V. Carloni, T. Luong, and K. Rombouts, Hepatic stellate cells and extracellular matrix in hepatocellular carcinoma: more complicated than ever, Liver International, vol.499, issue.Suppl. 1, pp.834-843, 2014.
DOI : 10.1111/liv.12465

F. Marcucci, M. Bellone, and C. Caserta, Pushing tumor cells towards a malignant phenotype: Stimuli from the microenvironment, intercellular communications and alternative roads, International Journal of Cancer, vol.7, issue.6, pp.1265-1276, 2014.
DOI : 10.1002/ijc.28572

J. Marquardt, J. Andersen, and S. Thorgeirsson, Functional and genetic deconstruction of the cellular origin in liver cancer, Nature Reviews Cancer, vol.15, issue.11, pp.653-667, 2015.
DOI : 10.1053/j.gastro.2013.10.013

P. Gupta, C. Chaffer, and R. Weinberg, Cancer stem cells: mirage or reality?, Nature Medicine, vol.104, issue.9, pp.1010-1012, 2009.
DOI : 10.1038/nm0909-1010

J. Lee, J. Heo, and L. Libbrecht, A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells, Nature Medicine, vol.149, issue.4, pp.410-416, 2006.
DOI : 10.1111/j.1349-7006.2003.tb01366.x

J. Uriel, Cancer, retrodifferentiation, and the myth of Faust, Cancer Res, vol.36, pp.4269-4275, 1976.

G. Eguchi and K. R. Transdifferentiation, Transdifferentiation, Current Opinion in Cell Biology, vol.5, issue.6, pp.1023-1028, 1993.
DOI : 10.1016/0955-0674(93)90087-7

F. Thorel, V. Népote, and I. Avril, Conversion of adult pancreatic ??-cells to ??-cells after extreme ??-cell loss, Nature, vol.33, issue.7292, pp.1149-1154, 2010.
DOI : 10.1038/nature08894

G. Michalopoulos, L. Barua, and W. Bowen, Transdifferentiation of rat hepatocytes into biliary cells after bile duct ligation and toxic biliary injury, Hepatology, vol.30, issue.3, pp.535-544, 2005.
DOI : 10.1002/hep.20600

P. Jeliazkova, S. Jörs, and M. Lee, Canonical Notch2 signaling determines biliary cell fates of embryonic hepatoblasts and adult hepatocytes independent of Hes1, Hepatology, vol.3, issue.Suppl 1, pp.2469-2479, 2013.
DOI : 10.1002/hep.26254

D. Yimlamai, C. Christodoulou, and G. Galli, Hippo Pathway Activity Influences Liver Cell Fate, Cell, vol.157, issue.6, pp.1324-1338, 2014.
DOI : 10.1016/j.cell.2014.03.060

K. Yanger, Y. Zong, and L. Maggs, Robust cellular reprogramming occurs spontaneously during liver regeneration, Genes & Development, vol.27, issue.7, pp.719-724, 2013.
DOI : 10.1101/gad.207803.112

B. Tarlow, C. Pelz, and W. Naugler, Bipotential Adult Liver Progenitors Are Derived from Chronically Injured Mature Hepatocytes, Cell Stem Cell, vol.15, issue.5, pp.605-618, 2014.
DOI : 10.1016/j.stem.2014.09.008

P. Gripon, S. Rumin, and S. Urban, Nonlinear partial differential equations and applications: Infection of a human hepatoma cell line by hepatitis B virus, Proceedings of the National Academy of Sciences, vol.99, issue.24, pp.15655-15660, 2002.
DOI : 10.1073/pnas.232137699

V. Cerec, D. Glaise, and D. Garnier, Transdifferentiation of hepatocyte-like cells from the human hepatoma HepaRG cell line through bipotent progenitor, Hepatology, vol.103, issue.4, pp.957-967, 2007.
DOI : 10.1002/hep.21536

URL : https://hal.archives-ouvertes.fr/hal-00690471

V. Cardinale, Y. Wang, and G. Carpino, The biliary tree???a reservoir of multipotent stem cells, Nature Reviews Gastroenterology & Hepatology, vol.2, issue.4, pp.231-240, 2012.
DOI : 10.1002/hep.510270328

