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Abstract

In this work, the thermal expansion behavior and the structure configuration
evolution of glasses were studied. Degree of freedom based on the topological
constraint theory is correlated with configuration evolution; considering the chemical
composition and the configuration change, the analytical equation for calculating the
thermal expansion coefficient of glasses from degree of freedom was derived. The
thermal expansion of typical silicate and chalcogenide glasses was examined by
calculating their thermal expansion coefficients (TEC) using the approach stated
above. The results showed that this approach was energetically favorable for glass
materials and revealed the corresponding underlying essence from viewpoint of
configuration entropy. This work establishes a configuration-based methodology to
calculate the thermal expansion coefficient of glasses that, lack periodic order.

1. Introduction

The study of thermal expansion of materials is increasingly significant in both
scientific and technological fields [1]. Matching thermal expansion between different
materials is a matter of considerable interest for technicians [2]. Scientific researchers
have been investigating the nature of thermal expansion behavior of materials for
decades [3-7]. However, the essence of glasses’ TEC still remains to be explored, due



to their non-periodic order and complex structures [8-11]. To achieve the prediction of
thermal expansion properties of glasses, various early empirical approaches have been
explored; for example, the investigation of L. I. Demkina established the equation that
describes the relationship between the TEC and each component of glass material [12].
Aside from the empirical approaches, the semi-empirical equation deduced by A.
Makishim et al. from the Gruneisen formula is typically used [13]. However,
Makishim noted, “Unfortunately, the additive factors vary for each of the authors”.
Molecular dynamics approaches have been recently developed to interpret the thermal
expansion phenomenon especially for crystalline materials [14-16]. The TEC of
crystalline materials can be accurately calculated due to their well-defined periodic
order. However, the atomic scale modeling of glasses still remains to be a challenge
because of their disordered structures. Moreover, the thermodynamic stability of
glasses is much larger in terms of time and length required, compared to that of
crystals [17,18].

Here we present a model to calculate glasses” TEC based on topological
constraint theory (TCT), which is established in previous work by Phillips and Thorpe
[19]. Recently, Gupta and Mauro derived the equation that upon introducing the
entropy into TCT to calculate the glass transition temperature and the liquid fragility
of chalcogenide glasses [20,21]. The difference between oxide and chalcogenide
glasses is observed in the case of their bond types, particularly that oxide glasses
usually contain ionic bonds. Yue ef al. [22,23] and Zeng et al. [24,25] proposed that
TCT is also applicable to oxide glasses based on their experimental data, which is also
validated in this paper. An illustration of the hardness comes from the study of M. M.
Smedskjaer et al, in which it was shown that the hardness of glasses can be readily
calculated from its constraint number using TCT [26].

Following a similar strategy, the thermal expansion behavior of chalcogenide
glass systems was studied in the work of U. Senapati et al. [27] and L. W. Hyung et al.
[28]. It has been observed that the thermal expansion coefficient of a glass material is
proportional “toits coordination number. Here, a detailed study on different
glass-forming units was performed rather than on average sense. The purpose of this
work was to unravel the natural connection between thermal expansion and
topological constraints by introducing configuration entropy and to derive the
equation to calculate the TEC of glasses.

In Section 2, the methodology and the derivation details are described. The
calculation of TEC using our approach and the results obtained for the silicate and
chalcogenide glasses are presented in Section 3. The summary is subsequently given
in Section 4.

2. Modelling

A systematic study on thermal expansion behavior, starting from basic
thermodynamic formulas to topological constraints calculations, was performed.
Glasses have been intensively studied before using various approaches focusing on
their micro short and medium-range structures, their macro mechanical, or their



thermodynamic properties [29,30]. In essence, bond stretching causes the thermal
expansion behavior of materials, glass formers relax with increasing the temperature,
which leads to the anharmonic vibration of the system [31]. These investigations
served as the basic knowledge for comprehension of glasses’ isotropy features, as
were adopted in this study. This characteristic allowed for the modelling of the TEC
from the statistical thermodynamics point of view and provided the prerequisite of the
model. The observation that bulk glasses have fixed thermal expansion coefficient
values at different directions further support this idea. Models on crystals cannot be
directly applied to glasses, but these approaches gave insight into the treatment of
glasses. Summarizing this information about glasses, the basic thermodynamic
formula was quoted and the linear correlation of TEC and degrees of freedom was
finally obtained.

