J. C. Goeltz, C. P. Kubiak, J. Ferraris, D. O. Cowan, V. Walatka et al., Mixed Valence Self-Assembled Monolayers: Electrostatic Polarizabilities of the Mixed Valence States, 22) Aviram, A.; Ratner, M. A. Molecular Rectifier, pp.8114-8116, 1973.
DOI : 10.1021/jp802209u

T. Breton and E. Levillain, Intermolecular Interactions in Self-assembled Monolayers of Tetrathiafulvalene Derivatives, 27) Pinson, J.; Podvorica, F. Attachment of Organic Layers to Conductive or, pp.2118-2120, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00992058

W. Lisowski, (28) Kaminska, I, Semiconductive Surfaces by Reduction of Diazonium Salts, pp.429-439, 2005.

P. Woisel, J. Lyskawa, M. Opallo, and A. Siriwardena, Preparation of a Responsive Page 27 of 32 ACS Paragon Plus Environment The Journal of Physical Chemistry Carbohydrate-Coated Biointerface Based on Graphene Efficient Covalent Modification of a Carbon Surface: Use of a Silyl Protecting Group To Form an Active Monolayer, Terminated Tetrathiafulvalene Nanohybrid Material. Appl. Mater. Interfaces 201230) Leroux Y. R.; Hapiot, P. Nanostructured Monolayers on Carbon Substrates Prepared by Electrografting of Protected Aryldiazonium Salts, pp.5386-5393, 2010.

. J. Tetracyanoquinodimethanes, . Org, D. Chem-lorcy, K. Shin, M. Guerro et al., ?-Donor Layer Coverage onto Glassy Carbon by Electrochemical Means. Reduction of ?-Iodoalkyl-Tetrathiafulvalenes Electrochimica Acta, pp.3101-3109, 1975.

W. F. Paxton, S. L. Kleinman, A. N. Basuray, and J. F. Stoddart, (100) Surfaces, Langmuir, vol.28, pp.3453-3459, 2012.

R. Redox-systems-lee, L. Y. Sutherland, T. C. Rucareanu, S. Lennox, and R. B. , Ferrocenylalkylthiolates as a Probe of Heterogeneity in Binary Self-Assembled Monolayers on Gold, Langmuir, vol.10, issue.22, pp.285-293, 1998.

C. D. Jaeger, A. J. Bard, and S. H. Duvall, Electrochemical behavior of tetrathiafulvalene-tetracyanoquinodimethane electrodes in aqueous media, Journal of the American Chemical Society, vol.101, issue.7, pp.1690-1699, 1979.
DOI : 10.1021/ja00501a008

S. H. Duvall and R. L. Mccreery, Self-catalysis by Catechols and Quinones during Heterogeneous Electron Transfer at Carbon Electrodes, Transfer Kinetics on Native and Modified Glassy Carbon Electrodes, pp.4594-4602, 1999.
DOI : 10.1021/ja000227u

S. Lhenry, Y. R. Leroux, and P. Hapiot, Use of Catechol As Selective Redox Mediator in Scanning Electrochemical Microscopy Investigations, 45) Amatore Charge transfer at partially blocked surfaces, pp.7518-7524
DOI : 10.1021/ac301634s

URL : https://hal.archives-ouvertes.fr/hal-00741039

R. G. Compton, A model for the case of microscopic active and inactive sites, J. Electroanal. Chem, vol.147, issue.46, pp.39-51, 1983.

G. Qin, C. Santos, W. Zhang, Y. Li, A. Kumar et al., Biofunctionalization on Alkylated Silicon Substrate Surfaces via ???Click??? Chemistry, Distinguishing Through-Film Transport from Pinhole (Pore) Diffusion. Langmuir, pp.2519-2529, 2009.
DOI : 10.1021/ja1025497

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3059218

C. Bellitto, M. Bonamico, V. Fares, P. Imperatori, and S. Patrizio, Tetrathiafulvalenium salts of planar Pt, Pd, and Cu 1,2-dithio-oxalato-S,S[', " ] anions. Synthesis, Chemistry and Molecular Structures of bis(tetrathiafulvalenium) bis(1,2-dithio-oxalato-S,S, Coulomb Interactions in Rubidium-Doped Tetracyanoethylene: A Model System for Organometallic MagnetsII), [ttf] 2 [Pd(S 2 C 2 O 2 ) 2 ], and of bis(tetrathiafulvalenium)tetrathiafulvalene bis, pp.165208-165257, 2004.

H. Matsuyama and T. Mori, Charge-Transfer Complex and Radical Cation salt of a New Donor EDT-TTFCl 2 : Unique Conductivities and Crystal Structures, J. Mater. Chem, vol.6, pp.501-503, 1996.