H. Dubois-pot-schneider, K. Fekir, and C. Coulouarn, Inflammatory cytokines promote the retrodifferentiation of tumor-derived hepatocyte-like cells to progenitor cells, Hepatology, vol.7, issue.29, pp.2077-2090, 2014.
DOI : 10.1002/hep.27353

URL : https://hal.archives-ouvertes.fr/hal-01134747

Y. Hoshida, S. Nijman, and M. Kobayashi, Integrative Transcriptome Analysis Reveals Common Molecular Subclasses of Human Hepatocellular Carcinoma, Cancer Research, vol.69, issue.18, pp.7385-7392, 2009.
DOI : 10.1158/0008-5472.CAN-09-1089

D. Chiang, A. Villanueva, and Y. Hoshida, Focal Gains of VEGFA and Molecular Classification of Hepatocellular Carcinoma, Cancer Research, vol.68, issue.16, pp.6779-6788, 2008.
DOI : 10.1158/0008-5472.CAN-08-0742

B. Fan, Y. Malato, and D. Calvisi, Cholangiocarcinomas can originate from hepatocytes in mice, Journal of Clinical Investigation, vol.122, issue.8, pp.2911-2915, 2012.
DOI : 10.1172/JCI63212DS1

S. Sekiya and A. Suzuki, Intrahepatic cholangiocarcinoma can arise from Notch-mediated conversion of hepatocytes, Journal of Clinical Investigation, vol.122, issue.11, pp.3914-3918, 2012.
DOI : 10.1172/JCI63065DS1

A. Holczbauer, V. Factor, and J. Andersen, Modeling Pathogenesis of Primary Liver Cancer in Lineage-Specific Mouse Cell Types, Gastroenterology, vol.145, issue.1, pp.221-231, 2013.
DOI : 10.1053/j.gastro.2013.03.013

S. Schwitalla, A. Fingerle, and P. Cammareri, Intestinal Tumorigenesis Initiated by Dedifferentiation and Acquisition of Stem-Cell-like Properties, Cell, vol.152, issue.1-2, pp.25-38, 2013.
DOI : 10.1016/j.cell.2012.12.012

V. Plaks, N. Kong, and Z. Werb, The Cancer Stem Cell Niche: How Essential Is the Niche in Regulating Stemness of Tumor Cells?, Cell Stem Cell, vol.16, issue.3, pp.225-238, 2015.
DOI : 10.1016/j.stem.2015.02.015

S. Yamanaka, Strategies and New Developments in the Generation of Patient-Specific Pluripotent Stem Cells, Cell Stem Cell, vol.1, issue.1, pp.39-49, 2007.
DOI : 10.1016/j.stem.2007.05.012

L. Qiao and X. Li, Role of chronic inflammation in cancers of the gastrointestinal system and the liver: Where we are now, Cancer Letters, vol.345, issue.2, pp.150-152, 2014.
DOI : 10.1016/j.canlet.2013.10.013

A. Budhu, M. Forgues, and Q. Ye, Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment, Cancer Cell, vol.10, issue.2, pp.99-111, 2006.
DOI : 10.1016/j.ccr.2006.06.016

H. Nakagawa, S. Maeda, and H. Yoshida, Serum IL-6 levels and the risk for hepatocarcinogenesis in chronic hepatitis C patients: An analysis based on gender differences, International Journal of Cancer, vol.124, issue.10, pp.2264-2269, 2009.
DOI : 10.1002/ijc.24720

V. Hernandez-gea, S. Toffanin, and S. Friedman, Role of the Microenvironment in the Pathogenesis and Treatment of Hepatocellular Carcinoma, Gastroenterology, vol.144, issue.3, pp.512-527, 2013.
DOI : 10.1053/j.gastro.2013.01.002

B. Rani, Y. Cao, and A. Malfettone, Role of the tissue microenvironment as a therapeutic target in hepatocellular carcinoma, World Journal of Gastroenterology, vol.20, issue.15, pp.4128-4140, 2014.
DOI : 10.3748/wjg.v20.i15.4128

