S. Solito, I. Marigo, and L. Pinton, Myeloid-derived suppressor cell heterogeneity in human cancers, Annals of the New York Academy of Sciences, vol.19, issue.1, pp.47-65, 2014.
DOI : 10.1111/nyas.12469

D. Gabrilovich and S. Nagaraj, Myeloid-derived suppressor cells as regulators of the immune system, Nature Reviews Immunology, vol.172, issue.3, pp.162-174, 2009.
DOI : 10.1038/nri2506

K. Parker, D. Beury, and S. Ostrand-rosenberg, Myeloid-Derived Suppressor Cells, Adv. Cancer Res, vol.128, pp.95-139, 2015.
DOI : 10.1016/bs.acr.2015.04.002

D. Gabrilovich, S. Ostrand-rosenberg, and V. Bronte, Coordinated regulation of myeloid cells by tumours, Nature Reviews Immunology, vol.205, issue.4, pp.253-268, 2012.
DOI : 10.1038/nri3175

T. Greten, M. Manns, and F. Korangy, Myeloid derived suppressor cells in human diseases, International Immunopharmacology, vol.11, issue.7, pp.802-807, 2011.
DOI : 10.1016/j.intimp.2011.01.003

J. Youn, V. Kumar, and M. Collazo, Epigenetic silencing of retinoblastoma gene regulates pathologic differentiation of myeloid cells in cancer, Nature Immunology, vol.94, issue.3, pp.211-220, 2013.
DOI : 10.1242/jcs.068924

J. Haverkamp, A. Smith, and R. Weinlich, Myeloid-Derived Suppressor Activity Is Mediated by Monocytic Lineages Maintained by Continuous Inhibition of Extrinsic and Intrinsic Death Pathways, Immunity, vol.41, issue.6, pp.947-959, 2014.
DOI : 10.1016/j.immuni.2014.10.020

G. Görgün, G. Whitehill, and J. Anderson, Tumor-promoting immune-suppressive myeloid-derived suppressor cells in the multiple myeloma microenvironment in humans, Blood, vol.121, issue.15, pp.2975-2987, 2013.
DOI : 10.1182/blood-2012-08-448548

R. Wilcox, A. Feldman, and D. Wada, B7-H1 (PD-L1, CD274) suppresses host immunity in T-cell lymphoproliferative disorders, Blood, vol.114, issue.10, pp.2149-2158, 2009.
DOI : 10.1182/blood-2009-04-216671

R. Jitschin, M. Braun, and M. Büttner, CLL-cells induce IDOhi CD14+HLA-DRlo myeloid-derived suppressor cells that inhibit T-cell responses and promote TRegs, Blood, vol.124, issue.5, pp.750-760, 2014.
DOI : 10.1182/blood-2013-12-546416

T. Tadmor, R. Fell, A. Polliack, and D. Attias, Absolute monocytosis at diagnosis correlates with survival in diffuse large B-cell lymphoma-possible link with monocytic myeloid-derived suppressor cells, Hematological Oncology, vol.12, issue.3, pp.65-71, 2013.
DOI : 10.1002/hon.2019

Y. Lin, M. Gustafson, and P. Bulur, Immunosuppressive CD14+HLA-DRlow/- monocytes in B-cell non-Hodgkin lymphoma, Blood, vol.117, issue.3, pp.872-881, 2011.
DOI : 10.1182/blood-2010-05-283820

A. Subramanian, P. Tamayo, and V. Mootha, Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles, Proceedings of the National Academy of Sciences, vol.102, issue.43, pp.15545-15550, 2005.
DOI : 10.1073/pnas.0506580102

M. Roussel, C. Benard, B. Ly-sunnaram, and T. Fest, Refining the white blood cell differential: The first flow cytometry routine application, Cytometry Part A, vol.20, issue.6, pp.552-563, 2010.
DOI : 10.1002/cyto.a.20893

P. Tattevin, D. Monnier, and O. Tribut, Enhanced Indoleamine 2,3???Dioxygenase Activity in Patients with Severe Sepsis and Septic Shock, The Journal of Infectious Diseases, vol.201, issue.6, pp.956-966, 2010.
DOI : 10.1086/650996

URL : https://hal.archives-ouvertes.fr/hal-00744207

M. Thibult, E. Mamessier, and J. Gertner-dardenne, PD-1 is a novel regulator of human B-cell activation, International Immunology, vol.25, issue.2, pp.129-137, 2013.
DOI : 10.1093/intimm/dxs098

M. Hajjami, H. Amé-thomas, P. Pangault, and C. , Functional Alteration of the Lymphoma Stromal Cell Niche by the Cytokine Context: Role of Indoleamine-2,3 Dioxygenase, Cancer Research, vol.69, issue.7, pp.3228-3237, 2009.
DOI : 10.1158/0008-5472.CAN-08-3000

URL : https://hal.archives-ouvertes.fr/inserm-00869384

L. Ziegler-heitbrock, P. Ancuta, and S. Crowe, Nomenclature of monocytes and dendritic cells in blood, Blood, vol.116, issue.16, pp.74-80, 2010.
DOI : 10.1182/blood-2010-02-258558

