H. Y. Kim, Y. Ikehara, J. I. Kim, H. Hosoda, and S. Miyazaki, Martensitic transformation, shape memory effect and superelasticity of Ti?Nb binary alloys, Acta Materialia, vol.54, issue.9, p.2419, 2006.
DOI : 10.1016/j.actamat.2006.01.019

M. Tahara, H. Y. Kim, H. Hosoda, and S. Miyazaki, Cyclic deformation behavior of a Ti?26 at.% Nb alloy, Acta Materialia, vol.57, issue.8, p.2461, 2009.
DOI : 10.1016/j.actamat.2009.01.037

Y. Al-zain, H. Y. Kim, T. Koyano, H. Hosoda, T. H. Nam et al., Anomalous temperature dependence of the superelastic behavior of Ti?Nb?Mo alloys, Acta Materialia, vol.59, issue.4, p.1464, 2011.
DOI : 10.1016/j.actamat.2010.11.008

P. Castany, A. Ramarolahy, F. Prima, P. Laheurte, C. Curfs et al., In situ synchrotron X-ray diffraction study of the martensitic transformation in superelastic Ti-24Nb-0.5N and Ti-24Nb-0.5O alloys, Acta Materialia, vol.88, p.102, 2015.
DOI : 10.1016/j.actamat.2015.01.014

URL : https://hal.archives-ouvertes.fr/hal-01153415

Y. Yang, P. Castany, M. Cornen, F. Prima, S. J. Li et al., Characterization of the martensitic transformation in the superelastic Ti?24Nb?4Zr?8Sn alloy by in situ synchrotron X-ray diffraction and dynamic mechanical analysis, Acta Materialia, vol.88, p.25, 2015.
DOI : 10.1016/j.actamat.2015.01.039

URL : https://hal.archives-ouvertes.fr/hal-01153403

M. F. Ijaz, H. Y. Kim, H. Hosoda, and S. Miyazaki, Superelastic properties of biomedical (Ti?Zr)?Mo?Sn alloys, Materials Science and Engineering: C, vol.48, p.11, 2015.
DOI : 10.1016/j.msec.2014.11.010

P. Castany, M. Besse, and T. Gloriant, transmission electron microscopy, Physical Review B, vol.84, issue.2, p.20201, 2011.
DOI : 10.2307/2531521

URL : https://hal.archives-ouvertes.fr/hal-00864948

M. J. Lai, C. C. Tasan, and D. Raabe, Deformation mechanism of ?-enriched Ti?Nb-based gum metal: Dislocation channeling and deformation induced ??? transformation, Acta Materialia, vol.100, p.290, 2015.
DOI : 10.1016/j.actamat.2015.08.047

Y. Kamimura, S. Katakura, K. Edagawa, S. Takeuchi, S. Kuramoto et al., Thermally Activated Deformation of Gum Metal: A Strong Evidence for the Peierls Mechanism of Deformation, MATERIALS TRANSACTIONS, vol.56, issue.12, p.2084, 2015.
DOI : 10.2320/matertrans.M2015271

S. Hanada and O. Izumi, Transmission electron microscopic observations of mechanical twinning in metastable beta titanium alloys, Metallurgical Transactions A, vol.3, issue.8, p.1409, 1986.
DOI : 10.2320/matertrans1960.23.85

T. Furuhara, K. Kishimoto, and T. Maki, Transmission Electron Microscopy of {332}⟨113⟩ Deformation Twin in Ti–15V–3Cr–3Sn–3Al Alloy, Materials Transactions, JIM, vol.35, issue.12, p.843, 1994.
DOI : 10.2320/matertrans1989.35.843

T. Kawabata, S. Kawasaki, and O. Izumi, Mechanical properties of TiNbTa single crystals at cryogenic temperatures, Acta Materialia, vol.46, issue.8, p.2705, 1998.
DOI : 10.1016/S1359-6454(97)00475-8