D. Hanahan and R. Weinberg, Hallmarks of Cancer: The Next Generation, Cell, vol.144, issue.5, pp.646-674, 2011.
DOI : 10.1016/j.cell.2011.02.013

M. Junttila, F. Sauvage, and . De, Influence of tumour micro-environment heterogeneity on therapeutic response, Nature, vol.37, issue.7467, pp.346-354, 2013.
DOI : 10.1038/nature12626

T. Condamine, J. Mastio, and D. Gabrilovich, Transcriptional regulation of myeloid-derived suppressor cells, Journal of Leukocyte Biology, vol.98, issue.6, pp.913-922, 2015.
DOI : 10.1189/jlb.4RI0515-204R

Q. Zhao, X. Xiao, and Y. Wu, Interleukin-17-educated monocytes suppress cytotoxic T-cell function through B7-H1 in hepatocellular carcinoma patients, European Journal of Immunology, vol.31, issue.8, pp.2314-2322, 2011.
DOI : 10.1002/eji.201041282

T. Kitamura, B. Qian, and J. Pollard, Immune cell promotion of metastasis, Nature Reviews Immunology, vol.510, issue.2, pp.73-86, 2015.
DOI : 10.1189/jlb.1212631

T. Chanmee, P. Ontong, and K. Konno, Tumor-Associated Macrophages as Major Players in the Tumor Microenvironment, Cancers, vol.6, issue.3, pp.1670-1690, 2014.
DOI : 10.3390/cancers6031670

P. Allavena, C. Garlanda, and M. Borrello, Pathways connecting inflammation and cancer, Current Opinion in Genetics & Development, vol.18, issue.1, pp.3-10, 2008.
DOI : 10.1016/j.gde.2008.01.003

M. Mikula, V. Proell, and A. Fischer, Activated hepatic stellate cells induce tumor progression of neoplastic hepatocytes in a TGF-?? dependent fashion, Journal of Cellular Physiology, vol.92, issue.2, pp.560-567, 2006.
DOI : 10.1002/jcp.20772

C. Coulouarn, A. Corlu, and D. Glaise, Hepatocyte-Stellate Cell Cross-Talk in the Liver Engenders a Permissive Inflammatory Microenvironment That Drives Progression in Hepatocellular Carcinoma, Cancer Research, vol.72, issue.10, pp.2533-2542, 2012.
DOI : 10.1158/0008-5472.CAN-11-3317

URL : https://hal.archives-ouvertes.fr/inserm-00864206

Y. Wu, J. Deng, and P. Rychahou, Stabilization of Snail by NF-??B Is Required for Inflammation-Induced Cell Migration and Invasion, Cancer Cell, vol.15, issue.5, pp.416-428, 2009.
DOI : 10.1016/j.ccr.2009.03.016

G. Storci, P. Sansone, and S. Mari, TNFalpha up-regulates SLUG via the NF-kappaB/HIF1alpha axis, which imparts breast cancer cells with a stem cell-like phenotype, Journal of Cellular Physiology, vol.10, issue.3, pp.682-691, 2010.
DOI : 10.1002/jcp.22264

S. Mani, W. Guo, and M. Liao, The Epithelial-Mesenchymal Transition Generates Cells with Properties of Stem Cells, Cell, vol.133, issue.4, pp.704-715, 2008.
DOI : 10.1016/j.cell.2008.03.027

J. Holland, A. Klaus, and A. Garratt, Wnt signaling in stem and cancer stem cells, Current Opinion in Cell Biology, vol.25, issue.2, pp.254-264, 2013.
DOI : 10.1016/j.ceb.2013.01.004

J. Marquardt, L. Gomez-quiroz, A. Camacho, and L. , Curcumin effectively inhibits oncogenic NF-??B signaling and restrains stemness features in liver cancer, Journal of Hepatology, vol.63, issue.3, pp.661-669, 2015.
DOI : 10.1016/j.jhep.2015.04.018

L. Vermeulen, D. Sousa, E. Melo, F. Heijden, and M. Van-der, Wnt activity defines colon cancer stem cells and is regulated by the microenvironment, Nature Cell Biology, vol.77, issue.5, pp.468-476, 2010.
DOI : 10.1158/0008-5472.CAN-07-5172

