D. D. Daugherty and S. F. , Degradation of 2,4-Dichlorophenoxyacetic Acid by Pseudomonas cepacia DBOl(pRO101) in a Dual

D. L. Daubaras, K. Saido, and A. M. Chakrabarty, Purification of Hydroxyquinol 1,2- Dioxygenase and Maleylacetate Reductase: the Lower Pathway of 2,4,5- Trichlorophenoxyacetic Acid Metabolism by Burkholderia cepacia AC1100

A. Kahru, L. Pollumaa, R. Reiman, A. Ratsep, M. Liiders et al., The toxicity and biodegradability of eight main phenolic compounds characteristic to the oil-shale industry wastewaters: A test battery approach, Environmental Toxicology, vol.13, issue.5, pp.15-431, 2000.
DOI : 10.1002/etc.5620130122

F. Hamaguchi and T. Tsutsui, Assessment of Genotoxicity of Dental Antiseptics:Ability of Phenol, Guaiacol, p-Phenolsulfonic Acid, Sodium Hypochlorite, p-Chlorophenol, m-Cresol or Formaldehyde to Induce Unscheduled DNA Synthesis in Cultured Syrian Hamster Embryo Cells, Jap. J. Pharmacol, pp.83-273, 2000.

Y. J. Wang, Y. S. Ho, J. H. Jeng, H. J. Su, and C. C. Lee, Different cell death mechanisms and gene expression in human cells induced by pentachlorophenol and its major metabolite, tetrachlorohydroquinone, Chemico-Biological Interactions, vol.128, issue.3, pp.128-173, 2000.
DOI : 10.1016/S0009-2797(00)00194-0

C. Nistor, J. Emnéus, L. Gorton, and A. Ciucu, Improved stability and altered selectivity of tyrosinase based graphite electrodes for detection of phenolic compounds, Analytica Chimica Acta, vol.387, issue.3, pp.387-309, 1999.
DOI : 10.1016/S0003-2670(99)00071-9

M. Lutz, E. Burestedt, J. Emnéus, H. Lidén, S. Gobhadi et al., Effects of different additives on a tyrosinase based carbon paste electrode, Analytica Chimica Acta, vol.305, issue.1-3, pp.305-313, 1998.
DOI : 10.1016/0003-2670(94)00573-5

M. Hedenmo, A. Narvaéz, E. Domlnguez, and I. Katakis, Improved mediated tyrosinase amperometric enzyme electrodes, Journal of Electroanalytical Chemistry, vol.425, issue.1-2, pp.1-11, 1997.
DOI : 10.1016/S0022-0728(96)04966-2

M. Santhiago, R. A. Peralta, A. Neves, G. A. Micke, and I. C. Vieira, Rosmarinic acid determination using biomimetic sensor based on purple acid phosphatase mimetic, Analytica Chimica Acta, vol.613, issue.1
DOI : 10.1016/j.aca.2008.02.050

F. S. Damos, M. P. Sotomayor, L. T. Kubota, S. Maria, C. N. Tanaka et al., Iron(iii) tetra-(N-methyl-4-pyridyl)-porphyrin as a biomimetic catalyst of horseradish peroxidase on the electrode surface: An amperometric sensor for phenolic compound determinations, The Analyst, vol.128, issue.3, pp.128-255, 2003.
DOI : 10.1039/b207894e

M. P. Sotomayor, A. A. Tanaka, and L. T. Kubota, Development of an amperometric sensor for phenol compounds using a Nafion® membrane doped with copper dipyridyl complex as a biomimetic catalyst, J. Electroanal. Chem, pp.536-71, 2002.

M. Pilar, T. Sotomayor, A. A. Tanaka, and L. T. Kubota, 2?-bipyridil) copper (II) chloride complex: a biomimetic tyrosinase catalyst in the amperometric sensor construction, Tris Electrochim. Acta, issue.2, pp.48-855, 2003.