X. Zhao, M. Niinomi, M. Nakai, G. Miyamoto, and T. Furuhara, Microstructures and mechanical properties of metastable Ti?30Zr?(Cr, Mo) alloys with changeable Young?s modulus for spinal fixation applications, Acta Biomaterialia, vol.7, issue.8, p.3230, 2011.
DOI : 10.1016/j.actbio.2011.04.019

M. Ahmed, D. Wexler, G. Casillas, O. M. Ivasishin, and E. V. Pereloma, The influence of ? phase stability on deformation mode and compressive mechanical properties of Ti?10V?3Fe?3Al alloy, Acta Materialia, vol.84, p.124, 2015.
DOI : 10.1016/j.actamat.2014.10.043

P. G. Oberson and S. Ankem, Why Twins Do Not Grow at the Speed of Sound All the Time, Physical Review Letters, vol.288, issue.36, p.165501, 2005.
DOI : 10.1016/0079-6425(94)00007-7

G. Rusakov, A. Litvinov, and V. Litvinov, Deformation twinning of titanium ?-alloys of transition class, Metal Science and Heat Treatment, vol.58, issue.2, p.244, 2006.
DOI : 10.1016/0001-6160(64)90040-9

H. Tobe, H. Y. Kim, T. Inamura, H. Hosoda, and S. Miyazaki, Origin of {332} twinning in metastable ?-Ti alloys, Acta Materialia, vol.64, p.345, 2014.
DOI : 10.1016/j.actamat.2013.10.048

Y. L. Hao, S. J. Li, S. Y. Sun, and R. Yang, Effect of Zr and Sn on Young's modulus and superelasticity of Ti?Nb-based alloys, Materials Science and Engineering: A, vol.441, issue.1-2, p.112, 2006.
DOI : 10.1016/j.msea.2006.09.051

E. Bertrand, P. Castany, Y. Yang, E. Menou, and T. Gloriant, Deformation twinning in the full-?? martensitic Ti?25Ta?20Nb shape memory alloy, Acta Materialia, vol.105, p.94, 2016.
DOI : 10.1016/j.actamat.2015.12.001

URL : https://hal.archives-ouvertes.fr/hal-01254807

F. Sun, F. Prima, and T. Gloriant, High-strength nanostructured Ti?12Mo alloy from ductile metastable beta state precursor, Materials Science and Engineering: A, vol.527, issue.16-17, p.4262, 2010.
DOI : 10.1016/j.msea.2010.03.044

S. Banerjee, R. Tewari, and G. K. Dey, Omega phase transformation ??? morphologies and mechanisms, International Journal of Materials Research, vol.97, issue.7, p.963, 2006.
DOI : 10.3139/146.101327

T. S. Kuan, R. R. Ahrens, and S. L. Sass, The Stress-induced omega phase transformation in Ti-V alloys, Metallurgical Transactions A, vol.5, issue.9, p.1767, 1975.
DOI : 10.1007/BF02642306

M. Tang, W. C. Carter, and R. M. Cannon, Grain Boundary Transitions in Binary Alloys, Physical Review Letters, vol.86, issue.7, p.75502, 2006.
DOI : 10.1063/1.434402

P. R. Cantwell, M. Tang, S. J. Dillon, J. Luo, G. S. Rohrer et al., Grain boundary complexions, Acta Materialia, vol.62, p.1, 2014.
DOI : 10.1016/j.actamat.2013.07.037

URL : http://www.dtic.mil/get-tr-doc/pdf?AD=ADA601364

V. K. Gupta, D. Yoon, H. M. Meyer, I. , and J. Luo, Thin intergranular films and solid-state activated sintering in nickel-doped tungsten, Acta Materialia, vol.55, issue.9, p.3131, 2007.
DOI : 10.1016/j.actamat.2007.01.017

L. M. Hsiung and D. H. Lassila, Shock-induced deformation twinning and omega transformation in tantalum and tantalum?tungsten alloys, Acta Materialia, vol.48, issue.20, p.4851, 2000.
DOI : 10.1016/S1359-6454(00)00287-1