A basic thermodynamic formula describes the relation between internal energy
and entropy: dU = TdS-pdV, where T is temperature, S is the entropy, U is the internal
energy, p is the pressure, and V is the volume. The heat energy absorbed by glasses
transforms into two parts: first is the entropy increase, and the rest corresponds to the
volume work due to the expansion of glasses. For a homogeneous system in which the
internal energy is U = U (T, V) [32], the differential form is given by Eq. (1). It
includes the treatment which has the objective to disintegrate the internal energy into
two parts, the first part is isochoric heat capacity, and the second part is related to the
functions in terms of isothermal compressibility and the volume expansion coefficient.
Theoretically, Eq. (1) introduces a method of obtaining the thermodynamic functions
related to the volume expansion coefficient.

duz(a_Uj dT+(a—Uj av = C,dT+ T(G_P] _plar
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where a is the volume expansion coefficient, and Kr is the isothermal compressibility
coefficient. K7 is determined by the composition of the materials [33]. It represents
the quantity with the same standard compressibility properties, and indicates the
thermodynamic stability defined by the second derivative of the changes in volume.
With the value of 0< K7 < oo, the thermodynamic equilibrium of a system can be

characterized.
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Combining the basic thermodynamic formula with Eq. (2) gives:
TdS =C,dT -T——dv 3)
T

Gerardo G. Naumis provided an approach to introduce thermodynamics into the
topological constraint theory [34]. According to Gerardo G. Naumis, the total entropy



of a glass material is composed of the floppy modes and the different configurations
of the system. Note that the entropy is mainly composed of floppy modes near the
softening temperature; this contribution was accordingly calculated as the main
entropy. Its contribution to the configurational entropy could be expressed as:

S=Nk,nQ2,’ (4)

where f is the degree of freedom, N is the number of atoms, K is the Boltzmann
constant, and 2; is the thermodynamic probability. The TEC of the glasses temains
slightly changed under its softening temperature. The average thermal expansion
coefficient was calculated for engineering applications. The temperature range is 7~
T (between the room and softening temperature). Integrating the entropy in the range
of Ty~ T gives:

T T
j%dS=Nth1.(21xJ‘Todf. (5)
here NKpinQ2;= ¢, so dS=£df, Eq. (3) can therefore be rewritten as:
Edf =C, dInT -2 dy (6)
KT

There is only one independent variable in Eq. (6), since the volume is dependent on
temperature; therefore, dV=aVdT. So Eq. (6) can be transformed into:

2
gdf=c,dinT-Lar (7)
KT
Using the Gruneisen equation gives:
C
a=— (®)
KV

where r is the Gruneisen constant, and K, is the bulk elastic modulus. Thermal
expansivity is one extremely important thermal parameter, and it is accounted for the
Gruneisen’s law of thermodynamics [35]; Gruneisen’s law of thermodynamics has
been expressed by many researchers in various forms such as Mitra and Mishra [36],
Tolapadi [37]. Here r and Kjare dependent on the material nature. » = - (Inv/In V),
where v is the frequency of vibration of the system. Eq. (7) can be rewritten as:
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The reference volume is V) at temperature 7), so the glass volume V" at temperature 7'

is V="Vy+aVy (T-Ty), then
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Integrating Eq. (10) gives:
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Eq. (11) describes the relationship between the degree of freedom and the TEC. The
TEC of glasses is of 10 magnitude, so the square term and the cubic term are much
smaller than the linear term, which gives:

regratbin

0

(12)

KoVo(In(T/Ty))/ér can be treated as constant, since the experiments were carried out
under the same measurement conditions. From Eq. (12), the value of f can be
calculated if a and T are known. a can be determined from the slope of the linear
plot of the thermal expansion along the temperature range of 7 to 7. Here, f) is degree
of freedom at temperature 7). As can be concluded from Eq. (12), degree of freedom
sketchily satisfies the linear relationship with TEC. This equation for calculating TEC
from degrees of freedom is outlined in Section 3, and it was applied to both binary
silicate and ternary chalcogenide glasses. Comparisons between the calculations and
experiments were illustrated with error bars. A detailed description of topological
constraint theory for calculating degrees of freedom of glasses is given in the
following section.

3. Calculation

To calculate TEC of glasses, the value of degree of freedom must be determined
beforehand. Topological constraint theory defines two kinds of constraints: linear
constraint (o) and angular constraint (f and y). For linear and angular constraint, the
constraint numbers are 7/2 (o constraints) and 27-3 (» > 2, for B and y constraint, 7 is
the coordination number), respectively [38]. Further, the total constraints number
could be computed with the equation Y n; x [(#/2) + (2r-3)] (where n is the total
number of atoms, ; represents the different species of atoms); degree of freedom is
thus f = 3- Yni x [(#/2) + (2r-3)] (3 means three dimensionalities). With the
information in Section 2 as background, glasses are generally regarded as between
two and three dimensional. Degree of freedom of glasses can thus be determined for a
given composition accordingly; a reasonable consideration could be explained
according to Mauro er al [20], who suggested that the constraint number is
temperature-dependent. For example, the additional angular constraint centered at
oxygen (in case of oxide glasses) should be incorporated for the calculation of
constraint number at room temperature. Additional constraint at room temperature
was not calculated because the thermal expansion behavior happened far away from
room temperature for this treatment.