R. Marion, N. M. Saleh, N. L. Poul, D. Floner, O. Lavastre et al., Rate enhancement of the catechol oxidase activity of a series of biomimetic monocopper(ii) complexes by introduction of non-coordinating groups in N-tripodal ligands, New Journal of Chemistry, vol.15, issue.9, pp.36-1828, 2012.
DOI : 10.1039/b710100g

URL : https://hal.archives-ouvertes.fr/hal-00843848

R. Marion, M. Zaarour, N. A. Qachachi, N. M. Saleh, F. Justaud et al., Characterization and catechole oxidase activity of a family of copper complexes coordinated by tripodal pyrazole-based ligands, Journal of Inorganic Biochemistry, vol.105, issue.11, pp.1391-1397, 2011.
DOI : 10.1016/j.jinorgbio.2011.07.020

URL : https://hal.archives-ouvertes.fr/hal-00842673

R. Marion, G. Muthusamy, and F. Geneste, Continuous flow catalysis with a biomimetic copper(II) complex covalently immobilized on graphite felt, Journal of Catalysis, vol.286, pp.266-272, 2012.
DOI : 10.1016/j.jcat.2011.11.011

URL : https://hal.archives-ouvertes.fr/hal-00842808

R. Marion, G. Muthusamy, and F. Geneste, Impact of nature and length of linker on the catecholase activity of a covalently immobilized copper(II) complex in continuous flow catalysis, Journal of Molecular Catalysis A: Chemical, vol.377, pp.377-51, 2013.
DOI : 10.1016/j.molcata.2013.04.027

URL : https://hal.archives-ouvertes.fr/hal-00841742

E. Herlinger, R. F. Jameson, and W. Linert, Spontaneous autoxidation of dopamine, Journal of the Chemical Society, Perkin Transactions 2, issue.2
DOI : 10.1039/p29950000259

J. M. Fontmorin, W. Y. He, D. Floner, F. Fourcade, A. Amrane et al., Reductive dehalogenation of 1,3-dichloropropane by a [Ni(tetramethylcyclam)]Br2-Nafion?? modified electrode, Electrochimica Acta, vol.137, pp.137-511, 2014.
DOI : 10.1016/j.electacta.2014.06.043

URL : https://hal.archives-ouvertes.fr/hal-01064008

R. F. Lane and A. T. Hubbard, Differential double pulse voltammetry at chemically modified platinum electrodes for in vivo determination of catechol amines, Analytical Chemistry, vol.48, issue.9, pp.1287-1293, 1976.
DOI : 10.1021/ac50003a009

S. Machado and . Rath, Electrochemical behavior of dopamine at a 3,3?-dithiodipropionic acid selfassembled monolayers, Talanta, pp.72-427, 2007.

G. Li, Nonenzymatic mechanisms of oxidation/reduction reactions of biologically important organic compounds, 2007.

S. Fierro and Y. Einaga, Novel Aspects of Diamond: From Growth to Applications

. Buratto, Investigation of the enhanced signals from cations and dopamine in electrochemical sensors coated with Nafion, J. Electroanal. Chem, vol.632, pp.97-101, 2009.

M. Del-pilar-taboada-sotomayor, A. A. Tanaka, and L. T. Kubota, Development of an Amperometric Sensor Highly Selective For Dopamine and Analogous Compounds Determination Using Bis(2,2???-Bipyridil) Copper(II) Chloride Complex, Electroanalysis, vol.15, issue.9, pp.15-787, 2003.
DOI : 10.1002/elan.200390097

D. Macdougall and W. B. Crummett, Guidelines for data acquisition and data quality evaluation in environmental chemistry, Analytical Chemistry, vol.52, issue.14, pp.52-2242, 1980.
DOI : 10.1021/ac50064a004

S. C. Fernandes, I. C. Vieira, R. A. Peralta, and A. Neves, Development of a biomimetic chitosan film-coated gold electrode for determination of dopamine in the presence of ascorbic acid and uric acid, Electrochimica Acta, vol.55, issue.23, pp.55-7152, 2010.
DOI : 10.1016/j.electacta.2010.06.062

I. R. De-oliveira, A. Neves, and I. C. Vieira, Development of a new biomimetic sensor based on an FeIIIFeII complex for the determination of phenolic compounds, Sensors and Actuators B: Chemical, vol.129, issue.1, pp.129-424, 2008.
DOI : 10.1016/j.snb.2007.08.047

D. Lakshmi, A. Bossi, M. J. Whitcombe, I. Chianella, S. A. Fowler et al., Electrochemical Sensor for Catechol and Dopamine Based on a Catalytic Molecularly Imprinted Polymer-Conducting Polymer Hybrid Recognition Element, Analytical Chemistry, vol.81, issue.9, pp.81-3576, 2009.
DOI : 10.1021/ac802536p

J. Ping, J. Wu, Y. Wang, and Y. Ying, Simultaneous determination of ascorbic acid, dopamine and uric acid using high-performance screen-printed graphene electrode, Biosensors and Bioelectronics, vol.34, issue.1, pp.34-70, 2012.
DOI : 10.1016/j.bios.2012.01.016