic Computing System JANA2006: General Features (92) Heron, Z. Kristallogr. J. T.; Bosse, J. L.; He, Q, vol.2014, issue.229, pp.345-352

J. D. Clarkson, C. Wang, . Liu, S. Jian-;-salahuddin, D. C. Ralph et al., Deterministic Switching of Ferromagnetism at Room Temperature Using an Electric Field, Nature, vol.516, pp.370-373, 2014.

A. M. Arévalo-lópez, J. P. Attfield, C. Blaauw, Y. Yang, J. Íniguez et al., -II, Bellaiche, L. Prediction of a Novel Magnetoelectric Switching Mechanism in Multiferroics, pp.104416-86, 1973.
DOI : 10.1103/PhysRevB.88.104416

D. Lebeugle, D. Colson, A. Forget, and M. Viret, Very Large Spontaneous Electric Polarization in BiFeO 3 Single Crystals at Room Temperature and Its Evolution under Cycling Fields Insert Table of Contents artwork here, Appl. Phys. Lett, pp.91-022907, 2007.