F. Lluis, E. Pedone, and S. Pepe, Periodic Activation of Wnt/??-Catenin Signaling Enhances Somatic Cell Reprogramming Mediated by Cell Fusion, Cell Stem Cell, vol.3, issue.5, pp.493-507, 2008.
DOI : 10.1016/j.stem.2008.08.017

L. Marucci, E. Pedone, D. Vicino, and U. , ??-Catenin Fluctuates in Mouse ESCs and Is Essential for Nanog-Mediated Reprogramming of Somatic Cells to Pluripotency, Cell Reports, vol.8, issue.6, pp.1686-1696, 2014.
DOI : 10.1016/j.celrep.2014.08.011

R. Wagner, X. Xu, and F. Yi, Canonical Wnt/??-Catenin Regulation of Liver Receptor Homolog-1 Mediates Pluripotency Gene Expression, STEM CELLS, vol.9, issue.10, pp.1794-1804, 2010.
DOI : 10.1002/stem.502

C. Chen, U. Kumar, D. Punj, and V. , NANOG Metabolically Reprograms Tumor-Initiating Stem-like Cells through Tumorigenic Changes in Oxidative Phosphorylation and Fatty Acid Metabolism, Cell Metabolism, vol.23, issue.1, pp.206-219, 2016.
DOI : 10.1016/j.cmet.2015.12.004

S. Wan, N. Kuo, and I. Kryczek, Myeloid cells in hepatocellular carcinoma, Hepatology, vol.5, issue.4, pp.1304-1312, 2015.
DOI : 10.1002/hep.27867

J. Brady, M. Li, and S. Suthram, Early role for IL-6 signalling during generation of induced pluripotent stem cells revealed by heterokaryon RNA-Seq, Nature Cell Biology, vol.1, issue.10, pp.1244-1252, 2013.
DOI : 10.1093/bioinformatics/btn429

S. Kim, J. Kang, and X. Song, Role of the IL-6-JAK1-STAT3-Oct-4 pathway in the conversion of non-stem cancer cells into cancer stem-like cells, Cellular Signalling, vol.25, issue.4, pp.961-969, 2013.
DOI : 10.1016/j.cellsig.2013.01.007

S. Wan, E. Zhao, and I. Kryczek, Tumor-Associated Macrophages Produce Interleukin 6 and Signal via STAT3 to Promote Expansion of Human Hepatocellular Carcinoma Stem Cells, Gastroenterology, vol.147, issue.6, pp.1393-1404, 2014.
DOI : 10.1053/j.gastro.2014.08.039

G. He, D. Dhar, and H. Nakagawa, Identification of Liver Cancer Progenitors Whose Malignant Progression Depends on Autocrine IL-6 Signaling, Cell, vol.155, issue.2, pp.384-396, 2013.
DOI : 10.1016/j.cell.2013.09.031

T. Putoczki and M. Ernst, IL-11 signaling as a therapeutic target for cancer, Immunotherapy, vol.7, issue.4, pp.441-453, 2015.
DOI : 10.2217/imt.15.17

H. Peterson, A. Dawud, R. Garg, and A. , Qualitative modeling identifies IL-11 as a novel regulator in maintaining self-renewal in human pluripotent stem cells, Frontiers in Physiology, vol.4, p.303, 2013.
DOI : 10.3389/fphys.2013.00303

R. Derynck, B. Muthusamy, and K. Saeteurn, Signaling pathway cooperation in TGF-??-induced epithelial???mesenchymal transition, Current Opinion in Cell Biology, vol.31, pp.56-66, 2014.
DOI : 10.1016/j.ceb.2014.09.001

J. Fuxe, T. Vincent, G. De-herreros, and A. , Transcriptional crosstalk between TGF?? and stem cell pathways in tumor cell invasion: Role of EMT promoting Smad complexes, Cell Cycle, vol.9, issue.12, pp.2363-2374, 2010.
DOI : 10.4161/cc.9.12.12050

L. Caja, E. Bertran, and J. Campbell, The transforming growth factor-beta (TGF-??) mediates acquisition of a mesenchymal stem cell-like phenotype in human liver cells, Journal of Cellular Physiology, vol.282, issue.5, pp.1214-1223, 2011.
DOI : 10.1002/jcp.22439