URL : https://hal.archives-ouvertes.fr/hal-00611173

S. Solito, E. Falisi, and C. Diaz-montero, A human promyelocytic-like population is responsible for the immune suppression mediated by myeloid-derived suppressor cells, Blood, vol.118, issue.8, pp.2254-2265, 2011.
DOI : 10.1182/blood-2010-12-325753

A. Romano, N. Parrinello, and C. Vetro, Circulating myeloid-derived suppressor cells correlate with clinical outcome in Hodgkin Lymphoma patients treated up-front with a risk-adapted strategy, British Journal of Haematology, vol.13, issue.5, pp.689-700, 2015.
DOI : 10.1111/bjh.13198

M. Brimnes, A. Vangsted, and L. Knudsen, Increased Level of both CD4+FOXP3+ Regulatory T Cells and CD14+HLA-DR???/low Myeloid-Derived Suppressor Cells and Decreased Level of Dendritic Cells in Patients with Multiple Myeloma, Scandinavian Journal of Immunology, vol.58, issue.6, pp.540-547, 2010.
DOI : 10.1111/j.1365-3083.2010.02463.x

P. Giannoni, G. Pietra, and G. Travaini, Chronic lymphocytic leukemia nurse-like cells express hepatocyte growth factor receptor (c-MET) and indoleamine 2,3-dioxygenase and display features of immunosuppressive type 2 skewed macrophages, Haematologica, vol.99, issue.6, pp.1078-1087, 2014.
DOI : 10.3324/haematol.2013.091405

S. Walter, T. Weinschenk, and A. Stenzl, Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival, Nature Medicine, vol.174, issue.8, pp.1254-1261, 2012.
DOI : 10.1016/j.cll.2007.05.002

S. Mandruzzato, S. Brandau, and C. Britten, Toward harmonized phenotyping of human myeloid-derived suppressor cells by flow cytometry: results from an interim study, Cancer Immunology, Immunotherapy, vol.83, issue.8, pp.161-169, 2016.
DOI : 10.1007/s00262-015-1782-5

M. Gustafson, Y. Lin, and M. Maas, A Method for Identification and Analysis of Non-Overlapping Myeloid Immunophenotypes in Humans, PLOS ONE, vol.105, issue.6, p.121546, 2015.
DOI : 10.1371/journal.pone.0121546.s011

J. Sagiv, J. Michaeli, and S. Assi, Phenotypic Diversity and Plasticity in Circulating Neutrophil Subpopulations in Cancer, Cell Reports, vol.10, issue.4, pp.562-573, 2015.
DOI : 10.1016/j.celrep.2014.12.039

B. Liu, A. Dhanda, and S. Hirani, Monocytes Are Enriched by Glucocorticoid Treatment and Are Functionally Attenuated in Driving Effector T Cell Responses, The Journal of Immunology, vol.194, issue.11, pp.5150-5160, 2015.
DOI : 10.4049/jimmunol.1402409

J. Cros, N. Cagnard, and K. Woollard, Human CD14dim Monocytes Patrol and Sense Nucleic Acids and Viruses via TLR7 and TLR8 Receptors, Immunity, vol.33, issue.3, pp.375-386, 2010.
DOI : 10.1016/j.immuni.2010.08.012

J. Skrzeczy?ska-moncznik, M. Bzowska, and S. Loseke, Monocytes are Main Producers of IL-10, Scandinavian Journal of Immunology, vol.138, issue.2, pp.152-159, 2008.
DOI : 10.1111/j.1365-3083.2007.02051.x

K. Belge, F. Dayyani, and A. Horelt, The Proinflammatory CD14+CD16+DR++ Monocytes Are a Major Source of TNF, The Journal of Immunology, vol.168, issue.7, pp.3536-3542, 2002.
DOI : 10.4049/jimmunol.168.7.3536

B. Huang, P. Pan, and Q. Li, Gr-1+CD115+ Immature Myeloid Suppressor Cells Mediate the Development of Tumor-Induced T Regulatory Cells and T-Cell Anergy in Tumor-Bearing Host, Cancer Research, vol.66, issue.2, pp.1123-1131, 2006.
DOI : 10.1158/0008-5472.CAN-05-1299

F. Ghiringhelli, P. Puig, and S. Roux, regulatory T cell proliferation, The Journal of Experimental Medicine, vol.71, issue.7, pp.919-929, 2005.
DOI : 10.1084/jem.191.7.1187

URL : https://hal.archives-ouvertes.fr/inserm-00857882

P. Filipazzi, R. Valenti, and V. Huber, Identification of a New Subset of Myeloid Suppressor Cells in Peripheral Blood of Melanoma Patients With Modulation by a Granulocyte-Macrophage Colony-Stimulation Factor???Based Antitumor Vaccine, Journal of Clinical Oncology, vol.25, issue.18, pp.2546-2553, 2007.
DOI : 10.1200/JCO.2006.08.5829