Investigation over the past decades offers abundant data that clarifies the
structure features of chalcogenide glasses [39-41]. This information provides their



atomic structures and helps to construct the structural model with topological
constraint theory. Here, for Ge,Se;., (x=0.15, 0.17, 0.18, 0.2, 0.21, 0.25 mol%) glasses,
the structure units mainly consist of GeSe4 tetrahedrons. The selenium behaves like
the bridge oxygen in oxide glasses to connect two GeSe4 tetrahedrons together. The
coordination numbers of Ge and Se are 4 and 2, respectively. While the coordination
numbers of Ge, As, and Se are 4, 3, and 2 for ternary Ge,As,Se(j . (x=0.1, y=0.1, 0.2,
0.25, 0.3, 0.35, 0.4 mol%) and binary As,Se;. (x=0.2, 0.3, 0.35, 0.4, 0.425 mol%)
glasses according to the investigation of M. F. Thorpe [39]. Therefore, degree of
freedom was calculated for Ge,Se,., glasses with equation »/2 and 2r-3:

Jf=3-n(T,x)=3—-{x(2q,(T)+5q,(T))

1 (13)
+-0G 4.1 +q,(T))i

where a is the Ge-Se and Se-Se linear constraint, f is the Se-Ge-Se, and y is the
angular constraint centered at Se. For Ge atoms, the calculation was carried out in
units coordinated with 4 Se atoms. Thus, its linear constraint number was 7/2=2, and
the angular constraint number was 2r-3=5. The principles applied here were
applicable to the other glasses. For As,Se;, glasses, degrees of freedom can be
expressed as:

S =3-n(T,x)=3-4x(1.5q,(T)+3q,(T))

bi (14)
+(1—X)(§qa(T)+qy(T))}

where a is the As-Se and Se-Se linear constraint, £ is the Se-As-Se angular constraint,
and y is the angular constraint centered at Se.
Degree of freedom of GeyAs,Se(i - glasses is:

Jf=3-n(T,x)=3-{2q,(T)+5q,(T)) + 1 0.759,(T)

] (15)
+3q7(T))+(1-X-y)(§qa(T)+qﬂ(T))}

where a is the Ge-Se, Se-Se and As-Se linear constraint, f§ is the Se-Ge-Se, As-Ge-Se,
and Se-As-Se angular constraint, and y is the angular constraint centered at Se.

Good agreement between the calculated and the experimental values of the TEC
was achieved for both binary and ternary chalcogenide glasses that spanned a wide
range of compositions (FIG. 1). The linear dependence demonstrated for all samples
suggests that the linear term in Eq. (12) plays a key role in calculating TEC from
degrees of freedom. The linear correlation coefficient (R’) also validates this with
values of 0.9998, 0.9910, and 0.9918. The slope is 18.1818, 17.6822, 21.5882 for
Ge.Sei.., As,Seq.y and Ge,As,Se(1.) glasses, respectively. Defects in the glasses,
such as, miscoordinated atoms or edge-sharing tetrahedron, are a possible reason that
deviation occurred between the calculated and actual values [20].
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FIG. 1 Experimental TEC as functions of degrees of freedom of Ge,Se; ., As,Se;.,, and
GeoAscSe.9-v) glasses. The square dots represent the experimental results, the solid
lines represent the model predictions of the TEC, and the inset shows the coordination
structures of the Ge,Se|.,, As.Se.,, and GejgAsSe.o-x) glasses.

For oxide glasses, the samples of alkali silicate glasses were considered with
nuclear magnetic resonance (NMR) data [42] available that helped to construct the
structural model and calculate the degree of freedom. Here, silicate glasses containing
ionic bonds were again proved to be rationalized by TCT. The constraint strength
index, which further extends TCT to overcome its limitations, is introduced here to
consider the influence of the alkali ions on glasses. Therefore, degree of freedom of
xNa,O-(1-x) SiO; (x = 0.18, 0.2, 0.25, 0.27, 0.29, 0.32, 0.35 mol%), xK,O-(1-x) SiO,
(x=0.2,0.25;0.29, 0.33, 0.36 mol%), and xLi,O-(1-x)SiO; (x = 0.25, 0.28, 0.25, 0.30,
0.33, 0.36, 0.40 mol%) glasses were calculated with:

£ =3-n(T,x)=3-{2BO(x) + NBO(x)+

5(Si* (%) +8i’ (x)+Si7 (x))+ ¢, x CN x Ry (%)} o

where BO is the bridge oxygen, NBO is the non-bridge oxygen, Si"is the silicon
tetrahedron containing n bridge oxygens, CN is the coordination number of the R,
and vy is the constraints centered at the alkali ions. For R = Li, Na, K, g, (constraint
strength index) = 0.75, 0.6, 0.4, and CN =4, 5, 6, respectively [22,23]. The constraint
centered at the modifying cation is linearly related to the charge-to-distance ratio of
the modifying cation to the oxygen [43]. The intact y constraints, g, (constraint
strength index), can be determined by fitting the experimental transition temperature
(Ty) of glasses by using the equation: Ty(x) = [3-Ne(0)]/[3- neo(X)-nep(x)-q,<nc 5 (X)] *
T,(0) (where N. is the reference constraint number, and n., n.s and n., are the
different constraint number of the composition value of x).