A. Calon, E. Espinet, and S. Palomo-ponce, Dependency of Colorectal Cancer on a TGF-??-Driven Program in Stromal Cells for Metastasis Initiation, Cancer Cell, vol.22, issue.5, pp.571-584, 2012.
DOI : 10.1016/j.ccr.2012.08.013

C. Chen, H. Tsukamoto, and J. Liu, Reciprocal regulation by TLR4 and TGF-?? in tumor-initiating stem-like cells, Journal of Clinical Investigation, vol.123, issue.7, pp.2832-2849, 2013.
DOI : 10.1172/JCI65859DS1

Y. Tang, K. Kitisin, and W. Jogunoori, Progenitor/stem cells give rise to liver cancer due to aberrant TGF-?? and IL-6 signaling, Proceedings of the National Academy of Sciences, vol.105, issue.7, pp.2445-2450, 2008.
DOI : 10.1073/pnas.0705395105

D. Han, G. Wu, and C. Chang, Disulfiram inhibits TGF--induced epithelial-mesenchymal transition and stem-like features in breast cancer via ERK/NF-B/Snail pathway, Oncotarget, vol.6, pp.40907-40919, 2015.

F. Tian, J. Mysliwietz, and J. Ellwart, Effects of the Hedgehog pathway inhibitor GDC-0449 on lung cancer cell lines are mediated by side populations, Clinical and Experimental Medicine, vol.31, issue.1, pp.25-30, 2012.
DOI : 10.1007/s10238-011-0135-8

K. Jeng, C. Jeng, and W. Jeng, Sonic hedgehog pathway inhibitor mitigates mouse hepatocellular carcinoma, The American Journal of Surgery, vol.210, issue.3, pp.554-560, 2015.
DOI : 10.1016/j.amjsurg.2015.03.001

K. Jung, J. Zhang, and C. Zhou, Differentiation therapy for hepatocellular carcinoma: Multifaceted effects of miR-148a on tumor growth and phenotype and liver fibrosis, Hepatology, vol.23, issue.3, pp.864-879, 2016.
DOI : 10.1002/hep.28367

L. Zheng, Y. W. Wu, and F. , Prognostic Significance of AMPK Activation and Therapeutic Effects of Metformin in Hepatocellular Carcinoma, Clinical Cancer Research, vol.19, issue.19, pp.5372-5380, 2013.
DOI : 10.1158/1078-0432.CCR-13-0203

D. Deperalta, L. Wei, and S. Ghoshal, Metformin prevents hepatocellular carcinoma development by suppressing hepatic progenitor cell activation in a rat model of cirrhosis, Cancer, vol.13, issue.8, 2016.
DOI : 10.1002/cncr.29912

T. Saito, T. Chiba, and K. Yuki, Metformin, a Diabetes Drug, Eliminates Tumor-Initiating Hepatocellular Carcinoma Cells, PLoS ONE, vol.204, issue.7, p.70010, 2013.
DOI : 10.1371/journal.pone.0070010.g008

T. Chiba, E. Suzuki, and K. Yuki, Disulfiram Eradicates Tumor-Initiating Hepatocellular Carcinoma Cells in ROS-p38 MAPK Pathway-Dependent and -Independent Manners, PLoS ONE, vol.102, issue.1, p.84807, 2014.
DOI : 10.1371/journal.pone.0084807.s011

D. Dragu, L. Necula, and C. Bleotu, Therapies targeting cancer stem cells: Current trends and future challenges, World J. Stem Cells, vol.7, pp.1185-1201, 2015.

L. Wang, W. Su, and Z. Liu, CD44 antibody-targeted liposomal nanoparticles for molecular imaging and therapy of hepatocellular carcinoma, Biomaterials, vol.33, issue.20, pp.5107-5114, 2012.
DOI : 10.1016/j.biomaterials.2012.03.067

Q. Pan, Q. Li, and S. Liu, Concise Review: Targeting Cancer Stem Cells Using Immunologic Approaches, STEM CELLS, vol.2, issue.suppl 3, pp.2085-2092, 2015.
DOI : 10.1002/stem.2039