K. Wang, The use of titanium for medical applications in the USA, Materials Science and Engineering: A, vol.213, issue.1-2, pp.213-134, 1996.
DOI : 10.1016/0921-5093(96)10243-4

M. Long and H. J. Rack, Titanium alloys in total joint replacement???a materials science perspective, Biomaterials, vol.19, issue.18, pp.1621-1639, 2008.
DOI : 10.1016/S0142-9612(97)00146-4

M. Niinomi, Mechanical biocompatibilities of titanium alloys for biomedical applications, Journal of the Mechanical Behavior of Biomedical Materials, vol.1, issue.1, pp.30-42, 2008.
DOI : 10.1016/j.jmbbm.2007.07.001

T. W. Duerig, J. Albrecht, D. Richter, and P. Fischer, Formation and Reversion of Stress Induced Martensite in Ti, Acta Metall, vol.30, pp.10-12, 1982.

Y. L. Hao, M. Niinomi, D. Kuroda, K. Fukunaga, Y. L. Zhou et al., Young modulus and mechanical properties of Ti-29Nb-13Ta-4.6Zr in relation to ? " martensite, Metall. Mater. Trans, pp.33-3137, 2001.

T. Grosdidier and M. J. Philippe, Deformation induced martensite and superelasticity in a ??-metastable titanium alloy, Materials Science and Engineering: A, vol.291, issue.1-2, pp.291-218, 2000.
DOI : 10.1016/S0921-5093(00)00921-7

P. Laheurte, A. Eberhardt, and M. J. Philippe, Influence of the microstructure on the pseudoelasticity of a metastable beta titanium alloy, Materials Science and Engineering: A, vol.396, issue.1-2, pp.223-230, 2005.
DOI : 10.1016/j.msea.2005.01.022

URL : https://hal.archives-ouvertes.fr/hal-00111856

M. Castany and . Wary, Stability and elastic properties of Ti-alloys for biomedical application designed with electronic parameters, Eur. Phys. J. Conf, vol.6, pp.29002-29003, 2010.

S. Miyazaki, H. Y. Kim, and H. Hosoda, Development and characterization of Ni-free Ti-base shape memory and super-elastic alloys, Mater. Sci. Eng, pp.438-440, 2006.
DOI : 10.1016/j.msea.2006.02.054

S. Suwas and N. P. Gurao, Crystallographic texture of materials, J. Indian. Inst. Sci, vol.88, pp.151-177, 2008.
DOI : 10.1007/978-1-4471-6314-5

H. Y. Kim, T. Sasaki, K. Okutsu, J. I. Kim, T. Inamura et al., Texture and shape memory behavior of Ti???22Nb???6Ta alloy, Acta Materialia, vol.54, issue.2, pp.423-433, 2006.
DOI : 10.1016/j.actamat.2005.09.014

T. Inamura, Y. Kinoshita, J. I. Kim, H. Y. Kim, H. Hosoda et al., Effect of {0 0 1}<1 1 0> texture on superelastic strain of Ti?Nb?Al biomedical shape memory alloys, Mater. Sci. Eng. A, pp.438-440, 2006.

L. Wang, W. Lu, J. Qin, F. Zhang, and D. Zhang, The characterization of shape memory effect for low elastic modulus biomedical ??-type titanium alloy, Materials Characterization, vol.61, issue.5, pp.61-535, 2010.
DOI : 10.1016/j.matchar.2010.02.009

D. Stojakovic, Electron backscatter diffraction in materials characterization, Processing and Application of Ceramics, vol.6, issue.1, pp.1-2012
DOI : 10.2298/PAC1201001S

URL : http://doi.org/10.2298/pac1201001s

R. A. Schwarzer and J. Sukkau, Electron Back Scattered Diffraction : Current State, Prospects and Comparison with X-Ray Diffraction Texture Measurement

C. Suryanarayana and M. G. Norton, X-ray diffraction: a practical approach, 1998.
DOI : 10.1007/978-1-4899-0148-4

M. Niinomi, T. Akahori, and M. Nakai, In situ X-ray analysis of mechanism of nonlinear super elastic behavior of Ti???Nb???Ta???Zr system beta-type titanium alloy for biomedical applications, Materials Science and Engineering: C, vol.28, issue.3, pp.406-413, 2008.
DOI : 10.1016/j.msec.2007.04.028

X. D. Wang, H. B. Lou, K. Stahl, J. Bednarcik, H. Franz et al., Tensile behavior of orthorhombic ?????-titanium alloy studied by in situ X-ray diffraction, Materials Science and Engineering: A, vol.527, issue.24-25, pp.6596-6600, 2010.
DOI : 10.1016/j.msea.2010.06.065

H. Y. Kim, Y. Ikehara, J. I. Kim, H. Hosoda, and S. Miyazaki, Martensitic transformation, shape memory effect and superelasticity of Ti???Nb binary alloys, Acta Materialia, vol.54, issue.9, pp.2419-2429, 2006.
DOI : 10.1016/j.actamat.2006.01.019

W. Elmay, F. Prima, T. Gloriant, B. Bolle, Y. Zhong et al., Effects of thermomechanical process on the microstructure and mechanical properties of a fully martensitic titanium-based biomedical alloy, Journal of the Mechanical Behavior of Biomedical Materials, vol.18, pp.47-56, 2013.
DOI : 10.1016/j.jmbbm.2012.10.018

URL : https://hal.archives-ouvertes.fr/hal-00919290

Y. Yang, S. Wu, G. Li, Y. Li, Y. Lu et al., Evolution of deformation mechanisms of Ti?22, 34O alloy during straining, pp.4-4, 2010.

T. Karthikeyan, A. Dasguptaa, R. Khatirkar, S. Saroja, I. Samajdar et al., Effect of cooling rate on transformation texture and variant selection during ??????? transformation in Ti???5Ta???1.8Nb alloy, Materials Science and Engineering: A, vol.528, issue.2, pp.549-558, 2010.
DOI : 10.1016/j.msea.2010.09.055

C. Giacovazzo, H. L. Monaco, D. Viterbo, F. Scordari, G. Gilli et al., Oxford Science Publication, 2002.