Good agreement between the calculated results and the experimental data from



FuXi Gan is displayed in FIG. 2. As parametrized with ¢, for alkali ions, the
incorporation of constraints contributed by glass modifiers like alkali ions in silicate
glasses made the calculation more comprehensive compared to its early calculation
formalism. Remarkably, it was energetically favorable for this due to the linear
correlation coefficients (R?), which were 0.9959, 0.9980, and 0.9989 (FIG. 2).
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FIG. 2 Experimental TEC as functions of degrees of freedom of xNa,O-(1-x)SiO,,
xK»0-(1-x)S10,, and xLi,0-(1-x)Si0, glasses. The square dots represent experimental
results, the solid lines represent the predictions of the model. The inset shows the
structures of the L1,0-S10,, Na,O-Si0;, and K,0-Si0, glasses.

It is interesting to observe that lithium silicate glasses possessed smaller TEC at
the same level of degree of freedom in FIG. 2, even if the constraints centered at Li
were g, X CN =3, which is same as in sodium silicate glasses (g, X CN = 3 for sodium
glasses). Although the same constraint number is contributed by the ions of Li" and
Na', the NMR data shows that lithium contributed more to the glass network
connectivity compared to the sodium and potassium ions. Increasing the alkali ion
content to a relatively high level allowed the Si* unit content in 0.4Li,0-0.6Si0, glass
to reach up to 17 mol% in total silicon coordination polyhedrons, which is obviously
larger than 7 mol% for both 0.4Na,0-0.6SiO; and 0.4K,0-0.6Si0, glasses [42]. Si*
units possess more constraint number in their medium-range structure compared with
Si’ or Si*since more bridge oxygens connected with. This leads to a small degree of
freedom and, consequently, to a relatively small TEC for Li,O-SiO, glasses.

4. Conclusions

In this paper, we performed a detailed study on different glass-forming units and
unraveled the connection between thermal expansion and topological constraints by



introducing configuration entropy. The derived equation allows for the computation of
TEC of glasses from degree of freedom. As presented in this paper, our approach has
two advantages: it does not depend on empirical parameters compared with the early
theoretical calculations, and it is a much more time and cost-efficient method
compared with molecular dynamic simulations.

Binary silicate and ternary chalcogenide glasses were examined, since they were
already intensively studied and structure data was available. The deviation of the
calculated and experimental values maybe caused by the defects of the chalcogenide
glasses, and this has been of recent research interest. The constraint strength index
introduced in the paper for the calculation of degree of freedom for alkali silicate
glasses is already verified to overcome the limitations of TCT, which ignored the
influence of glass modifiers in early investigations. Results showed that the calculated
values were favored in the experimental results, and a strong linear relationship was
displayed. It is believed that this work established a configuration-based methodology
to calculate the thermal expansion coefficient of materials, like glasses, which lack
periodic order.
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FIG. 1 Experimental TEC as functions of degrees of freedom of Ge,Se; ., As,Se;. and
Gei0As,Se(.9-x) glasses. The square dots represent the experimental results, the solid
lines represent the model predictions of the TEC, and the inset shows the coordination
structures of the Ge,Se., AsiSe;.., and GejgAs,Se.9-x) glasses.
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FIG. 2 Experimental TEC as functions of degrees of freedom of xNa,O-(1-x)SiO;,

xK50-(1-x)S10,, and xLi,O-(1-x)SiO, glasses. The square dots represent experimental

results, the solid lines represent the predictions of the model. The inset shows the
structures of the Li,O-Si0,, Na,0-Si0,, and K,0O-Si0; glasses.
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The derived equation allows for the computation of TCT of glasses from degree
of freedom. As presented in this paper, our approach has two advantages: it is
empirical parameters-free compared with the early theoretical calculations, and this is
a much more time and cost efficient method compared with molecular dynamic
simulations.

The constraint strength index introduced in the paper for calculation of degree of
freedom of alkali silicate glasses is already verified to overcome the limitations of
TCT, which ignored the influence of glass modifiers in early investigations. Results
showed that the calculated values are favored in the experimental results and the
strong linear relationship were displayed. It is believed that this work established a
configuration-based methodology to calculate the thermal expansion coefficient of the
materials, like glasses, which lack periodic order.



